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Abstract From the study of various properties of some difference operators, we prove in
the first part of this work that the continuous Hahn and the Meixner-Pollaczek polynomi-
als are solutions of a second order divided-difference equation of hypergeometric type.
Next, using some algorithmic tools, we solve the inversion, connection, multiplication
and linearization problem for the continuous Hahn and the Meixner-Pollaczek polyno-
mials.
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1 Introduction

Classical orthogonal polynomials on a quadratic and q-quadratic lattice [12], [18], [19]
are known to satisfy a divided-difference equation of the type ([3], [5], [19], [28]){

φ(x(s))
∆

∇x1(s)

∇
∇x(s)

+ ψ(x(s))

2

[
∆

∆x(s)
+ ∇
∇x(s)

]
+λn

}
pn(x(s)) = 0, n ≥ 0, (1)

where φ(x(s)) =φ2x2(s)+φ1x(s)+φ0 and ψ(x(s)) =ψ1x(s)+ψ0 are polynomials of max-
imal degree two and one respectively, λn is a constant depending on the integer n and
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the leading coefficients φ2 and ψ1 of φ and ψ respectively, and x(s) is a quadratic or q-
quadratic lattice defined by [18]

x(s) =
{

c1q s + c2q−s + c3 if q 6= 1,
c4s2 + c5s + c6 if q = 1,

with
xµ(s) = x

(
s + µ

2

)
, µ, c1, . . . , c6 ∈C.

Classical orthogonal polynomials on a quadratic and q-quadratic lattice are represented
usually in terms of generalized or basic hypergeometric series.

Definition 1 1. The generalized hypergeometric series is defined by

p Fq

(
a1, . . . , ap

b1, . . . ,bq

∣∣∣∣∣x

)
:=

∞∑
m=0

Am xm =
∞∑

m=0

(a1, · · · , ap )m

(b1, · · · ,bq )m

xm

m!
,

where (a1, · · · , ap )m denotes the Pochhammer symbol (or shifted factorial) defined
by

(a1, · · · , ap )m = (a1)m · · · (ap )m with (ai )m =
{

1 if m = 0

ai (ai +1) · · · (ai +m −1) = Γ(ai +m)
Γ(ai ) if m ∈N.

We say that a term Am is a hypergeometric term with respect to m if Am+1
Am

is a rational
function in the variable m.

2. The basic hypergeometric series rφs is defined by

rφs

(
a1, . . . , ar

b1, . . . ,bs

∣∣∣∣∣q ; z

)
=

∞∑
k=0

(a1, . . . , ar ; q)k

(b1, . . . ,bs ; q)k

(
(−1)k q

k(k−1)
2

)1+s−r zk

(q ; q)k
,

where the q-Pochhammer symbol (a1, a2, . . . , ar ; q)k is defined by

(a1, . . . , ar ; q)k := (a1; q)k · · · (ar ; q)k , with (ai ; q)k =


k−1∏
j=0

(1−ai q j ) if k = 1,2, . . .

1 if k = 0.

Foupouagnigni showed in [5] that for some classical orthogonal polynomials on a
quadratic or q-quadratic lattice, Equation (1) is equivalent to a second-order divided-
difference equation of the form

φ(x(s))D2
x pn(x(s))+ψ(x(s))SxDx pn(x(s))+λn pn(x(s)) = 0, (2)

where the operators Dx and Sx are defined by

Dx f (x(s)) = f (x(s + 1
2 ))− f (x(s − 1

2 ))

x(s + 1
2 )−x(s − 1

2 )
, Sx f (x(s)) = f (x(s + 1

2 ))+ f (x(s − 1
2 ))

2
.

Note that (2) is equivalent to a difference or q-difference equation of the form (see [12,
chapters 9, 14])

λn y(x(s)) = B(s)y(x(s +1))− (B(s)+D(s))y(x(s))+D(s)y(x(s −1)), (3)

with

B(s) = φ(x(s))

(x(s +1/2)−x(s −1/2))(x(s +1)−x(s))
+ ψ(x(s))

2(x(s +1)−x(s))
,
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D(s) = φ(x(s))

(x(s +1/2)−x(s −1/2))(x(s)−x(s −1))
− ψ(x(s))

2(x(s)−x(s −1))
.

Following the work by Foupouagnigni [5], Njionou Sadjang et al. [22] using the same ap-
proach proved that the Wilson and the continuous dual Hahn polynomials are solutions
of the divided-difference equation of the form

φ(x)D2pn(x)+ψ(x)SDpn(x)+λn pn(x) = 0, (4)

where the operators S and the Wilson operator D (see [4], [11]) are defined by

D f (x) =
f
(
x + i

2

)
− f

(
x − i

2

)
2i x

, S f (x) =
f
(
x + i

2

)
+ f

(
x − i

2

)
2

.

The divided-difference equations given in the form (2) or (4) are very useful: their coeffi-
cients can be used for instance to compute the structure formula, the connection and the
inversion coefficients of classical orthogonal polynomials on a quadratic and q-quadratic
lattice (see e. g. [7], [22], [29] and references therein).

Let us set the following notations:

Bn(a, x) = (aq s ; q)n(aq−s ; q)n =
n−1∏
k=0

(1−2axqk +a2q2k ), n ≥ 1, B0(a, x) ≡ 1, (5)

where x = x(s) = cosθ = q s +q−s

2
, q s = e iθ ;

ϑn(a, x) = (a + i x)n(a − i x)n ; (6) ξn(γ,δ,µ(x)) = (q−x ; q)n(γδq x+1; q)n =
n−1∏
k=0

(1+γδq2k+1 −µ(x)qk ), n ≥ 1,

ξ0(γ,δ,µ(x)) ≡ 1,
(7)

with µ(x) = q−x +γδq x+1;{
χn (γ,δ,λ(x)) = (−x)n (x +γ+δ+1)n =

n−1∏
k=0

(
k(γ+δ+k +1)−λ(x)

)
, n ≥ 1,

χ0(γ,δ,λ(x)) ≡ 1,
(8)

for λ(x) = x(x +γ+δ+1).
The hypergeometric and the basic hypergeometric representations of the classical or-
thogonal polynomials on a quadratic or q-quadratic lattice suggest to use the natural
bases {Bn(a, x)}, {(a + i x)n}, {ξn(γ,δ,µ(x))} or {χn(γ,δ,λ(x))} whose elements are polyno-
mials of degree n in the variables x, x, µ(x) or λ(x), respectively, and the basis {ϑn(a, x)}
whose elements are polynomials of degree n in the variable x2. The operatorDx is appro-
priate for Bn(a, x), ξn(γ,δ,µ(x)) and χn(γ,δ,λ(x)) whereas the corresponding operator
for the basis {ϑn(a, x)} is D.

In the second section of this work, using the operator δx defined in [23, p. 436] (which
is appropriate for the basis {(a + i x)n}) and following the same approach as in [5] and
[22], we derive the divided-difference equation satisfied by the continuous Hahn and the
Meixner-Pollaczek polynomials taking advantage that these polynomials are expanded
in the basis {(a + i x)n}.

The third section is devoted to the solution of the inversion, connection, multipli-
cation and linearization problem for the Meixner-Pollaczek and the Continuous Hahn
polynomials, proceeding as in [29, chapter 4] or ([7], [22]). The literature on the inversion,
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connection, multiplication and linearization problems is vast, and a variety of methods
and approaches for computing the coefficients have been developed for classical contin-
uous, discrete, q-discrete orthogonal polynomials and also for orthogonal polynomials
on a nonuniform lattice (see e. g. [1], [2], [7], [10], [13], [15], [16], [17], [24], [25], [27], [29],
. . . ). It should be noted that the connection problem is the problem of finding the coef-
ficients Cm(n) in the connection formula

Pn(x) =
n∑

m=0
Cm(n)Qm(x),

where Pn are Qn are polynomial sequences with deg(Pn) = deg(Qn) = n, ∀n ≥ 0. When
Pn(x) = vn(x), where Qn(x) is expanded in the basis vn(x) that is

Qn(x) =
n∑

m=0
Am(n)vm(x),

we are faced with the so-called inversion problem for the family Qm(x):

vn(x) =
n∑

m=0
Im(n)Qm(x). (9)

If we substitute Pn(x) and Qm(x) in the connection formula, respectively, by Pn(ax) and
Pm(x), we have the multiplication formula for the polynomials Pn(x) and the multipli-
cation problem is the problem of finding the coefficients Dm(n; a) in the multiplication
formula

Pn(ax) =
n∑

m=0
Dm(n; a)Pm(x),

where a designates a non-zero complex number.
The linearization problem is the problem of finding the coefficients Ck (m,n) in the ex-
pansion of the product Pn(x)Qm(x) of two polynomial systems in terms of a third se-
quence of polynomials Rk (x),

Pn(x)Qm(x) =
n+m∑
k=0

Lk (m,n)Rk (x).

We find our results by an application of the Maple computer algebra systems. The main
algorithmic tools for our development are Zeilberger’s algorithm which searches for a ho-
mogeneous linear recurrence equation with polynomial coefficients for Sn =∑∞

m=−∞ A(n,m)
(see [14, Chapter 7] and references therein), the Petkovšek-van-Hoeij algorithm which
finds all hypergeometric term solutions of a homogeneous linear recurrence equation
with polynomial coefficients (see [14, Chapter 9] and references therein) and is imple-
mented in Maple by the procedure LREtools[hypergeomsols], the Maple procedure
Sumtohyper which is an implementation of Algorithm 2.8, p. 22 of [14] which converts
a sum into hypergeometric notation. For all computation, we use the hsum package ac-
companying [14].
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2 Divided-difference equation of the Continuous Hahn and the Meixner-Pollaczek
polynomials

The Continuous Hahn and the Meixner-Pollaczek polynomials are defined, respectively,
by (see [12, pages 200, 213])

pn(x; a,b,c,d) = i n (a + c)n(a +d)n

n!
3F2

( −n,n +a +b + c +d −1, a + i x

a + c, a +d

∣∣∣∣∣1

)
,

P (λ)
n (x;θ) = (2λ)n

n!
e i nθ

2F1

( −n,λ+ i x

2λ

∣∣∣∣∣1−e−2iθ

)
.

According to these definitions, they are expanded in the basis {(a + i x)n}. Let us define
the difference operator δx (see [23, p. 436], compare [12, p. 201 and 214], [20], [21], [30,
Equation (1.15)]) and its companion operator S as follows:

δx f (x) =
f
(
x + i

2

)
− f

(
x − i

2

)
i

, S f (x) =
f
(
x + i

2

)
+ f

(
x − i

2

)
2

.

Note that the operator D given in ([20], [21]) and the operator δ given in [12, p. 201 and
214] and [30, Equation(1.15)] are equal to iδx . The operator δx transforms a polynomial
of degree n in the variable x into a polynomial of degree n − 1 (since δx x = 1) and is
appropriate for the basis (a + i x)n as shown in

Proposition 2 The action of the operators δx and S on the basis (a + i x)n is given by

δx (a + i x)n = ni (a + 1

2
+ i x)n−1;

δk
x (a + i x)n := δk−1

x (δx (a + i x)n)

= i k n!

(n −k)!
(a + k

2
+ i x)n−k , k = 1,2, . . . ; (10)

S (a + i x)n = (a + 1

2
+ i x)n − n

2
(a + 1

2
+ i x)n−1;

(a + i x)δ2
x (a + i x)n = −n(n −1)(a + i x)n−1; (11)

(a + i x)S δx (a + i x)n = ni (a + i x)n − n(n −1)

2
i (a + i x)n−1;

x(a + i x)n = −i (a + i x)n+1 + i (n +a)(a + i x)n ; (12)

(a + i x)(a + i x)n = (a + i x)n+1 −n(a + i x)n ;

(a + i x)(a +1+ i x)n = (a + i x)n+1.

Proof The results are obtained by direct computation.

Proposition 3 The operators δx and S satisfy the following product rules

δx ( f g ) = δx f S g +S f δx g , (13)

S ( f g ) = −1

4
δx f δx g +S f S g ,

δxS = S δx , (14)

S 2 = −1

4
δ2

x + I, (15)

where I f = f .
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Proof The proof follows from the definition of the operators δx and S .

Starting from the equations (see [12, pages 202, 214])

δx [w(x; a,b,c,d)pn(x; a,b,c,d)] =−(n +1)w

(
x; a − 1

2
,b − 1

2
,c − 1

2
,d − 1

2

)
(16)

×pn+1

(
x; a − 1

2
,b − 1

2
,c − 1

2
,d − 1

2

)
,

where
w(x; a,b,c,d) = Γ(a + i x)Γ(b + i x)Γ(c − i x)Γ(d − i x),

and

δx [ω(x;λ,θ)P (λ)
n (x;θ)] =−(n +1)ω

(
x;λ− 1

2
,θ

)
P

(λ+ 1
2 )

n+1 (x;θ), (17)

where
ω(x;λ,θ) = Γ(λ+ i x)Γ(λ− i x)e(2θ−π)x ,

and using the relations (see [12, pages 201, 214])

δx pn(x; a,b,c,d) = (n +a +b + c +d −1)pn−1

(
x, a + 1

2
,b + 1

2
,c + 1

2
,d + 1

2

)
, (18)

δx P (λ)
n (x;θ) = 2sinθP

(λ+ 1
2 )

n−1 (x;θ), (19)

and (13), we show that

Proposition 4 The continuous Hahn and the Meixner-Pollaczek polynomials are, respec-
tively, solution of the divided-difference equations

(2 x2 − i (a +b − c −d) x − cd −ab)δ2
x y(x) (20)

+(2(a +b + c +d) x −2 i (ab − cd))S δx y(x)−2n(n +a +b + c +d −1)y(x) = 0,

(x cos(θ)−λ sin(θ))δ2
x y(x)+2(x sin(θ)+λcos(θ))S δx y(x)−2n sin(θ) y(x) = 0. (21)

Proof First combine (16) and (18) to get the relation

δx

[
w

(
x; a + 1

2
,b + 1

2
,c + 1

2
,d + 1

2

)
δx pn(x; a,b,c,d)

]
= (n +a +b + c +d −1)

×δx

[
w

(
x; a + 1

2
,b + 1

2
,c + 1

2
,d + 1

2

)
pn−1

(
x; a + 1

2
,b + 1

2
,c + 1

2
,d + 1

2

)]
= −n(n +a +b + c +d −1)w(x; a,b,c,d)pn(x; a,b,c,d).

Next, use the product rule (13) to write the left-hand side as

δx

[
w

(
x; a + 1

2
,b + 1

2
,c + 1

2
,d + 1

2

)
δx pn(x; a,b,c,d)

]
= S w

(
x; a + 1

2
,b + 1

2
,c + 1

2
,d + 1

2

)
δ2

x pn(x; a,b,c,d)

+δx w

(
x; a + 1

2
,b + 1

2
,c + 1

2
,d + 1

2

)
S δx pn(x; a,b,c,d).
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We therefore have by identification

φ(x)δ2
x pn(x; a,b,c,d)+ψ(x)S δx pn(x; a,b,c,d) =−n(n +a +b + c +d −1)pn(x; a,b,c,d)

with

φ(x) = S w
(
x; a + 1

2 ,b + 1
2 ,c + 1

2 ,d + 1
2

)
w(x; a,b,c,d)

,ψ(x) = δx w
(
x; a + 1

2 ,b + 1
2 ,c + 1

2 ,d + 1
2

)
w(x; a,b,c,d)

which are simplified into polynomials to get (20).
(21) follows by the same procedure using (17) and (19).

Remark 5 From the representations of δ2
x y(x), S δx y(x), we get y(x + i ) and y(x − i ) in

terms of δ2
x y(x), S δx y(x) and y(x). If we substitute y(x + i ) and y(x − i ) in (see [12, Eqs.

(9.4.5) and (9.7.5)])

λn y(x) = B(x)y(x + i )− (B(x)+D(x))y(x)+D(x)y(x − i ), (22)

we see that the divided-difference equation

φ(x)δ2
x y(x)+ψ(x)S δx y(x)−2λn y(x) = 0,

is equivalent to the well-known difference equation (22), with

φ(x) =−(B(x)+D(x)),ψ(x) = 2i (B(x)−D(x)).

For the continuous Hahn polynomials (see [12, page 201])

B(x) = (c − i x)(d − i x), D(x) = (a + i x)(b + i x), λn = n(n +a +b + c +d −1);

and for the Meixner-Pollaczek polynomials (see [12, page 214])

B(x) = e iθ(λ− i x), D(x) =−e−iθ(λ+ i x), λn = 2i n sin(θ).

It is well known that all the derivatives of functions of hypergeometric type, i. e., which
are solution of differential equations of the form φ(x)y ′′(x)+ψ(x)y ′(x)+λn y(x) = 0, are
also of hypergeometric type (see e. g. [19, p. 6]). In the following proposition, we want to
prove a similar result.

Proposition 6 If f is a function satisfying

φ(x)δ2
x y(x)+ψ(x)S δx y(x)−λn y(x) = 0, (23)

then δm
x f is solution of the equation

φm(x)δ2
x y(x)+ψm(x)S δx y(x)−λm

n y(x) = 0,

whereφm+1(x) =S φm(x)− 1
4δxψ

m(x),ψm+1(x) = δxφ
m(x)+S ψm(x),λm+1

n = δxψ
m(x)+

λm
n , for m = 1,2, . . . , with φ0(x) =φ(x), ψ0(x) =ψ(x) and λ0

n =λn .

Proof We apply the difference operator δx to the divided-difference equation (23) and
use the relations (13)–(15) to obtain the result (see e. g. [6, Equation (54)]).
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3 Inversion, connection, multiplication and linearization formulae of the Continuous
Hahn and the Meixner-Pollaczek polynomials

In this section, proceeding as in [29, chapter 4], [7], [22], we solve the inversion, connec-
tion, multiplication and linearization problem for the Continuous Hahn and the Meixner-
Pollaczek polynomials.

3.1 Inversion formulae of the Continuous Hahn and the Meixner-Pollaczek polynomials

To derive the inversion formulae of the Continuous Hahn and the Meixner-Pollaczek
polynomials, we use the recurrence relations given below.

Proposition 7 The following recurrence relations are valid:
1. for the basis (a + i x)n

xδ2
x (a + i x)n = i (n +a −1)δ2

x (a + i x)n − i
n −1

n +1
δ2

x (a + i x)n+1, (24)

2. for the continuous Hahn polynomials

xpn(x; a,b,c,d) = (n +a +b + c +d −1)(n +1)

(2n +a +b + c +d −1)(2n +a +b + c +d)
pn+1(x; a,b,c,d)+ (25)

i
(n (n −1+a +d) (n −1+a + c)

2n +a +b + c +d −2
− (n +1)(n +a +d) (n +a + c)

2n +a +b + c +d
+n +a

)
pn(x; a,b,c,d)

+ (n −1+d +b) (n −1+ c +b) (a +d +n −1)(a + c +n −1)

(2n +a +b + c +d −2)(2n +a +b + c +d −1)
pn−1(x; a,b,c,d), (see [12, p. 201])

xδ2
x pn(x; a,b,c,d) = (n −1)(n +a +b + c +d −1)

(2n +a +b + c +d −1)(2n +a +b + c +d)
δ2

x pn+1(x; a,b,c,d)+ (26)

i
( (n −1+a + c) (n −1+a +d) (n −2)

2n +a +b + c +d −2
− (n +a + c) (n +a +d) (n −1)

2n +a +b + c +d
+n +a −1

)
δ2

x pn(x; a,b,c,d)

+ (a + c +n −1)(a +d +n −1)(n −1+d +b) (n −1+ c +b) (n +a +b + c +d)

(2n +a +b + c +d −2)(2n +a +b + c +d −1)(n −2+a +b + c +d)
δ2

x pn−1(x; a,b,c,d),

3. for the Meixner-Pollaczeck polynomials

xP (λ)
n (x;θ) = (n +1)i e iθ

e2iθ−1
P (λ)

n+1(x;θ)− (n +λ)i (e2iθ+1)

e2iθ−1
P (λ)

n (x;θ) (27)

+ (2λ+n −1)i e iθ

e2iθ−1
P (λ)

n−1(x;θ), (see [12, Eq. (9.7.3), p. 213])

xδ2
x P (λ)

n (x;θ) = (n −1)i e iθ

e2iθ−1
δ2

x P (λ)
n+1(x;θ)− (n +λ−1)i (e2iθ+1)

e2iθ−1
δ2

x P (λ)
n (x;θ)

+ (2λ+n −1)i e iθ

e2iθ−1
δ2

x P (λ)
n−1(x;θ). (28)
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Proof From (11) we obtain (a + i x)n in terms of δ2
x (a + i x)n . If we substitute this in the

recurrence equation (12), (24) follows.
To get (25) and (27), we substitute

pn(x) =
n∑

m=0
Am(n)(a + i x)m (29)

in the recurrence equation

xpn =αn pn+1 +βn pn +γn pn−1, (30)

and use (12). By equating the coefficients of (a+ i x)n+1, one gets αn . Equating the coeffi-
cients of (a + i x)n and (a + i x)n−1 yields respectively βn and γn .

We derive (26) and (28) as follows: we substitute the expression of pn given by (29) in
the recurrence equation

xδ2
x pn =α∗

nδ
2
x pn+1 +β∗

nδ
2
x pn +γ∗nδ2

x pn−1, (31)

and then multiply the equation obtained by (a+i x). Next we use (11) and (12) respectively
to eliminate (a+i x)δ2

x (a+i x)n and x(a+i x)n . Equating the coefficients of (a+i x)n , (a+
i x)n−1, (a + i x)n−2 yields respectively α∗

n , β∗
n and γ∗n .

Remark 8 We note that the recurrence relation of the continuous Hahn polynomials given
by Equations (9.4.3) and (9.4.4) in [12, p. 201]) are equivalent to the recurrence relation
(25). Indeed Equation (9.4.4) of [12, p. 201]) is

xpn(x) = pn+1(x)+ i (An +Cn +a)pn(x)− An−1Cn pn−1(x),

where

pn(x) = n!

(n +a +b + c +d −1)n
pn(x; a,b,c,d),

An =− (n +a +b + c +d −1)(n +a + c)(n +a +d)

(2n +a +b + c +d −1)(2n +a +b + c +d)
,

Cn = n(n +b + c −1)(n +b +d −1)

(2n +a +b + c +d −2)(2n +a +b + c +d −1)
.

The above recurrence equation is equivalent to

xpn(x; a,b,c,d) = (n +a +b + c +d −1)(n +1)

(2n +a +b + c +d −1)(2n +a +b + c +d)
pn+1(x; a,b,c,d)+ i (An +Cn +a)×

pn(x; a,b,c,d)+ (n −1+d +b) (n −1+ c +b) (a +d +n −1)(a + c +n −1)

(2n +a +b + c +d −2)(2n +a +b + c +d −1)
pn−1(x; a,b,c,d).

Since

An +Cn +a = n (n −1+a +d) (n −1+a + c)

2n +a +b + c +d −2
− (n +1)(n +a +d) (n +a + c)

2n +a +b + c +d
+n +a,

we have the equivalence between Equation (9.4.4) in [12, p. 201]) and Equation (25).

Using the above recurrence relations, we prove that
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Proposition 9 For the continuous Hahn polynomials pn(x; a,b,c,d) and the Meixner-Pollaczek
polynomials P (λ)

m (x;θ), the following inversion formulae are valid:

(a+i x)n =
n∑

m=0

i mn!(m +a + c,m +a +d)n−m

(n −m)!(m +a +b + c +d −1)m(2m +a +b + c +d)n−m
pm(x; a,b,c,d), (see [20], [21]) ,

(λ+ i x)n =
n∑

m=0

(−1)mn!(m +2λ)n−m

(n −m)!e i mθ(1−e−2iθ)n
P (λ)

m (x;θ).

Proof Substituting the expression of vn(a, x) = (a + i x)n given by (9) in (12) and in (24)
(but with Qn replaced by pn(x; a,b,c,d) or P (λ)

n (x;θ)), and using the three-term recur-
rence relations (30) and (31), we get by an appropriate shift of indices the following re-
currence relations in n and m

−i Im(n +1)+ i (n +a)Im(n) =αm−1Im−1(n)+βm Im(n)+γm+1Im+1,

−i n−1
n+1 Im(n +1)+ i (n +a −1)Im(n) =α∗

m−1Im−1(n)+β∗
m Im(n)+γ∗m+1Im+1.

By linear algebra, we eliminate the term Im(n +1) to obtain a pure recurrence equation
with respect to m. By the Petkovšek-van-Hoeij algorithm, we solve the recurrence equa-
tion obtained for each family by replacing αn , βn , γn , α∗

n , β∗
n , γ∗n by their expressions in

(25) and (26) for the continuous Hahn polynomials or (27) and (28) for the Meixner-
Pollaczek polynomials, then we get the solution up to a multiplicative constant. Iden-
tification of the coefficient of (a + i x)n on both sides of the inversion formula gives the
desired constant.

3.2 Connection and linearization formulae

The following relations are necessary to solve the connection and linearization problems
of the Continuous Hahn and the Meixner-Pollaczek polynomials.

Proposition 10 The following linearization and connection formulae of the basis (a+i x)n

are valid:

(a + i x)n(b + i x)m =
m∑

k=0

m!
k !(m−k)! (b −a −n)m−k (a + i x)n+k , n,m = 0,1, . . . , (32)

(a + i x)n =
n∑

m=0

n!
m!(n−m)! (a −b)n−m(b + i x)m , n = 0,1, . . . . (33)

Proof We first remark that

vn(a, x) := (a + i x)n =
n−1∏
j=0

(a + i x + j ).

Hence, for x = ξ j (a) = i (a + j ), we have

vn(a,ξ j (a)) = 0, j = 0,1, . . . ,n −1, and vn(a,ξn(a)) 6= 0, n ≥ 1.

We now expand the product vn(a, x)vm(b, x) in the basis vk (a, x)

vn(a, x)vm(b, x) =
n+m∑
k=0

Jk (m,n)vk (a, x).
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Clearly, we have

0 = vn(a,ξ0(a))vm(b,ξ0(a)) = J0(m,n)+
n+m∑
k=1

Jk (m,n)vk (a,ξ0(a)) = J0(m,n).

Hence, we can write

vn(a, x)vm(b, x) =
n+m∑
k=1

Jk (m,n)vk (a, x).

By the same procedure, we get

J1(m,n)v1(a,ξ1(a)) = vn(a,ξ1(a))vm(b,ξ1(a)) = 0,

and hence J1(m,n) = 0 since v1(a,ξ1(a)) 6= 0. Progressively, we prove that

J0(m,n) = J1(m,n) = . . . = J j (m,n) = 0, j ≤ n −1.

Therefore, we can actually write

vn(a, x)vm(b, x) =
n+m∑
k=n

Jk (m,n)vn+k (a, x) =
m∑

k=0
Jn+k (m,n)vn+k (a, x). (34)

Next, we have

vn(a,ξn(a))vm(b,ξn(a)) = Jn(m,n)vn(a,ξn(a)),

and hence

Jn(m,n) = vm(b,ξn(a)) = (b −a −n)m .

Using (34), we can write

vm(b, x) =
m∑

k=n
Jn+k (m,n)

vn+k (a, x)

vn(a, x)
=

m∑
k=0

Jn+k (m,n)vk (a +n, x).

The use of Relation (10) yields

(i )l m!

(m − l )!
vm−l

(
b + l

2
, x

)
=

m∑
k=l

Jn+k (m,n)(i )l k !

(k − l )!
vk−l

(
a +n + l

2
, x

)
.

Taking k = l and x = ξ0

(
a +n + l

2

)
, it follows that

Jn+l (m,n) = m!

l !(m − l )!
vm−l

(
b + l

2
,ξ0

(
a +n + l

2

))
= m!

l !(m − l )!
(b −a −n)m−l ,

therefore, the required result (32) is proved.
(33) follows by taking n = 0 in (32).

From the hypergeometric representation and the inversion problem of the continuous
Hahn and the Meixner-Pollaczek polynomials, we get:
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Proposition 11 For the continuous Hahn polynomials pn(x; a,b,c,d) and the Meixner-
Pollaczek polynomials P (λ)

m (x;θ), the following connection and linearization formulae are
valid:
1. the continuous Hahn polynomials
Connection formula

pn(x; a,b,c,d) =
n∑

m=0

(−1)n i n−m(m +a + c,m +a +d)n−m(b −b1)n

(n −m)!(m +a +b1 + c +d −1,n +a +b1 + c +d ,b1 +1−n −b)m

(n +a +b + c +d −1)m(a +b1 + c +d)2m

(a +b1 + c +d)n
pm(x; a,b1,c,d), (35)

pn(x; a,b,c,d) =
n∑

m=0

(−1)m i n−m(m +a +d ,m +b +d)n−m(c − c1)n

(n −m)!(m +a +b + c1 +d −1,n +a +b + c1 +d ,c1 +1−n − c)m

(n +a +b + c +d −1)m(a +b + c1 +d)2m

(a +b + c1 +d)n
pm(x; a,b,c1,d), (36)

pn(x; a,b,c,d) =
n∑

m=0

(−1)m i n−m(m +a + c,m +b + c)n−m(d −d1)n

(n −m)!(m +a +b + c +d1 −1,n +a +b + c +d1,d1 +1−n −d)m

(n +a +b + c +d −1)m(a +b + c +d1)2m

(a +b + c +d1)n
pm(x; a,b,c,d1), (37)

pn(x; a,b,c,d) =
n∑

m=0

i n−m(n +a +b + c +d −1)m(m +a + c,m +a +d)n−m

(n −m)!(m +a +β+γ+δ−1)m
×

4F3

(
m −n,m +n +a +b + c +d −1,m +a +γ,m +a +δ

2m +a +β+γ+δ,m +a + c,m +a +d

∣∣∣∣∣1

)
pm(x; a,β,γ,δ), (38)

Linearization formula

pn(x; a,b,c,d)pm(x; a,b,c,d) =
n+m∑
r=0

Lr (m,n)pr (x; a,b,c,d) with

Lr (m,n) =
n+m−r∑

l=0

mi n(n,l+r )∑
j=max(0,l+r−m)

mi n(m+ j−l−r, j )∑
k=0

i m+n+r (a + c, a +d)n (−n) j (n +a +b + c +d −1) j

n!(a + c, a +d) j j !m!(a + c, a +d)l+r− j+k

(l + r )!

(l + r − j )!k !l !

(a + c, a +d)m (−m,m +a +b + c +d −1)l+r− j+k (− j )k (r +a + c,r +a +d)l

(r +a +b + c +d −1)r (2r +a +b + c +d)l
,

2. the Meixner-Pollaczek polynomials
Connection formula

P (λ)
n (x;θ) =

n∑
m=0

(−n)m(2λ)n

n!(2λ)m

( e2iθ1 −e2iθ

e iθ(e2iθ1 −1)

)n( e iθ1 (e2iθ−1)

e2iθ−e2iθ1

)m
P (λ)

m (x;θ1), (39)

Linearization formula

P (λ)
n (x;θ)P (λ)

m (x;θ) =
n+m∑
r=0

n+m−r∑
l=0

mi n(n,l+r )∑
j=max(0,l+r−m)

mi n(m+ j−l−r, j )∑
k=0

(−1)r (2λ)ne iθ(m+n−r )(−n) j

(l + r )!

(l + r − j )!k !l !

(1−e−2iθ)k (2λ)m(−m)l+r− j+k (− j )k (r +2λ)l

n!m! j !(2λ) j (2λ)l+r− j+k
P (λ)

r (x;θ).
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Proof We combine the hypergeometric representation

pn(x) =
n∑

j=0
A j (n)(a + i x) j

and the inversion formula

(a + i x) j =
j∑

m=0
Im( j )pm(x) (40)

to obtain the the connection formula with the connection coefficient

Cm(n) =
n−m∑
j=0

A j+m(n)Im( j +m).

To get (38) we apply the Sumtohyper algorithm. The Zeilberger algorithm combined with
the Petkovšek-van-Hoeij algorithm yield the specialized cases (35)-(37) and (39).

By combining the hypergeometric representations

pn(x) =
n∑

j=0
A j (n)(a + i x) j , pm(x) =

m∑
k=0

Ak (m)(a + i x)k ,

the linearization of the basis (32)

(a + i x) j (a + i x)k =
k∑

l=0
J j+l (k, j )(a + i x) j+k ,

and the inversion formula

(a + i x)l =
l∑

r=0
Ir (l )pr (x),

we get the linearization formula

pn(x)pm(x) =
n+m∑
r=0

Lr (m,n)pr (x)

with

Lr (m,n) =
n+m−r∑

l=0

min(n,l+r )∑
j=max(0,l+r−m)

min(m−l−r+ j , j )∑
k=0

A j (n)Al+r− j+k (m)Jl+r (l + r − j +k, j )Ir (l + r ).

We remark that in the connection formula of the continuous Hahn polynomials of Propo-
sition 11, the parameter a is kept identical on both sides of the formula. We would now
like to get a similar formula for different a. For this purpose, we need the connection
formula (33). We use the connection formula (33) to derive the representation of the con-
tinuous Hahn and the Meixner-Pollaczek polynomials in the basis (α+ i x)n . In fact, from

pn(x) =
n∑

j=0
A j (n)(a + i x) j and (a + i x) j =

j∑
m=0

Fm( j )(α+ i x)m ,

we get

pn(x) =
n∑

m=0
Gm(n)(α+ i x)m ,

with

Gm(n) =
n−m∑
j=0

A j+m(n)Fm( j +m).

Using the Sumtohyper algorithm, one gets the following representations.
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Proposition 12 The elements pn(x; a,b,c,d) of the continuous Hahn polynomials and
P (λ)

n (x;θ) of the Meixner-Pollaczek polynomials have the following representations in the
basis ((α+ i x)n)n

pn(x; a,b,c,d) =
n∑

m=0
i n (a + c, a +d)n(−n,n +a +b + c +d −1)m

n!(a + c, a +d)mm!
×

3F2

(
m −n, a −α,n +m +a +b + c +d −1

m +a + c,m +a +d

∣∣∣∣∣1

)
(α+ i x)m , (41)

P (λ)
n (x;θ) =

n∑
m=0

e i nθ
( e2iθ−1

e2iθ

)m (2λ)n(−n)m

(2λ)mn!m!
2F1

(
m −n,λ−α

2λ+m

∣∣∣∣∣ e2iθ−1

e2iθ

)
(α+ i x)m . (42)

Remark 13 Forα= b, the representation (41) of pn(x; a,b,c,d) reduces using Zeilberger’s
algorithm to

pn(x; a,b,c,d) = pn(x;b, a,c,d)

from which we derive the following inversion and connection formulae for the continu-
ous Hahn polynomials:

(b + i x)n =
n∑

m=0

i mn!(m +b + c,m +b +d)n−m

(n −m)!(m +a +b + c +d −1)m(2m +a +b + c +d)n−m
pm(x; a,b,c,d),

pn(x; a,b,c,d) =
n∑

m=0

(−1)n i n−m(m +b + c,m +b +d)n−m(a −a1)n

(n −m)!(m +a1 +b + c +d −1,n +a1 +b + c +d , a1 +1−n −a)m

(n +a +b + c +d −1)m(a1 +b + c +d)2m

(a1 +b + c +d)n
pm(x; a1,b,c,d).

From the representation of pn(x; a,b,c,d) and P (λ)
n (x;θ) of Proposition 12 and the inver-

sion formula, we have

pn(x; a,b,c,d) =
n∑

j=0
G j (n)(α+ i x) j and (α+ i x) j =

j∑
m=0

Im( j )pm(x;α,β,γ,δ),

from which we get

pn(x; a,b,c,d) =
n∑

m=0
Cm(n)pm(x;α,β,γ,δ),

with

Cm(n) =
n−m∑
j=0

G j+m(n)Im( j +m).

Using once more the Sumtohyper algorithm, one gets:

Proposition 14 The continuous Hahn polynomials pn(x; a,b,c,d) and the Meixner-Pollaczek
polynomials P (λ)

m (x;θ) satisfy the following connection formulae:
1. the continuous Hahn polynomials

pn(x; a,b,c,d) =
n∑

m=0

i n−m(n +a +b + c +d −1)m(m +a + c,m +a +d)n−m

(n −m)!(m +α+β+γ+δ−1)m
×

n−m∑
k=0

(m −n,m +α+γ,m +α+δ,m +n +a +b + c +d −1)k

k !(m +a + c,m +a +d ,2m +α+β+γ+δ)k
×

3F2

(
k +m −n,m +n +k +a +b + c +d −1, a −α

m +k +a + c,m +k +a +d

∣∣∣∣∣1

)
pm(x;α,β,γ,δ),
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2. the Meixner-Pollaczek polynomials

P (λ)
n (x,θ) =

n∑
k=0

n−k∑
m=0

(−1)m+k ei (n−k)θ(2λ)n (2α+k)m (−n+m)k
m!(n−m)!(2λ)m+k

×

2F1

(
k +m −n,λ−α

2λ+m +k

∣∣∣∣∣1−e−2iθ

)
P (α)

k (x,θ).

For some applications, it is important to know the rate of change in the direction of the
parameters of the orthogonal systems, given in terms of the system itself called the pa-
rameter derivative (see [9], [13], [26]).

Corollary 15 The following parameter derivatives are valid:
1. for the continuous Hahn polynomials

∂

∂a
pn(x; a,b,c,d) =

n−1∑
m=0

( pn(x; a,b,c,d)

m +n +a +b + c +d −1
+ (−1)n i n−m(n −1)!(a +b + c +d)2m

(n −m)!(a +b + c +d)n
×

(n +a +b + c +d −1)m(m +b + c,m +b +d)n−m

(m +a +b + c +d −1,n +a +b + c +d ,1−n)m
pm(x; a,b,c,d)

)
,

∂

∂b
pn(x; a,b,c,d) =

n−1∑
m=0

( pn(x; a,b,c,d)

m +n +a +b + c +d −1
+ (−1)n i n−m(n −1)!(a +b + c +d)2m

(n −m)!(a +b + c +d)n
×

(n +a +b + c +d −1)m(m +a + c,m +a +d)n−m

(m +a +b + c +d −1,n +a +b + c +d ,1−n)m
pm(x; a,b,c,d)

)
,

∂

∂c
pn(x; a,b,c,d) =

n−1∑
m=0

( pn(x; a,b,c,d)

m +n +a +b + c +d −1
+ (−1)m i n−m(n −1)!(a +b + c +d)2m

(n −m)!(a +b + c +d)n
×

(n +a +b + c +d −1)m(m +a +d ,m +b +d)n−m

(m +a +b + c +d −1,n +a +b + c +d ,1−n)m
pm(x; a,b,c,d)

)
,

∂

∂d
pn(x; a,b,c,d) =

n−1∑
m=0

( pn(x; a,b,c,d)

m +n +a +b + c +d −1
+ (−1)m i n−m(n −1)!(a +b + c +d)2m

(n −m)!(a +b + c +d)n
×

(n +a +b + c +d −1)m(m +a + c,m +b + c)n−m

(m +a +b + c +d −1,n +a +b + c +d ,1−n)m
pm(x; a,b,c,d)

)
,

2. for the Meixner-Pollaczek polynomials

∂

∂θ
P (λ)

n (x;θ) = i n
e2iθ+1

e2iθ−1
P (λ)

n (x;θ)− 2i e iθ(2λ+n −1)

e2iθ−1
P (λ)

n−1(x;θ).

Proof (compare [13]) Given the connection relation

pαn (x) =
n∑

m=0
Cm(n;α,β)pβm(x),

we build the difference quotient

pαn (x)−pβn (x)

α−β =
n∑

m=0

Cm(n;α,β)

α−β pβm(x)− pβn (x)

α−β

= Cn(n;α,β)−1

α−β pβn (x)+
n−1∑
m=0

Cm(n;α,β)

α−β pβm(x)



16 D. D. Tcheutia et al.

so that with β→α

∂

∂α
pαn (x) = lim

β→α

Cn(n;α,β)−1

α−β pβn (x)+
n−1∑
m=0

lim
β→α

Cm(n;α,β)

α−β pβm(x)

since the systems pαn (x) are continuous with respect to α. This gives the results.

3.3 Multiplication formulae of the Continuous Hahn and the Meixner-Pollaczek
polynomials

In this section, we solve the multiplication problem for the continuous Hahn and the
Meixner-Pollaczek polynomials. We first present the following results for the operator δx .

Theorem 16 (see [20]) Assume f (x) is a polynomial of degree n in the variable x. Then

f (x) =
n∑

k=0
fk (a + i x)k , with fk = (−i )k

k !
(δk

x f )
(
i (a + k

2
)
)
.

Proof Let j = 0,1, . . . ,k. We apply δ j
x to both sides of f (x) =∑n

k=0 fk (a + i x)k and use (10)
to get

δ
j
x f (x) = f j i j j !+

n∑
k= j+1

fk (i ) j k !

(k − j )!
(a + i x + j

2
)k− j .

For x = i
(
a + j

2

)
, we obtain

δ
j
x f

(
i

(
a + j

2

))
= i j f j j !,

and the proof is completed.

Proposition 17 (see [20], [30]) Let k be a nonnegative integer, then the following relation
holds

δk
x f (x) =

k∑
l=0

(−1)l k !

i k l !(k − l )!
f

(
x + k −2l

2
i

)
. (43)

Proof The proof is done by induction w.r.t. k.

It follows from Propositions 16 and 17 that

Proposition 18 The following duplication formula is valid:

(a + iαx)n =
n∑

k=0

k∑
l=0

(−1)l

l !(k − l )!
(a −α(a + l ))n(a + i x)k . (44)

Proof First we apply Proposition 16 with f (x) = (a + iαx)n to get

(a + iαx)n =
n∑

k=0

(−i )k

k !
δk

x (a + iαx)n
∣∣∣x=i (a+ k

2 )
(a + i x)k .

Next, using Proposition 17, we have

δk
x (a + iαx)n

∣∣∣x=i (a+ k
2 )
=

k∑
l=0

(−1)l k !

i k l !(k − l )!
(a −α(a +k − l ))n .

We substitute l → k − l to complete the proof.
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It follows from the above result that

Proposition 19 The continuous Hahn polynomials pn(x; a,b,c,d) and the Meixner-Pollaczek
polynomials P (λ)

m (x;θ) satisfied the following multiplication formulae:

pn(αx; a,b,c,d) =
n∑

m=0

i m+n(a + c, a +d)n

n!(a +b + c +d −1+m)m

n−m∑
s=0

(n − s)!

(n − s −m)!

(a + c +m, a +d +m)n−m−s

(a +b + c +d +2m)n−m−s

×
n−s∑
l=0

s∑
j=0

1

l !(n − s − l )!

(−1)l (−n,n +a +b + c +d −1, a −α(a + l )) j+n−s

( j +n − s)!(a + c, a +d) j+n−s
pm(x; a,b,c,d).

P (λ)
n (αx,θ) =

n∑
m=0

(2λ)ne iθ(n−m)

n!

n−m∑
s=0

(2λ+m)n−s−m

(n − s −m)!

×
n−s∑
l=0

s∑
j=0

(n − s)!

l !(n − s − l )!

(−1)m+l (−n,λ−α(λ+ l )) j+n−s (1−e−2iθ) j

(2λ) j+n−s ( j +n − s)!
P (λ)

m (x,θ).

Proof Combining pn(αx) =
n∑

k=0
Ak (n)(a + iαx)k , (a + iαx)k =

k∑
i=0

Ei (k, a,α)(a + i x)i with

Ei (k, a,α) =
i∑

l=0
Fl (i ,k, a,α), (a + i x)i =

i∑
m=0

Im(i )pm(x), interchanging the order of sum-

mation and substituting i by n−m− j yields the duplication relation pn(αx) =
n∑

m=0
Dm(n,α)pm(x)

with

Dm(n,α) =
n−m∑
j=0

j∑
k=0

n− j∑
l=0

Ak+n− j (n)Fl (n − j ,k +n − j , a,α)Im(n − j ).

Remark 20 By setting (see [12, p. 215]) x → x+t , a →λ−i t , c →λ+i t and b = d = t tanθ in
the definition of the continuous Hahn polynomials and taking the limit t →∞ we obtain
the Meixner-Pollaczek polynomials P (λ)

n (x;θ):

P (λ)
n (x;θ) = (cosθ)n lim

t→∞
pn(x + t ;λ− i t , t tanθ,λ+ i t , t tanθ)

t n .

Note that in [12, p. 215], there is a misprint in this limit relation (n! must not be in the
denominator). Using this limit relation, the inversion, connection, linearization, multi-
plication and parameter derivatives relations for the Meixner-Pollaczek polynomials can
be derived from those of the continuous Hahn polynomials.

4 Conclusion

In this work, we find the divided-difference equation of the continuous Hahn and the
Meixner-Pollaczek polynomials and then we solve the inversion, connection, multipli-
cation and linearization problem for these two polynomial families. To the best of our
knowledge, the results obtained in this work are completely new. We find our results by an
application of the Maple computer algebra systems. The main algorithmic tools for our
development are Zeilberger’s algorithm, the Petkovšek-van-Hoeij algorithm, the Maple
procedure Sumtohyper which is an implementation of Algorithm 2.8, p. 22 of [14].
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