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Abstract

We factorize the fourth-order di&erential equations satis2ed by the Laguerre–Hahn orthogonal polynomi-
als obtained from some perturbations of classical orthogonal polynomials such as: the rth associated (for
generic r), the general co-recursive, the general co-recursive associated, the general co-dilated and the gen-
eral co-modi2ed classical orthogonal polynomials. Moreover, we 2nd four linearly independent solutions of
the fourth-order di&erential equations, and show that the factorization obtained for modi2cations of classi-
cal orthogonal polynomials is still valid, with some minor changes when the polynomial family modi2ed is
semi-classical. Finally, we extend the validity of the results obtained for the associated classical orthogonal
polynomials with integer order of association from integers to reals.
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1. Introduction

Let U be a regular linear functional [8] on the linear space P of polynomials with real coe@cients
and (Pn)n a sequence of monic polynomials, orthogonal with respect to U, i.e.,

(i) Pn(x) = xn + lower degree terms,
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(ii) 〈U; Pn Pm〉 = kn�n;m; kn �= 0; n∈N,

where N = {0; 1; : : :} denotes the set of nonnegative integers. Here, 〈·; ·〉 means the duality bracket
and �n;m the Kronecker symbol.

(Pn)n satis2es a three-term recurrence equation

Pn+1(x) = (x − 
n)Pn(x) − �nPn−1(x); n¿ 1 (1)

with the initial conditions

P−1(x) = 0; P0(x) = 1; (2)

where 
n and �n are real numbers with �n �= 0; ∀n∈N¿0, and N¿0 denotes the set N¿0 ={1; 2; : : :}.
When the polynomial sequence (Pn)n is classical [28], i.e., orthogonal with respect to a positive

weight function  (de2ned on the interval (a; b)) satisfying the 2rst-order di&erential equation called
Pearson equation:

(�)′ = � (3)

with

xn�(x)(x)|x=b
x=a = 0; ∀n∈N; (4)

where � is a polynomial of degree at most two and � a 2rst-degree polynomial, each Pn satis2es
the di&erential equation

Ln(y(x)) = �(x)y′′(x) + �(x)y′(x) + �ny(x) = 0 (5)

and the orthogonality condition (ii) reads as∫ b

a
(x)Pn(x)Pm(x) dx = kn�n;m; kn �= 0:

The coe@cients 
n; �n and �n are given by [18,19]

�n = −n
2

((n − 1)�′′ + 2�′) = −n((n − 1)�2 + �1);


n =
−2�2n2�1 − 2�1�1n + 2�2�1n + 2�2�0 − �1�0

(2�2n − 2�2 + �1)(2�2n + �1)
;

�n = −n(�1 − 2�2 + �2n)(4�2
2�0n2 − 8�2

2�0n + 4�2
2�0 − �2

1n
2�2 + 2�2

1n�2

+ 4�2�0n�1 − 4�2�0�1 + �2�2
0 − �2�2

1 − �2
1n�1 − �1�1�0 + �0�2

1 + �2
1�1)=

(2�2n − 2�2 + �1)2(2�2n − �2 + �1)(2�2n − 3�2 + �1); (6)

where

�(x) = �2x2 + �1x + �0; �(x) = �1x + �0

with

|�1|(|�2| + |�1| + |�0|) �= 0:

The classical families are Jacobi, Laguerre and Hermite orthogonal polynomials [28].
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Some modi2cations of Eq. (1) lead to new families of orthogonal polynomials such as the rth
associated (for generic r), the general co-recursive, the general co-recursive associated, the general
co-dilated and the general co-modi2ed classical orthogonal polynomials [23]. These new families of
orthogonal polynomials satisfy a common fourth-order linear homogeneous di&erential equation with
polynomial coe@cients of bounded degree. In general, they cannot satisfy a common second-order
linear homogeneous di&erential equation with polynomial coe@cients of bounded degree. Therefore,
these new polynomials are not semi-classical but belong to the Laguerre–Hahn class (see Section 2).
Many works have been devoted to the derivation of these fourth-order di&erential equations. Their
polynomial coe@cients have been given explicitly in [4,5,14,15,29,36,38] for the rth associated
classical orthogonal polynomials.

In 1994, using symbolic computation, the coe@cients of the fourth-order di&erential equation
for the co-recursive associated Laguerre and Jacobi orthogonal polynomials were given [20]. Also,
in [32], general fourth-order di&erential equation for the generalized co-recursive of all classical
orthogonal polynomials was given for any (but 2xed) level of recursivity using symbolic computation
software.

Despite the fact that apart from the rth associated orthogonal polynomials, the coe@cients of the
fourth-order di&erential equation satis2ed by the perturbed classical orthogonal polynomials require
heavy computations for being very large, we have succeeded in factorizing these fourth-order di&er-
ential equations and also 2nding a basis of four linearly independent solutions of all the perturbed
systems of classical orthogonal polynomials considered. In Ref. [13], we succeeded also to factor-
ize the equivalent fourth-order di&erence equation corresponding to the discrete case for which the
basic Eqs. (3) and (5) are di&erence equations of the same order, instead of di&erential equations.
Moreover, we have found interesting relations between the perturbed polynomials, the starting ones
and the functions of the second kind (see Section 2.2 for the de2nition).

In Section 2, we recall de2nitions and known results needed for this work. Section 3 is devoted to
the derivation and the factorization of the fourth-order di&erential equation. In Section 4, we solve
di&erential equations and represent perturbed classical orthogonal polynomials in terms of solutions
of second-order di&erential equations. In Section 5, we 2rst give asymptotic representation of solu-
tions of the fourth-order di&erential equation for the rth associated classical orthogonal polynomials;
secondly, we extend the results obtained for the rth associated orthogonal polynomials with integer
order of association from integers to reals. Finally, we solve a family of second-order di&erential
equations and prove that the factorization obtained for modi2cations of classical orthogonal polyno-
mials is still valid with some minor changes, when the polynomial family modi2ed is semi-classical
(see the next section for the de2nition).

2. Preliminaries and notations

In this section, we 2rst de2ne the semi-classical and the Laguerre–Hahn class of a given family
of orthogonal polynomials. Next, we present the families of rth associated, generalized co-recursive,
generalized co-dilated and generalized co-modi2ed orthogonal polynomials, and give relations be-
tween new sequences and the starting ones.
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Each regular linear functional U generates a so-called Stieltjes function S of U de2ned by

S(z) = −
∑
n¿0

〈U; xn〉
zn+1 ; (7)

where 〈U; xn〉 are the moments of the functional U. The linear functional U satis2es in general a
simple functional equation living in P′, the dual space of P. Appropriate de2nitions of (d=dx)(U)
and PU, where P is a polynomial allow to build a simple di&erential equation for the functional
which generalize in some way the Pearson equation for the weight  [17] (see also [25,26]).

If the Stieltjes function S(x) satis2es a 2rst-order linear di&erential equation of the form

�(x) S ′(x) = C(x)S(x) + D(x); (8)

where �; C and D are polynomials, the functional U satis2es in P′ a 2rst-order di&erential equation
with polynomial coe@cients. In this case, the functional U and the corresponding orthogonal poly-
nomial sequence (Pn)n belong to the semi-classical class (and are therefore called semi-classical)
which includes the classical families [3,17,25,26].

Each semi-classical orthogonal polynomial sequence (Pn)n satis2es a common second-order dif-
ferential equation [17] (see also [25]).

Mn(y(x)) = I2(x; n)y′′(x) + I1(x; n)y′(x) + I0(x; n)y(x) = 0; (9)

where Ii(x; n) are polynomials in x of degree not depending on n.
An important class, larger than the semi-classical one, appears when the Stieltjes function satis2es

a Riccati di&erential equation [9,11,22]

�S ′ = BS2 + CS + D; (10)

where � �= 0; B; C and D are polynomials. The corresponding functional U satis2es then a compli-
cated quadratic di&erential equation in P′. U and the corresponding orthogonal polynomials families
are said to belong to the Laguerre–Hahn class [9,11,22].

It is well known that any Laguerre–Hahn orthogonal polynomial sequence satis2es a common
fourth-order di&erential equation of the form [9,11,22]

J4(x; n)y(4)(x) + J3(x; n)y′′′(x) + J2(x; n)y′′(x) + J1(x; n)y′(x) + J0(x; n)y(x) = 0;

where Ji(x; n) are polynomials of degree not depending on n.
It is shown, from several works [9–11,23,24] that 2nite perturbations of the recurrence coe@cients

of any semi-classical family generate orthogonal polynomials belonging to the Laguerre–Hahn and
therefore satisfy a fourth-order di&erential equation.

2.1. Perturbation of recurrence coe7cients

Now we consider a sequence of polynomials (Pn)n, orthogonal with respect to a regular linear
functional U, satisfying (1). Perturbations we will deal with are the following.
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2.1.1. The rth associated orthogonal polynomials (P(r)
n )n

Given r ∈N, the rth associated of the polynomials (Pn)n, is a polynomial sequence denoted by
(P(r)

n )n and de2ned by the recurrence equation (1) in which 
n and �n are replaced by 
n+r and �n+r ,
respectively,

P(r)
n+1(x) = (x − 
n+r)P(r)

n (x) − �n+rP
(r)
n−1(x); n¿ 1 (11)

with the initial conditions

P(r)
0 (x) = 1; P(r)

1 (x) = x − 
r: (12)

The family (P(r)
n )n, thanks to Favard’s theorem [12], is orthogonal. It is related to the starting

polynomials and its 2rst associated by the relation [9]

P(r)
n (x) =

Pr−1(x)
�r−1

P(1)
n+r−1(x) − P(1)

r−2(x)
�r−1

Pn+r(x); n¿ 0; r¿ 2; (13)

where the sequence (�n)n is de2ned by

�n =
n∏

i=1

�i; n¿ 1; �0 ≡ 1: (14)

2.1.2. The co-recursive (P[�]
n )n and the generalized co-recursive orthogonal polynomials (P[k;�]

n )n
The co-recursive of the orthogonal polynomial sequence (Pn)n, denoted by (P[�]

n )n, was introduced
for the 2rst time by Chihara [7], as the family of polynomials generated by the recursion formula
(1) in which 
0 is replaced by 
0 + �

P[�]
n+1(x) = (x − 
n)P[�]

n (x) − �nP
[�]
n−1(x); n¿ 1 (15)

with the initial conditions

P[�]
0 (x) = 1; P[�]

1 (x) = x − 
0 − �; (16)

where � denotes a real number.
This notion was extended to the generalized co-recursive orthogonal polynomials in [9,10,30] by

modifying the sequence (
n)n at the level k. This yields an orthogonal polynomial sequence denoted
by (P[k;�]

n )n and generated by the recursion formula

P[k;�]
n+1 (x) = (x − 
∗

n)P[k;�]
n (x) − �nP

[k;�]
n−1 (x); n¿ 1 (17)

with the initial conditions

P[k;�]
0 (x) = 1; P[k;�]

1 (x) = x − 
∗
0 ; (18)

where 
∗
n = 
n for n �= k and 
∗

k = 
k + �.
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The orthogonal polynomial sequence (P[k;�]
n )n is related to (Pn)n and it is associated by [23]

P[k;�]
n (x) = Pn(x) − �Pk(x)P(k+1)

n−(k+1)(x); n¿ k + 1;

P[k;�]
n (x) = Pn(x); n6 k: (19)

Use of (13) transforms the previous equations in

P[k;�]
n (x) = −�P2

k (x)
�k

P(1)
n−1(x) +

(
1 +

�Pk(x)P(1)
k−1

�k

)
Pn(x); n¿ k + 1;

P[k;�]
n (x) = Pn(x); n6 k: (20)

Obviously, we have the relations P[0; �]
n = P[�]

n , and P[0]
n = Pn.

2.1.3. The co-recursive associated (P{r;�}
n )n and the generalized co-recursive associated orthogonal

polynomials (P{r; k;�}
n )n

The co-recursive associated as well as the generalized co-recursive associated of the orthogonal
polynomial sequence (Pn)n, denoted by (P{r;�}

n )n and (P{r; k;�}
n )n, respectively, are, the co-recursive

and the generalized co-recursive (with modi2cation on 
k) of the associated (P(r)
n )n of (Pn)n, re-

spectively. Thanks to (19), they are related with (Pn)n and it is associated by

P{r;0; �}
n = P{r;�}

n

and

P{r; k;�}
n (x) = P(r)

n (x) − �P(r)
k (x)P(r+k+1)

n−(k+1)(x); n¿ k + 1;

P{r; k;�}
n (x) = P(r)

n (x); n6 k: (21)

The generalized co-recursive associated orthogonal polynomials can also be expressed using (13)
and (21) by

P{r; k;�}
n (x) =

(
Pr−1(x)
�r−1

− �Pk+r(x)P(r)
k (x)

�r+k

)
P(1)

n+r−1(x)

−
(

P(1)
r−2(x)
�r−1

− �P(1)
k+r−1(x)P(r)

k (x)
�r+k

)
Pn+r(x); n¿ k + 1;

P{r; k;�}
n (x) = Pn(x)(r); n6 k: (22)

2.1.4. The co-dilated (P|�|
n )n and the generalized co-dilated orthogonal polynomials (P|k;�|

n )n
The co-dilated of the orthogonal polynomial sequence (Pn)n, denoted by (P|�|

n )n, was introduced
by Dini [9], as the family of polynomials generated by the recursion formula (1) in which �1,
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is replaced by ��1, i.e.,

P|�|
n+1(x) = (x − 
n)P|�|

n (x) − �nP
|�|
n−1(x); n¿ 2 (23)

with the initial conditions

P|�|
0 (x) = 1; P|�|

1 (x) = x − 
0; P|�|
2 (x) = (x − 
0)(x − 
1) − ��1; (24)

where � is a nonzero real number.
This notion was extended to the generalized co-dilated orthogonal polynomials in [10,30] by

modifying the sequence (�n)n at the level k. This yields an orthogonal polynomial sequence denoted
by (P|k;�|

n )n and generated by the recurrence equation

P|k;�|
n+1 (x) = (x − 
n)P|k;�|

n (x) − �∗
nP

|k;�|
n−1 (x); n¿ 1 (25)

with the initial conditions

P|k;�|
0 (x) = 1; P|k;�|

1 (x) = x − 
0; (26)

where �∗
n = �n for n �= k and �∗

k = ��k .
The orthogonal polynomial sequence (P|k;�|

n )n is related to (Pn)n and its associated by [23]

P|k;�|
n (x) = Pn(x) + (1 − �)�kPk−1(x)P(k+1)

n−(k+1)(x); n¿ k + 1;

P|k;�|
n (x) = Pn(x); n6 k: (27)

Use of (13) transforms the previous equation in

P|k;�|
n (x) =

(
1 − (1 − �)Pk−1(x)P(1)

k−1(x)
�k−1

)
Pn(x) +

(1 − �)Pk−1(x)Pk(x)
�k−1

P(1)
n−1(x); n¿ k + 1;

P|k;�|
n (x) = Pn(x); n6 k: (28)

For k = 1 or � = 1, we have

P|1; �|
n = P|�|

n ; P|k;1|
n = Pn:

2.1.5. The generalized co-modi:ed orthogonal polynomials (P[k;�;�]
n )n

New families of orthogonal polynomials can also be generated by modifying at the same time the
sequences (
n)n and (�n)n at the levels k and k ′, respectively. When k = k ′, the new family obtained
[23], denoted by (P[k;�;�]

n )n is generated by the three-term recurrence relation

P[k;�;�]
n+1 (x) = (x − 
∗

n)P[k;�;�]
n (x) − �∗

nP
[k;�;�]
n−1 (x); n¿ 1 (29)
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with the initial conditions

P[k;�;�]
0 (x) = 1; P[k;�;�]

1 (x) = x − 
∗
0 ; (30)

where 
∗
n = 
n; �∗

n = �n for n �= k and 
∗
k = 
k + �; �∗

k = ��k . This family is represented in terms of
the starting polynomials and their associated ones by [23]

P[k;�;�]
n (x) = Pn(x) + ((1 − �)�kPk−1(x) − �Pk(x))P(k+1)

n−(k+1)(x); n¿ k + 1;

P|k;�|
n (x) = Pn(x); n6 k: (31)

The latter relation can also be written as

P[k;�;�]
n (x) =

(
1 − (1 − �)Pk−1(x)P(1)

k−1(x)
�k−1

+
�Pk(x)P(1)

k−1(x)
�k

)
Pn(x)

+
(

(1 − �)Pk−1(x)Pk(x)
�k−1

− �P2
k (x)
�k

)
P(1)

n−1(x); n¿ k + 1;

P[k;�]
n (x) = Pn(x); n6 k: (32)

2.2. Results on classical orthogonal polynomials

Next, we state the following lemmas which are essential for this work.

Lemma 1 (Ronveaux [29]): Given a classical orthogonal polynomial sequence (Pn)n satisfying (5),
the following relation holds:

L∗
n(P(1)

n−1(x)) = (�′′ − 2�′)P′
n(x); (33)

where L∗
n , which is the adjoint of Ln is given by

L∗
n = �D2 + (2�′ − �)D+ (�n + �′′ − �′): (34)

It should be noticed that Ln and L∗
n are related by

Ln(y) = L∗
n(y); ∀y; (35)

where  is the weight function satisfying Eqs. (3) and (4).

Lemma 2 (Nikiforov and Uvarov [28]). (1) Two linearly independent solutions of the di>erential
equation

Ln(y(x)) = �(x)y′′(x) + �(x)y′(x) + �ny(x) = 0;

are Pn and Qn, where (Pn)n is the polynomial sequence, orthogonal with respect to the weight
function  de:ned on the interval (a; b), satisfying Eqs. (3) and (4). The constant �n
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is given by

�n = −n
2

((n − 1)�′′ + 2�′):

Qn is the function of the second kind, de:ned by

Qn(x) =
1

(x)

∫ b

a

(s)Pn(s)
s − x

ds: (36)

(2) The polynomials Pn and the function Qn are two linearly independent solutions of the recurrence
equation (1).

Notice that the representation of Qn given above is valid for x �∈ [a; b]. But this representation
is still valid for x∈ [a; b] by analytic continuation [28] or by taking Cauchy’s principal part in the
integral of (36) [14]. Pn and Qn are given for each classical situation in terms of hypergeometric
functions (see Section 5).

3. Factorization of fourth-order di�erential operators

Given (Pn)n a classical orthogonal polynomial sequence, we consider in general all transformations
which lead to new families of orthogonal polynomials denoted by ( OPn)n and are related to the starting
sequence by

OPn(x) = An(x)P(1)
n+k−1 + Bn(x)Pn+k ; n¿ k ′; (37)

where An and Bn are polynomials of degree not depending on n, and k; k ′ ∈N. We have the following:

Theorem 1. (1) The orthogonal polynomials ( OPn)n¿k′ satisfy a common fourth-order linear di>er-
ential equation

Fn(y(x)) = J4(x; n)y′′′′(x) + J3(x; n)y′′′(x) + J2(x; n)y′′(x)

+ J1(x; n)y′(x) + J0(x; n)y(x) = 0; (38)

where the coe7cients Ji are polynomials in x, with degree not depending on n.
(2) The operator Fn can be factored as product of two second-order linear di>erential operators

Sn and Tn

Fn = SnTn; (39)

where the coe7cients in Sn and Tn are polynomials of degree not depending on n.

Proof. In the 2rst step, we solve Eq. (37) in terms of P(1)
n+k−1

P(1)
n+k−1(x) =

OPn(x) − Bn(x)Pn+k(x)
An(x)

(40)
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and substitute the previous relation in Eq. (33) in which n is replaced by n + k. Then we use (5)
(for Pn+k) to eliminate the term P′′

n+k(x) and get

Mn+k( OPn) = b1P′
n+k + b0Pn+k ; (41)

where bi are rational functions and Mn+k a second-order linear operator given in terms of operator
L∗
n+k (see (33)) by

Mn+k(y) = A3
nL∗

n+k

(
y
An

)
: (42)

Next, we take derivative in (41) and use again (5) to eliminate P′′
n+k(x), and get

[Mn+k( OPn)]′ = c1P′
n+k + c0Pn+k : (43)

We reiterate the same process using the previous equation and get

[Mn+k( OPn)]′′ = d1P′
n+k + d0Pn+k ; (44)

where ci and di are again rational functions.
The fourth-order di&erential equation is given in determinantal form from (41), (43) and (44)

Fn( OPn) =

∣∣∣∣∣∣∣∣
b1 b0 Mn+k( OPn)

c1 c0 [Mn+k( OPn)]′

d1 d0 [Mn+k( OPn)]′′

∣∣∣∣∣∣∣∣
= 0: (45)

The previous equation can be written as

Fn( OPn) = e2[Mn+k( OPn)]′′ + e1[Mn+k( OPn)]′ + e0Mn+k( OPn) = [SnTn]( OPn) = 0; (46)

where the second-order di&erential operators Sn and Tn are given by

Sn = e2D
2 + e1D+ e0; Tn =Mn+k : (47)

We conclude the proof by noticing that after cancellation of the denominator in (45), the coe@cients
ei are polynomials of degree not depending on n.

It should be mentioned that the previous method was 2rst developed in [4]. The more general
situation considered in [23] gives the fourth-order di&erential equation for the orthogonal polynomial
sequence in the form

P̃n = Pn + QP(k+1)
n−(k+1);

where Q is a polynomial of degree k and (Pn)n a semi-classical orthogonal polynomial sequence. The
previous theorem (also valid for semi-classical orthogonal polynomials (see Section 5.5)) therefore
extends the results given in [23]. In addition, we would like to mention that the factorization pointed
out in the previous theorem (except some particular cases listed below) seems to be a new result
and has many applications as will be shown later. This factorization was known for some particular
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cases: the case of the 2rst associated classical orthogonal polynomials (see [29]), which is obviously
a consequence of (33) and the case of co-recursive orthogonal polynomials given explicitly in [31].

In what follows, we will denote by F(r)
n ; F[k;�]

n ; F{r; k;�}
n F|k;�|

n and F[k;�;�]
n the fourth-order di&erential

operators (obtained after cancellation of common factors) for the rth associated, the generalized
co-recursive, the generalized co-recursive associated, the generalized co-dilated, and the generalized
co-modi2ed orthogonal polynomials.

3.1. Some consequences

For the rth associated classical orthogonal polynomials (P(r)
n )n, we have used the previous theorem

and the representation given in (13) to compute the operators Sn and Tn using Maple 7 [27].

Proposition 1. The two di>erential operator factors of the fourth-order di>erential operator for
the rth associated classical orthogonal polynomials are

S(r)
n = �Pr−1D

2 + [(� + �′)Pr−1 − 2�P′
r−1]D+ [(�′ + �n+r − �r−1)Pr−1 − 2�P′

r−1]; (48)

T(r)
n = �P2

r−1D
2 − Pr−1[(� − 2�′)Pr−1 + 2�P′

r−1]D

+ [2(� − �′)Pr−1P′
r−1 + 2�P′

r−1P
′
r−1 + (�′′ − �′ + �n+r + �r−1)P2

r−1]; (49)

where r ∈N¿0 and (Pn)n is the sequence of classical orthogonal polynomials satisfying (5).
Moreover, we have

S(r)
n T(r)

n = P3
r−1F(r)

n ; (50)

where

F(r)
n = �2D4 + 5��′D3 + (6��′′ − 2�′� + 2��′ + 2�n+r� + 2�r−1� − �2 + 3�′2)D2

+ 3(�r−1�′ + �n+r�′ − ��′ + ��′′ + �′�′′)D

+ [(�n+r − �r−1)2 + (�n+r + �r−1)�′′ + �′�′′ − �′2]: (51)

Remark 1. It should be mentioned that the factorization pointed out in (50) for generic r was already
known for the 2rst associated (r = 1) [29]:

F(1)
n = (�D2 + (� + �′)D+ �′ + �n+1)(�D2 + (2�′ − �)D+ �′′ − �′ + �n+1): (52)

Eq. (51) gives a new representation of the fourth-order di&erential equation for the rth associated
classical orthogonal polynomials in terms of �; � and �n and of course can be brought in the
form of known results [36,5,38]. From this representation, we recover easily the simple form of the
fourth-order di&erential equation for rth associated classical orthogonal polynomials, given in [21]

F(r)
n = F(1)

n + (1 − r)[(n + r − 2)�′′ + 2�′][2�D2 + 3�′D− (n2 − 1)�′′];

where F(1)
n is given by (52).
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Corollary 1. The fourth-order di>erential operator can also be factorized as

S̃(r)
n T̃(r)

n = Q3
r−1F(r)

n ; (53)

where the operators S̃(r)
n and T̃(r)

n are obtained from the operators S(r)
n and T(r)

n , respectively by
replacing the polynomials Pr−1 with the function Qr−1, i.e.,

S̃(r)
n = �Qr−1D

2 + [(� + �′)Qr−1 − 2�Q′
r−1]D+ [(�′ + �n+r − �r−1)Qr−1 − 2�Q′

r−1]; (54)

T̃(r)
n = �Q2

r−1D
2 − Qr−1[(� − 2�′)Qr−1 + 2�Q′

r−1]D

+ [2(� − �′)Qr−1Q′
r−1 + 2�Q′

r−1Q
′
r−1 + (�′′ − �′ + �n+r + �r−1)Q2

r−1]: (55)

The proof is obtained by computation utilizing the fact that Qn satis2es (5).

Proposition 2. The operator Tn for the generalized co-recursive and co-dilated classical orthogonal
polynomials (P[k;�]

n )n and (P|k;�|
n )n (with k¿ 1), denoted, respectively, by T[k;�]

n ; T|k;�|
n are obtained

in the same way:

T[k;�]
n = �P2

kD
2 − Pk[(� − 2�′)Pk + 4�P′

k]D

+ [4(� − �′)PkP′
k + 6�P′

kP
′
k + (�n + 2�k + �′′ − �′)P2

k ]; (56)

T|k;�|
n = �P2

k−1P
2
k − Pk−1Pk[2�(Pk−1Pk)′ + (� − 2�′)Pk−1Pk]D

+ [(�k−1 + �k + �n + �′′ − �′)P2
k−1P

2
k + (� − �′)(P2

k−1P
2
k)′

+ 2�P′
k−1P

′
k−1P

2
k + 2�P2

k−1P
′
kP

′
k + 2�P′

k−1P
′
kPk−1Pk]: (57)

The operators Sn for the generalized co-recursive and co-dilated classical orthogonal polynomials
are very large expressions; however, they can be obtained using the previous theorem and Eqs. (22)
and (32). The same remark applies for the factors Sn and Tn of the fourth-order di&erential equation
satis2ed by the generalized co-recursive associated and co-modi2ed classical orthogonal polynomials.

4. Solutions of the fourth-order di�erential equations

In the following, we solve the fourth-order di&erential equation satis2ed by the 2ve perturbations
listed in Section 2 and represent the new families of orthogonal polynomials in terms of solutions
of second-order di&erential equations.

Theorem 2. Let (Pn)n be a classical orthogonal polynomial sequence, r ∈N¿0 and (P(r)
n )n the rth

associated of (Pn)n. Four linearly independent solutions of the di>erential equation

F(r)
n (y) = 0 (58)
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satis:ed by (P(r)
n )n, where F(r)

n is given by (51), are:

A(r)
n (x) = (x)Pr−1(x)Pn+r(x);

B(r)
n (x) = (x)Pr−1(x)Qn+r(x);

C(r)
n (x) = (x)Qr−1(x)Pn+r(x);

D(r)
n (x) = (x)Qr−1(x)Qn+r(x);

(59)

Qn denoting the function of second kind associated to (Pn)n which is de:ned by (36).
Moreover, P(r)

n is related to these solutions by

P(r)
n (x) =

B(r)
n (x) − C(r)

n (x)
�0�r−1

=
(x)(Pr−1(x)Qn+r(x) − Qr−1(x)Pn+r(x))

�0�r−1
; ∀n∈N; ∀r ∈N¿0; (60)

where �k is given by (14) and �0 de:ned as

�0 =
∫ b

a
(x) dx: (61)

Proof. In the 2rst step, we solve the di&erential equation

T(r)
n (y) = 0:

To do this, we use (35), (42) and (47) to get

T(r)
n (y) =Mn+r(y)

= P3
r−1L∗

n+r

(
y

Pr−1

)

= P3
r−1Ln+r(z); (62)

where y = zPr−1. Since the two linearly independent solutions of Ln+r(z) = 0 are Pn+r and Qn+r

(see Lemma 2), the two linearly independent solutions of T(r)
n (y) = 0 (which are also solutions of

(58) thanks to (50)) are

A(r)
n (x) = (x)Pr−1(x)Pn+r(x);

B(r)
n (x) = (x)Pr−1(x)Qn+r(x):

(63)

Use of (55) utilizing the fact that the weight function  and the function Qn satisfy (3) and (5),
respectively, leads to

T̃(r)
n (y) = Q3

r−1Ln+r(z); (64)
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where y= zQr−1. Eq. (64) permits us to conclude that the two independent solutions of T̃(r)
n (y)=0

(which are also solutions of (58) thanks to (53)) are given by

C(r)
n (x) = (x)Qr−1(x)Pn+r(x);

D(r)
n (x) = (x)Qr−1(x)Qn+r(x):

The four solutions of (58) obtained are linearly independent since Pn and Qn are two linearly
independent solutions of (5) and have di&erent asymptotic behaviour (see Section 5.1).

It should be mentioned that computations with Maple 7 using the fact that Pn and Qn satisfy (5),
con2rm that the functions A(r)

n ; B(r)
n ; C(r)

n and D(r)
n satisfy (58). Also, notice that the structure of the

solutions of Eq. (58) given by (59) was suggested by Hahn [16].
To prove (60) one has to remark that since (Pn)n and (Qn)n satisfy (1), each solution given in

(59) satis2es the recurrence equation

Xn+1 = (x − 
n+r)Xn − �n+rXn−1; n¿ 1: (65)

Therefore, the function X (r)
n de2ned by

X (r)
n (x) =

(x)(Pr−1(x)Qn+r(x) − Qr−1(x)Pn+r(x))
�0�r−1

; r¿ 1;

ful2lls (65). It remains to prove that the initial values are X (r)
0 = 1; X (r)

1 = x − 
r . We have

X (r+1)
0 =

(x)(Pr(x)Qr+1(x) − Qr(x)Pr+1(x))
�0�r

=
(x)(Pr(x)[(x − 
r)Qr(x) − �rQr−1(x)] − Qr(x)[(x − 
r)Pr(x) − �rPr−1(x)])

�0�r

=
(x)(Pr−1(x)Qr(x) − Qr−1(x)Pr(x))

�0�r−1

= X (r)
0 :

We deduce that

X (r)
0 = X (1)

0 ; r¿ 1:

A computation using (36) and (61) gives

X (1)
0 =

(x)(P0(x)Q1(x) − Q0(x)P1(x))
�0

=
1
�0

∫ b

a

(s − 
0)(s) ds
s − x

− (x − 
0)
�0

∫ b

a

(s) ds
s − x

= 1:

Therefore,

X (r)
0 = 1; r¿ 1:
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Use of (1) for Pr+1 and Qr+1 and the previous equation gives

X (r)
1 = (x − 
r)X

(r)
0 = x − 
r:

We therefore conclude that

X (r)
n = P(r)

n ; r¿ 1; n¿ 0;

since (P(r)
n )n is the unique solution of recurrence equation (65) with the initial conditions

P(r)
0 = 1; P(r)

1 = x − 
r:

Remark 2. The results of the previous theorem are still valid if we replace Pn and Qn in Eqs. (59)
and (60) by two other linearly independent solutions of Eqs. (1) and (5). In fact, the structure of
the solutions given in (59) remains the same. The same remark applies for (60) except that the
denominator in (60) may be a di&erent constant (with respect to x) factor.

Theorem 3. Let (Pn)n be a classical orthogonal polynomial sequence, k ∈N and (P[k;�]
n )n the gen-

eralized co-recursive of (Pn)n. Four linearly independent solutions of the di>erential equation

F[k;�]
n (y) = 0; n¿ k + 1 (66)

satis:ed by (P[k;�]
n )n, are (with n¿ k + 1)

A[k;�]
n (x) = (x)P2

k (x)Pn(x);

B[k;�]
n (x) = (x)P2

k (x)Qn(x);

C[k;�]
n (x) = [�0�k + �(x)Pk(x)Qk(x)]Pn(x);

D[k;�]
n (x) = [�0�k + �(x)Pk(x)Qk(x)]Qn(x);

(67)

where Qn is the function of second kind associated to (Pn)n de:ned by (36).
Moreover, P[k;�]

n is related to these solutions by

P[k;�]
n =

[�0�k + �(x)Pk(x)Qk(x)]Pn(x) − �(x)P2
k (x)Qn(x)

�0�k
; k¿ 0; n¿ k + 1: (68)

Proof. By analogy with the proof of Theorem 2, we show using (20), (42) and (47) that

T[k;�]
n (y) = P6

kLn(z);

where T[k;�]
n is given by (56) and y = zP2

k . Therefore, A[k;�]
n and B[k;�]

n given by

A[k;�]
n (x) = (x)P2

k (x)Pn(x); B[k;�]
n (x) = (x)P2

k (x)Qn(x);

are two linearly independent solutions of

T[k;�]
n (y) = 0:
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Next, we use (19) and (60) and get

P[k;�]
n =

C[k;�]
n − �B[k;�]

n

�0�k
; n¿ k + 1: (69)

Since the generalized co-dilated polynomials P[k;�]
n and the function B[k;�]

n given by (67), are both
solutions of the linear homogeneous di&erential equation

F[k;�]
n (y) = 0; n¿ k + 1;

it follows from (69) that the function C[k;�]
n , given by (67), is also solution of the previous equation.

Computations show that the function D[k;�]
n , given by (67) is also solution of the previous di&erential

equation. One can also prove that D[k;�]
n is solution of the previous di&erential equation by following

the proof given in [13] for the discrete case.
To complete the proof, we notice that A[k;�]

n ; B[k;�]
n ; C[k;�]

n and C[k;�]
n are four linearly independent

solutions of F[k;�]
n (y) = 0 since Pn and Qn are two linearly independent solutions of (5) enjoying

di&erent asymptotic properties.

In the following, we give the equivalent of the previous theorem for the co-dilated classical
orthogonal polynomials. The proof is similar to the one of the previous theorem by using relations
(27), (28), (42), (47), and (60).

Theorem 4. Let (Pn)n be a classical orthogonal polynomial sequence, k ∈N and (P|k;�|
n )n the gen-

eralized co-dilated of (Pn)n. Four linearly independent solutions of the di>erential equation

F|k;�|
n (y) = 0; n¿ k + 1; (70)

satis:ed by (P|k;�|
n )n are (with n¿ k + 1)

A|k;�|
n (x) = (x)Pk−1(x)Pk(x)Pn(x);

B|k;�|
n (x) = (x)Pk−1(x)Pk(x)Qn(x);

C |k;�|
n (x) = [�0�k + (� − 1)�k(x)Pk−1(x)Qk(x)]Pn(x);

D|k;�|
n (x) = [�0�k + (� − 1)�k(x)Pk−1(x)Qk(x)]Qn(x):

(71)

The co-dilated P|k;�|
n is related to these solutions by

P|k;�|
n =

[�0�k + (� − 1)�k(x)Pk−1(x)Qk(x)]Pn(x) − (� − 1)�k(x)Pk−1(x)Pk(x)Qn(x)
�0�k

;

n¿ k + 1: (72)

We furthermore give the solutions for the generalized co-recursive associated and the generalized
co-modi2ed classical orthogonal polynomials. The proofs are similar to the previous ones.
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Theorem 5. Let (Pn)n be a classical orthogonal polynomial sequence, k ∈N; r ∈N¿0 and (P{r; k;�}
n )n

the generalized co-recursive associated of (Pn)n. Four linearly independent solutions of the di>er-
ential equation

F{r; k;�}
n (y) = 0; n¿ k + 1; (73)

satis:ed by (P{r; k;�}
n )n are (with n¿ k + 1)

A{r; k;�}
n (x) = (�0�k+rPr−1(x) − �(x)Pk+r(x)[Pr−1(x)Qk+r(x) − Qr−1(x)Pk+r(x)])(x); Pn+r(x);

B{r; k;�}
n (x) = (�0�k+rPr−1(x) − �(x)Pk+r(x)[Pr−1(x)Qk+r(x) − Qr−1(x)Pk+r(x)])(x)Qn+r(x);

C{r; k;�}
n (x) = (�0�k+rQr−1(x) − �(x)Qk+r(x)[Pr−1(x)Qk+r(x) − Qr−1(x)Pk+r(x)])(x)Pn+r(x);

D{r; k;�}
n (x) = (�0�k+rQr−1(x) − �(x)Qk+r(x)[Pr−1(x)Qk+r(x) − Qr−1(x)Pk+r(x)])(x)Qn+r(x):

Moreover, P{r; k;�}
n is related to these solutions by

P{r; k;�}
n =

(
Pr−1(x)
�0�r−1

− �(x)Pk+r(x)[Pr−1(x)Qk+r(x) − Qr−1(x)Pk+r(x)]
�2

0�r−1�k+r

)
(x)Qn+r(x)

−
(
Qr−1(x)
�0�r−1

− �(x)Qk+r(x)[Pr−1(x)Qk+r(x) − Qr−1(x)Pk+r(x)]
�2

0�r−1�k+r

)
(x)Pn+r(x);

r¿ 1; n¿ k + 1: (74)

Theorem 6. Let (Pn)n be a classical orthogonal polynomial sequence, k ∈N and (P[k;�;�]
n )n the

generalized co-modi:ed of (Pn)n. Four linearly independent solutions of the di>erential equation

F[k;�;�]
n (y) = 0; n¿ k + 1; (75)

satis:ed by (P[k;�;�]
n )n are (with n¿ k + 1)

A[k;�;�]
n (x) = [(� − 1)�kPk−1(x)Pk(x) + �P2

k (x)](x)Pn(x);

B[k;�;�]
n (x) = [(� − 1)�kPk−1(x)Pk(x) + �P2

k (x)](x)Qn(x);

C[k;�;�]
n (x) = [�0�k + (� − 1)�k(x)Pk−1(x)Qk(x) + �(x)Pk(x)Qk(x)]Pn(x);

D[k;�;�]
n (x) = [�0�k + (� − 1)�k(x)Pk−1(x)Qk(x) + �(x)Pk(x)Qk(x)]Qn(x):

(76)

The co-dilated P[k;�;�]
n is related to these solutions by

P[k;�;�]
n =

(
1 +

(� − 1)�k(x)Pk−1(x)Qk(x) + �(x)Pk(x)Qk(x)
�0�k

)
Pn(x)

−(� − 1)�k(x)Pk−1(x)Pk(x) + �(x)P2
k (x)

�0�k
Qn(x); n¿ k + 1: (77)
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5. Applications

5.1. Asymptotic formulas for the four solutions

We use results given in Theorem 2 and the asymptotic formula for the function of the second
kind (see [28, p. 98])

Qn(x) = −
∏n

i=0 �i
(x)xn+1

(
1 + O

(
1
x

))

to get the following formulas for the solutions given in relation (59):

Theorem 7.

A(r)
n (x) = xn+2r−1(x)

(
1 + O

(
1
x

))
;

B(r)
n (x) = −

∏n+r
i=0 �i
xn+2

(
1 + O

(
1
x

))
;

C(r)
n (x) = −xn

r−1∏
i=0

�i

(
1 + O

(
1
x

))
;

D(r)
n (x) =

∏r−1
i=0 �i

∏n+r
i=0 �i

(x)xn+2r+1

(
1 + O

(
1
x

))
:

(78)

5.2. Hypergeometric representation of the solutions

We give for each classical situation a hypergeometric representation of the polynomials Pn, the
function of the second kind Qn, four linearly independent solutions of the di&erential equation for
P(r)

n and relations between these solutions and the associated polynomials. In what follows, (a)k and
pFq denote the Pochhammer symbol and the generalized hypergeometric function, respectively, and
are de2ned by

(a)k = a(a + 1) · · · (a + k − 1); k ∈N; (a)0 ≡ 1;

pFq

(
a1; a2; : : : ; ap

b1; b2; : : : ; bq

∣∣∣∣∣ x
)

=
∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

xk

k!
;

where p and q belong to N, and x; a; ai and bi are complex numbers. The pFq(x) is well de2ned
if no bi; 16 i6 q is a negative integer or zero and it constitutes a convergent series for all x if
p6 q, or if p = q + 1 and |x|¡ 1.
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5.2.1. Monic Jacobi polynomials p(+;
)
n

We denote by p(+;
)
n the monic Jacobi polynomials and q(+;
)

n the corresponding function of the
second kind. The data are [28, p. 286]:

�(x) = 1 − x2; �(x) = −(+ + 
 + 2)x + 
 − +; +¿ − 1; 
¿ − 1;

(x) = (1 − x)+(1 + x)
; I = [ − 1; 1];

�n = n(n + + + 
 + 1);


n =

2 − +2

(2n + + + 
)(2n + + + 
 + 2)
;

�n =
4n(n + +)(n + 
)(n + + + 
)

(2n + + + 
 + 1)(2n + + + 
)2(2n + + + 
 − 1)
;

p(+;
)
n =

2n(+ + 1)n
(n + + + 
 + 1)n

2F1

( −n; n + + + 
 + 1

+ + 1

∣∣∣∣∣ 1 − x
2

)
;

q(+;
)
n =

(−1)n22n+++
+1n!�(n + + + 1)�(n + 
 + 1)
(1 − x)n+++1(1 + x)
(n + + + 
 + 1)n�(2n + + + 
 + 2)

×2F1

(
n + 1; n + + + 1

2n + + + 
 + 2

∣∣∣∣∣ 2
1 − x

)
:

It should be mentioned that for n = 0 and + + 
 + 1 = 0; q(+;−1−+)
0 is constant with respect to x.

In this case, the nonconstant solution of Eq. (5) is given in [34, p. 75].
From Theorem 2 and the previous data, four linearly independent solutions of the fourth-order

di&erential equation

(1 − x2)2y′′′′(x) − 10x(1 − x2)y′′′(x) + (−8 + 2x
2 − 2x+2 − +2 + 2n2 − 2n+x2 − 2n
x2

− 2x2+
 − 4nrx2 − 4r+x2 − 4r
x2 − 2nx2 − x2+2 − 4r2x2 − 2n2x2

− x2
2 + 2n + 4
r + 4+r + 24x2 + 2n+ + 4nr + 2n
 + 2+
 − 
2 + 4r2)y′′(x)

+ (−12xr2 − 3x
2 − 12xnr − 6xn2 − 6xn − 3x+2 − 12xr
 − 6x+


− 6xn
 − 6xn+ − 12xr+ + 12x − 3+2 + 3
2)y′(x)

+ n(2 + n)(n + 1 + + + 
 + 2r)(n − 1 + + + 
 + 2r)y(x) = 0 (79)
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satis2ed by the rth associated Jacobi orthogonal polynomials [36] (see also [5]) are:

A(r)
n;J = (1 − x)+(1 + x)
2F1

(
1 − r; r + + + 


+ + 1

∣∣∣∣∣ 1 − x
2

)

×2F1

( −n − r; n + r + + + 
 + 1

+ + 1

∣∣∣∣∣ 1 − x
2

)
;

B(r)
n;J = (1 − x)−n−r−1

2F1

(
1 − r; r + + + 


+ + 1

∣∣∣∣∣ 1 − x
2

)
2F1

(
n + r + 1; n + r + + + 1

2n + 2r + + + 
 + 2

∣∣∣∣∣ 2
1 − x

)
;

C(r)
n;J = (1 − x)−r

2F1

(
r; r + +

2r + + + 


∣∣∣∣∣ 2
1 − x

)
2F1

( −n − r; n + r + + + 
 + 1

+ + 1

∣∣∣∣∣ 1 − x
2

)
;

D(r)
n;J =

(1 − x)−n−2r−+−1

(1 + x)
 2F1

(
r; r + +

2r + + + 


∣∣∣∣∣ 2
1 − x

)

×2F1

(
n + r + 1; n + r + + + 1

2n + 2r + + + 
 + 2

∣∣∣∣∣ 2
1 − x

)
: (80)

The use of (60), the previous data and the fact that

r−1∏
i=0

�i =
22r+++
−1(2r + + + 
 − 1)�(r)�(r + +)�(r + 
)�(r + + + 
)

�(2r + + + 
)2 ; r ∈N¿0;

allow us to represent the associated Jacobi polynomials P(r)
n (r ∈N) in terms of the hypergeometric

functions (see also [36]).

P(r)
n (x) =

(1 − x)+(1 + x)
(p(+;
)
r−1 (x)q(+;
)

n+r (x) − q(+;
)
r−1 (x)p(+;
)

n+r (x))∏r−1
i=0 �i

; r ∈N¿0:

Remark 3. Note that A(r)
n;J ; B(r)

n;J ; C(r)
n;J and D(r)

n;J are multiples of the functions (59) in order to be as
simple as possible. This applies also for the Laguerre and Hermite case below.

Since 2F1 constitutes a convergent series for |x|¡ 1, functional relation (see [28, p. 270])

2F1

(
+; 


�

∣∣∣∣∣ x
)

=
�(�)�(
 − +)
�(
)�(� − +)

(−x)−+
2F1

(
+; 1 + + − �

1 + + − 


∣∣∣∣∣ 1
x

)

+
�(�)�(+ − 
)
�(+)�(� − 
)

(−x)−

2F1

(

; 1 + 
 − �

1 + 
 − +

∣∣∣∣∣ 1
x

)
(81)
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can be used in order to get for the functions q+;

n ; A(r)

n;J ; B(r)
n;J ; C(r)

n;J and D(r)
n;J given above a repre-

sentation with convergent series expansion when |x|¿ 1.

5.2.2. Monic Laguerre polynomials l+n
We denote by l+n the monic Laguerre polynomials and q+

n the corresponding function of the second
kind. The data are [28, p. 286]:

�(x) = x; �(x) = + + 1 − x; +¿ − 1;

(x) = x+e−x; I = [0;∞);

�n = n; 
n = 2n + 1 + +; �n = n(n + +);

l+n(x) = (−1)n(+ + 1)n 1F1

( −n

+ + 1

∣∣∣∣∣ x
)

;

q+
n(x) = (−1)nn!ei-+�(n + + + 1)exG(n + + + 1; + + 1;−x);

where G(a; b; x) is the conRuent hypergeometric function of the second kind (see [28, p. 272]) and
related to the conRuent hypergeometric function 1F1 by

G(+; �; x) =
�(1 − �)

�(+ − � + 1) 1F1

(
+

�

∣∣∣∣∣ x
)

+
�(� − 1)
�(+)

x1−�
1F1

(
+ − � + 1

2 − �

∣∣∣∣∣ x
)

: (82)

In case of convergence, the function G(+; �; x) can also be represented by the hypergeometric function
2F0 (see [1, Chapter 13]) as

G(+; �; x) = x−+
2F0

(
+; 1 + + − �

−

∣∣∣∣∣− 1
x

)
: (83)

From Theorem 2 and the previous data, four linearly independent solutions of the di&erential equation
[5] (see also [2])

x2y′′′′(x) + 5xy′′′(x) + (4 + 2xn + 4xr − x2 + 2x+ − +2)y′′(x)

+ (6r − 3x + 3+ + 3n)y′(x) + n(2 + n)y(x) = 0 (84)

satis2ed by the rth associated Laguerre orthogonal polynomials are:

A(r)
n;L = x+e−x

1F1

(
1 − r

+ + 1

∣∣∣∣∣ x
)

1F1

( −n − r

+ + 1

∣∣∣∣∣ x
)

;

B(r)
n;L = x+1F1

(
1 − r

+ + 1

∣∣∣∣∣ x
)

G(n + r + + + 1; + + 1;−x);
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C(r)
n;L = x+G(r + +; + + 1;−x)1F1

( −n − r

+ + 1

∣∣∣∣∣ x
)

;

D(r)
n;L = x+exG(r + +; + + 1;−x)G(n + r + + + 1; + + 1;−x): (85)

The use of (60), the previous data and the fact that

r−1∏
i=0

�i = �(r)�(r + +);

allow us to represent the associated Laguerre polynomials P(r)
n (r ∈N¿0) in terms of the hypergeo-

metric functions

P(r)
n (x) =

(−1)n−1ei-+�(n + r + + + 1)x+

�(+ + 1)

×
(

�(n + r + 1)
�(r) 1F1

(
1 − r

+ + 1

∣∣∣∣∣ x
)

G(n + r + + + 1; + + 1;−x)

− G(r + +; + + 1;−x)1F1

( −n − r

+ + 1

∣∣∣∣∣ x
))

; r ∈N¿0:

5.2.3. Monic Hermite polynomials hn

We denote by hn the monic Hermite polynomials and by qn the corresponding function of the
second kind. The data are [28, p. 286]:

�(x) = 1; �(x) = −2x;

(x) = e−x2
; I = (−∞;+∞);

�n = 2n; 
n = 0; �n =
n
2
;

hn(x) = G
(

−n
2
;
1
2
; x2

)
= xn2F0


 −n

2
;
1 − n

2
−

∣∣∣∣∣∣−
1
x2


 ;

qn(x) =
√
-n!2−nex2+i-(n−1)=2h−n−1(ix)

=
√
-n!2−nex2+i-(n−1)=2G

(
n + 1

2
;
1
2
;−x2

)
:

From Theorem 2 and the previous data, the four linearly independent solutions of the di&erential
equation [5] (see also [2])

y(iv)(x) + (4n + 8r − 4x2)y′′(x) − 12xy′(x) + 4n(2 + n)y(x) = 0 (86)
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satis2ed by the rth associated Hermite orthogonal polynomials are:

A(r)
n;H = e−x2

G
(

1 − r
2

;
1
2
; x2

)
G
(

−n + r
2

;
1
2
; x2

)
;

B(r)
n;H = G

(
1 − r

2
;
1
2
; x2

)
G
(
n + r + 1

2
;
1
2
;−x2

)
;

C(r)
n;H = G

(
r
2
;
1
2
;−x2

)
G
(

−n + r
2

;
1
2
; x2

)
;

D(r)
n;H = ex2

G
(

r
2
;
1
2
;−x2

)
G
(
n + r + 1

2
;
1
2
;−x2

)
:

(87)

By using (60), the previous data and the fact that

r−1∏
i=0

�i =
√
-�(r)21−r ;

we represent the associated Hermite orthogonal polynomials P(r)
n (r ∈N¿0) as

P(r)
n (x) = ei-(r−2)=2

(
2−n−1ei-(n+1)=2 �(n + r)

�(r)
G
(

1 − r
2

;
1
2
; x2

)
G
(
n + r + 1

2
;
1
2
;−x2

)

− G
(

r
2
;
1
2
;−x2

)
G
(

−n + r
2

;
1
2
; x2

))
; r ∈N¿0:

5.3. Extension of results to real order of association

Let 3 be a real number with 3¿ 0 and (P(3)
n )n the family of polynomials de2ned by

P(3)
n+1(x) = (x − 
n+3)P(3)

n (x) − �n+3P
(3)
n−1(x); n¿ 1 (88)

with the initial conditions

P(3)
0 (x) = 1; P(3)

1 (x) = x − 
3; (89)

where 
n+3 and �n+3 are the coe@cients 
n and �n of Eq. (1) with n replaced by n + 3.
We assume that the starting family (Pn)n de2ned in (1) is classical. The coe@cients 
n and �n

are therefore rational functions in the variable n [18,19,28] and the coe@cients 
n+3 and �n+3 are
well de2ned. When �n+3 �= 0; ∀n¿ 1, the family (P(r)

n )n, thanks to Favard’s theorem [12,8], is
orthogonal and represents the associated of the family (Pn)n with real order of association. The
notion of associated orthogonal polynomials with real order of association has been investigated by
several authors (see for example [2,6,20,36]).
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Theorem 8. Let (Pn)n be a family of classical orthogonal polynomial, 3¿ 0 a real number and
(P(3)

n )n the 3-associated of (Pn)n. We have:
(1) (P(3)

n )n satis:es

F(3)
n (y) = 0; (90)

where F(3)
n is the operator given in (51) with r replaced by 3.

(2) The di>erential operator F(3)
n factorizes as

S(3)
n T(3)

n = U 3
3−1F(3)

n ;

S̃(3)
n T̃(3)

n = V 3
3−1F(3)

n ; (91)

where the operators S(3)
n ; T(3)

n ; S̃(3)
n ; T̃(3)

n are those given in Eqs. (48)–(55) with r replaced by
3; Pr and Qr are replaced by U3 and V3, respectively. U3 and V3 are the two linearly independent
solutions of the di>erential equation (see [28])

�(x)y′′(x) + �(x)y′(x) + �3y(x) = 0 (92)

with Ur = Pr; Vr = Qr for 3 = r ∈N and

�3 = − 3
2

((3 − 1)�′′ + 2�′): (93)

Four linearly independent solutions of the di>erential equation (90) are given by

A(3)
n (x) = (x)U3−1(x)Un+3(x);

B(3)
n (x) = (x)U3−1(x)Vn+3(x);

C(3)
n (x) = (x)V3−1(x)Un+3(x);

D(3)
n (x) = (x)V3−1(x)Vn+3(x);

(94)

where (x) is the weight function given by (3).

Proof. (1) Let n be a 2xed integer number and de2ne the function 6 by

6 : R+ → R;

3 → F(3)
n (P(3)

n (x));

where R+ is the set of positive real numbers. Using relation (88) for 2xed x; 6(3) can be written
as rational function in 3. In fact, for the classical orthogonal polynomials, the three-term recurrence
relation coe@cients 
n and �n are rational functions in the variable n. Using Eq. (58) we get

6(r) = F(r)
n (P(r)

n (x)) = 0; ∀r ∈N: (95)

We then conclude that 6(3) is a rational function with an in2nite number of zeros. Therefore,
6(3) = 0; ∀3∈R+, and (P(3)

n )n satis2es (90).
(2) Eq. (91) are proved by a straightforward computation using that U3 and U3 satisfy (92).
(3) The functions given in (94) are represented as products of functions satisfying homogeneous

di&erential equation of order 1 (for ) and 2 (for U and V ). These functions therefore satisfy
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a di&erential equation of order 4(=1×2×2) which is identical to (90). Notice that by linear algebra
one can deduce the di&erential equation of the product (94), given the di&erential equations of the
factors, since they have polynomial coe@cients. This can be done, e.g., by the Maple command
‘diffeq*diffeq’ [33] of the gfun package.

We conclude the proof by noticing that the results of the previous theorem can be used to extend
Theorem 5 to the generalized co-recursive associated of classical orthogonal polynomials with real
order of association as was done for the classical discrete case in [13].

5.4. Solutions of some second-order di>erential equations

Proposition 3. The two linearly independent solutions of the di>erential equation

S(r)(y) = 0;

where the operator S(r) (see (48)) is given by

S(r)
n = �Pr−1D

2 + [(� + �′)Pr−1 − 2�P′
r−1]D+ [(�′ + �n+r − �r−1)Pr−1 − 2�P′

r−1]

are:

E(r)
n (x) = �(x)(x)(Qr−1(x)P′

r−1(x) − Pr−1(x)Q′
r−1(x))(Pn+r(x)P′

r−1(x) − Pr−1(x)P′
n+r(x));

F (r)
n (x) = �(x)(x)(Qr−1(x)P′

r−1(x) − Pr−1(x)Q′
r−1(x))(Qn+r(x)P′

r−1(x) − Pr−1(x)Q′
n+r(x)):

Proposition 4. The two linearly independent solutions of the di>erential equation

S(3)(y) = 0;

where the operator S(3) (see (94)) is given by

S̃(3)
n = �U3−1D

2 + [(� + �′)U3−1 − 2�U ′
3−1]D+ [(�′ + �n+3 − �3−1)U3−1 − 2�U ′

3−1]

are:

E(3)
n (x) = �(x)(x)(V3−1(x)U ′

3−1(x) − U3−1(x)V ′
3−1(x))(Un+3(x)U ′

3−1(x) − U3−1(x)U ′
n+3(x));

F (3)
n (x) = �(x)(x)(V3−1(x)U ′

3−1(x) − U3−1(x)V ′
3−1(x))(Vn+3(x)U ′

3−1(x) − U3−1(x)V ′
n+3(x)):

Here, U3 and V3 are solutions of (92).

Proof. Since the functions C(r)
n and D(r)

n are solutions of equation F(r)
n (y) = 0 (see Theorem 2), we

use the factorization given by (50) and get

S(r)
n (T(r)

n (y)) = P3
r−1F(r)

n (y) = 0

for y∈ {C(r)
n ; D(r)

n }. We therefore conclude that the functions E(r)
n and F (r)

n de2ned by

E(r)
n = T(r)

n (C(r)
n ); F (r)

n = T(r)
n (D(r)

n );

satisfy S(r)
n (y) = 0. Computations using the fact that Pn and Qn satisfy (5) lead to the expressions

given in Proposition 3. The proof of Proposition 4 is similar to the one of Proposition 3 by using
Theorem 7.
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Remark 4. (1) The previous propositions give solutions to families of second-order di&erential equa-
tions. In particular, Proposition 3 solves a family of second-order di&erential equations with poly-
nomial coe@cients.

(2) For 2xed integer r, and for di&erent classical situations, we have tried without success to
solve the di&erential equation S(r)

n (y) = 0 using Maple 7 or Mathematica 4.1 [37].
(3) Mark van Hoeij [35] was able to solve di&erential equation S(r)

n (y) = 0 for 2xed integers
r using an algorithm he is currently developing and which extends the capabilities of algorithms
aimed at solving second-order linear homogeneous di&erential equation with polynomial
coe@cients.

5.5. Extension of results to semi-classical cases

The proof of Theorem 1, which is the starting point of this paper, uses merely the second-order
di&erential equation (5) and relation (33). Now, we suppose that the family (Pn)n is semi-classical
[3,17,25,26]. This implies that (Pn)n is orthogonal satisfying a second-order di&erential equation of
the form

OMn(y(x)) = I2(x; n)y′′(x) + I1(x; n)y′(x) + I0(x; n)y(x) = 0; (96)

where the coe@cients Ii(x; n) are polynomials in x of degree not depending on n. For semi-classical
orthogonal polynomials an equation of type (33) is known and can be stated as [4,5]

M̃n(P(1)
n−1(x)) = a1(x)P′

n(x) + a0(x)Pn(x); (97)

where ai are polynomials and M̃n a second-order linear di&erential operator with polynomial coe@-
cients. Use of the two previous equations leads to the following extension.

Theorem 9. Given (Pn)n a sequence of semi-classical orthogonal polynomials satisfying (96) and
( OPn)n a family of orthogonal polynomials obtained by modifying (Pn)n and satisfying

OPn(x) = An(x)P(1)
n+k−1 + Bn(x)Pn+k ; n¿ k ′; (98)

where An and Bn are polynomials of degree not depending on n, and k; k ′ ∈N, we have the following:
(1) The orthogonal polynomials ( OPn)n¿k′ satisfy a common fourth-order linear di>erential equa-

tion

OFn(y(x)) = K4(x; n)y′′′′(x) + K3(x; n)y′′′(x) + K2(x; n)y′′(x)

+K1(x; n)y′(x) + K0(x; n)y(x) = 0; (99)

where the coe7cients Ki are polynomials in x, with degree not depending on n.
(2) The operator OFn can be factored as product of two second-order linear di>erential operators

OX n OFn = OSn OTn; (100)

where OX n and the coe7cients of OSn and OTn are polynomials of degree not depending on n.
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The proof is similar to the one of Theorem 1 but with (96) and (97) playing the role of (5) and
(33), respectively.

The previous theorem covers the modi2cations such as the rth associated, the general co-recursive,
the general co-dilated, the general co-recursive associated and the general co-modi2ed semi-classical
orthogonal polynomials.

When the orthogonal polynomial sequence (Pn)n is semi-classical, in general it is di@cult to
represent the coe@cients of the di&erential operators OMn, M̃n; OFn; OSn and OTn in terms of the
polynomials � and  , the coe@cients of the functional equation (see [26, p. 37]) satis2ed by the
regular functional with respect to which ( OPn)n is orthogonal.

However, for particular cases (for example if the degrees of polynomials � and  are small), it is
possible after huge computations to give the coe@cients of the di&erential operators OMn, M̃n; OFn; OSn

and OTn explicitly, and therefore look for functions annihilating these di&erential operators.
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[11] J. Dzoumba, Sur les Polynômes de Laguerre–Hahn, ThVese de 3Veme cycle, UniversitUe Pierre et Marie Curie, Paris

VI, 1985.
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