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Abstract

We factorize the fourth-order differential equations satisfied by the Laguerre—Hahn orthogonal polynomi-
als obtained from some perturbations of classical orthogonal polynomials such as: the rth associated (for
generic ), the general co-recursive, the general co-recursive associated, the general co-dilated and the gen-
eral co-modified classical orthogonal polynomials. Moreover, we find four linearly independent solutions of
the fourth-order differential equations, and show that the factorization obtained for modifications of classi-
cal orthogonal polynomials is still valid, with some minor changes when the polynomial family modified is
semi-classical. Finally, we extend the validity of the results obtained for the associated classical orthogonal
polynomials with integer order of association from integers to reals.
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1. Introduction

Let % be a regular linear functional [8] on the linear space & of polynomials with real coefficients
and (P,), a sequence of monic polynomials, orthogonal with respect to %, i.e.,

(1) Pu(x) =x"+ lower degree terms,
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(i) (%, Py Pu) = knOpmhn # 0, n€N,

where N = {0,1,...} denotes the set of nonnegative integers. Here, (-,-) means the duality bracket
and 9, , the Kronecker symbol.
(P,), satisfies a three-term recurrence equation

Pn+l(x):(x_ﬁn)Pn(x)_VnPn—l(x): n=1 (1)
with the initial conditions
P_1(x)=0, Po(x)=1, (2)

where f, and y, are real numbers with y, # 0, Vn € N-, and N, denotes the set N.o={1,2,...}.

When the polynomial sequence (P,), is classical [28], i.e., orthogonal with respect to a positive
weight function p (defined on the interval (a, b)) satisfying the first-order differential equation called
Pearson equation:

(op) =1p )
with
"o(x)p(x)=b =0, VneN, (4)

where ¢ is a polynomial of degree at most two and t a first-degree polynomial, each P, satisfies
the differential equation

Li(y(x)) = (x)y"(x) + 1(x)y'(x) + Ay y(x) = 0 (5)

and the orthogonality condition (ii) reads as

b
/ PEVPAEIP () dx = kb, hy 7 0.
The coefficients f,, 7, and A, are given by [18,19]
In==5((n = 1)0" +2¢) = =n((n = Vs + 71),

—20,n%0) — 211011 + 202011 + 26279 — T1 70

b= (202n — 207 + 11)(202n + 71) ’
v = —n(ty — 20, + azn)(40§(70n2 — 80’%0‘07’1 + 40'%00 — afnzaz + 26%}’10'2
+4doy00nT) — 4020071 + azré - 020% — G%nrl — 017170 + O'()‘E% + O'%‘L’l)/
(2on — 20, + 11)2(20211 — 0y +11)20m — 305 + 11), (6)
where

o(x)= 022 + o1x + 0, (x)=11x+ 70
with
[t1[(|o2] + [a1] 4 |ao]) # O.

The classical families are Jacobi, Laguerre and Hermite orthogonal polynomials [28].
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Some modifications of Eq. (1) lead to new families of orthogonal polynomials such as the rth
associated (for generic r), the general co-recursive, the general co-recursive associated, the general
co-dilated and the general co-modified classical orthogonal polynomials [23]. These new families of
orthogonal polynomials satisfy a common fourth-order linear homogeneous differential equation with
polynomial coefficients of bounded degree. In general, they cannot satisfy a common second-order
linear homogeneous differential equation with polynomial coefficients of bounded degree. Therefore,
these new polynomials are not semi-classical but belong to the Laguerre—Hahn class (see Section 2).
Many works have been devoted to the derivation of these fourth-order differential equations. Their
polynomial coefficients have been given explicitly in [4,5,14,15,29,36,38] for the rth associated
classical orthogonal polynomials.

In 1994, using symbolic computation, the coefficients of the fourth-order differential equation
for the co-recursive associated Laguerre and Jacobi orthogonal polynomials were given [20]. Also,
in [32], general fourth-order differential equation for the generalized co-recursive of all classical
orthogonal polynomials was given for any (but fixed) level of recursivity using symbolic computation
software.

Despite the fact that apart from the rth associated orthogonal polynomials, the coefficients of the
fourth-order differential equation satisfied by the perturbed classical orthogonal polynomials require
heavy computations for being very large, we have succeeded in factorizing these fourth-order differ-
ential equations and also finding a basis of four linearly independent solutions of all the perturbed
systems of classical orthogonal polynomials considered. In Ref. [13], we succeeded also to factor-
ize the equivalent fourth-order difference equation corresponding to the discrete case for which the
basic Egs. (3) and (5) are difference equations of the same order, instead of differential equations.
Moreover, we have found interesting relations between the perturbed polynomials, the starting ones
and the functions of the second kind (see Section 2.2 for the definition).

In Section 2, we recall definitions and known results needed for this work. Section 3 is devoted to
the derivation and the factorization of the fourth-order differential equation. In Section 4, we solve
differential equations and represent perturbed classical orthogonal polynomials in terms of solutions
of second-order differential equations. In Section 5, we first give asymptotic representation of solu-
tions of the fourth-order differential equation for the rth associated classical orthogonal polynomials;
secondly, we extend the results obtained for the rth associated orthogonal polynomials with integer
order of association from integers to reals. Finally, we solve a family of second-order differential
equations and prove that the factorization obtained for modifications of classical orthogonal polyno-
mials is still valid with some minor changes, when the polynomial family modified is semi-classical
(see the next section for the definition).

2. Preliminaries and notations

In this section, we first define the semi-classical and the Laguerre-Hahn class of a given family
of orthogonal polynomials. Next, we present the families of rth associated, generalized co-recursive,
generalized co-dilated and generalized co-modified orthogonal polynomials, and give relations be-
tween new sequences and the starting ones.



302 M. Foupouagnigni et al. | Journal of Computational and Applied Mathematics 162 (2004) 299—-326

Each regular linear functional % generates a so-called Stieltjes function S of % defined by

Y. x"
S@=-Y <Zn’fl ), (7)

n=0

where (%,x") are the moments of the functional %. The linear functional % satisfies in general a
simple functional equation living in 2, the dual space of 2. Appropriate definitions of (d/dx)(%)
and P%, where P is a polynomial allow to build a simple differential equation for the functional
which generalize in some way the Pearson equation for the weight p [17] (see also [25,26]).

If the Stieltjes function S(x) satisfies a first-order linear differential equation of the form

¢(x)§'(x) = C(x)S(x) + D(x), (8)

where ¢, C and D are polynomials, the functional % satisfies in #’ a first-order differential equation
with polynomial coefficients. In this case, the functional % and the corresponding orthogonal poly-
nomial sequence (P,), belong to the semi-classical class (and are therefore called semi-classical)
which includes the classical families [3,17,25,26].

Each semi-classical orthogonal polynomial sequence (P,), satisfies a common second-order dif-
ferential equation [17] (see also [25]).

M, (¥(x)) = L(x,n)y" (x) + Li(x,n) Y (x) + Io(x,n) y(x) = 0, %)

where /;(x,n) are polynomials in x of degree not depending on n.
An important class, larger than the semi-classical one, appears when the Sticltjes function satisfies
a Riccati differential equation [9,11,22]

¢S’ =BS? + CS + D, (10)

where ¢ # 0,B,C and D are polynomials. The corresponding functional % satisfies then a compli-
cated quadratic differential equation in 2’. % and the corresponding orthogonal polynomials families
are said to belong to the Laguerre—Hahn class [9,11,22].

It is well known that any Laguerre—Hahn orthogonal polynomial sequence satisfies a common
fourth-order differential equation of the form [9,11,22]

JaCx,m)y D) + J306,m)y" () + o, 1)y (x) 4+ Ji(x, 1)y (x) + Jo(x, n) y(x) = 0,

where J;(x,n) are polynomials of degree not depending on n.

It is shown, from several works [9-11,23,24] that finite perturbations of the recurrence coefficients
of any semi-classical family generate orthogonal polynomials belonging to the Laguerre-Hahn and
therefore satisfy a fourth-order differential equation.

2.1. Perturbation of recurrence coefficients

Now we consider a sequence of polynomials (P,),, orthogonal with respect to a regular linear
functional %, satisfying (1). Perturbations we will deal with are the following.
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2.1.1. The rth associated orthogonal polynomials (P\),

Given r € N, the rth associated of the polynomials (P,),, is a polynomial sequence denoted by
(P(V))n and defined by the recurrence equation (1) in which f, and y, are replaced by f5,., and y,,,
respectively,

P () = (= Busr )P = puer PV (), > 1 (11)
with the initial conditions

PPx) =1, PVx)=x—p. (12)

The family (P,(f))n, thanks to Favard’s theorem [12], is orthogonal. It is related to the starting
polynomials and its first associated by the relation [9]

(1)
] Pri(x (%)
PO =" - 22, 0z 0 r 22, (13)
where the sequence (I',), is defined by
r,=[[» n=1 r=1 (14)

2.1.2. The co-recursive (PY), and the generalized co-recursive orthogonal polynomials (PFH),

The co-recursive of the orthogonal polynomial sequence (P,),, denoted by (P,[,”] )n, Was introduced
for the first time by Chihara [7], as the family of polynomials generated by the recursion formula
(1) in which f, is replaced by fo + u

PH(x) = (x — B)PH(x) — 9,PY (x), n=1 (15)
with the initial conditions
PPy =1, PP =x—Bo—n, (16)

where p denotes a real number.

This notion was extended to the generalized co-recursive orthogonal polynomials in [9,10,30] by
modifying the sequence (f3,), at the level k. This yields an orthogonal polynomial sequence denoted
by (P#), and generated by the recursion formula

PE@) = (x = BOPFI@) — P00, n> 1 (17)

n+1
with the initial conditions
P =1, P =x — B, (18)

where f; = f, for n # k and B = B + 1.
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The orthogonal polynomial sequence (P#), is related to (P,), and it is associated by [23]
PIH() = Pyx) — pPe)PE (@), =k 1
PEN(x) =P,(x), n<k (19)

Use of (13) transforms the previous equations in

(1)
P
Fk Fk

PIEM(x) = Py(x), n<k. (20)

Obviously, we have the relations Pl =PIt and Pl =P,.

2.1.3. The co-recursive associated (P,;{"’” } )a and the generalized co-recursive associated orthogonal
lynomials (P{™"

polynomials (P, In
The co-recursive associated as well as the generalized co-recursive associated of the orthogonal

polynomial sequence (P,),, denoted by (Pi"™), and (P{"*™),, respectively, are, the co-recursive
and the generalized co-recursive (with modification on f;) of the associated (P,(,r)),, of (P,),, re-
spectively. Thanks to (19), they are related with (P,), and it is associated by

Piraoaﬂ} — Piruu}
and

Pt ) = PP = iR, nz kL

P:l[r,k,u}(x) :Pf,r)(x)’ n<k. 2D

The generalized co-recursive associated orthogonal polynomials can also be expressed using (13)
and (21) by

Pi,,k,u}(x):<Pr_1<x> WPy ()P (x)) P o)

n+r—1
Fr—l Fr+k

P(l) P(l) P(")
Z(x) P — l(x) k (X) Pn+r(x)’ n=k+ 1’
I'_ Fr+k
PRk (x) = P,(x)", n<k. .

2.1.4. The co-dilated (P,W)n and the generalized co-dilated orthogonal polynomials (P,Lk’ﬂ),,

The co-dilated of the orthogonal polynomial sequence (P,),, denoted by (P,'f‘)n, was introduced
by Dini [9], as the family of polynomials generated by the recursion formula (1) in which yy,
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is replaced by Ay, i.e.,
Py = (= P — 7P (), =2 (23)
with the initial conditions
Pley=1, Pllay=x—po PYlx)=(x = Bo)x — B1) — iy, (24)

where / is a nonzero real number.
This notion was extended to the generalized co-dilated orthogonal polynomials in [10,30] by
modifying the sequence (y,), at the level k. This yields an orthogonal polynomial sequence denoted

by (P,‘,k’i‘)n and generated by the recurrence equation

kA k2

P ) = (v = BoPI) = 3P0, n> (25)
with the initial conditions

Pl =1 P =x - po (26)

where y; =7, for n # k and y; = Ay;.
The orthogonal polynomial sequence (P,‘,k’ﬂ),, is related to (P,), and its associated by [23]

PPy = Py(x) + (1 = 2P ()P (), n=k+1,
PRA(x)y=P,(x), n<k (27)

Use of (13) transforms the previous equation in

n=k+1,

PGy = (1 _a —DchF—kl()lc)Pi”l(x)) Py 4 O m;fk P ) )

Pl(x)=Py(x), n<k (28)
For k=1 or A=1, we have
Plll,).| :PIL)L" P,Lk,l| =P
2.1.5. The generalized co-modified orthogonal polynomials (P%#41),
New families of orthogonal polynomials can also be generated by modifying at the same time the
sequences (f3,), and (7,), at the levels k and k', respectively. When k =k’, the new family obtained

[23], denoted by (P#41), is generated by the three-term recurrence relation

PG = (e = P00 = 3P ), n> 1 29
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with the initial conditions
(W k), «
Py =1,  PEAx)y =x — B, (30)

where B, = B, v, =7, for n # k and B; = i + u, 7; = Zyx. This family is represented in terms of
the starting polynomials and their associated ones by [23]

PYERA(x) = Py(x) + (1 — ApPioi(x) — PGP (), n=k+1,
PFI(x)=P,(x), n<k 31)
The latter relation can also be written as

_ (1) (1)
Pl = (1 _{d=4P "F‘kl_(f)P ) | kP "(x)ri k-l“”) P,x)

. ((1 — WP (0OPx)  puPA(x)

b Py )Pgljl(x), ns kL,

PEA(x)y=P,(x), n<k (32)

2.2. Results on classical orthogonal polynomials
Next, we state the following lemmas which are essential for this work.

Lemma 1 (Ronveaux [29]). Given a classical orthogonal polynomial sequence (P,), satisfying (5),
the following relation holds:

i, (x)) = (6 = 27)P)(x), (33)
where L, which is the adjoint of L, is given by
L =62+ Q20 — )2 + (0 + 3" — 7). (34)
It should be noticed that L, and L] are related by

pL.(») =L, (py), Yy, (35)

where p is the weight function satisfying Eqgs. (3) and (4).

Lemma 2 (Nikiforov and Uvarov [28]). (1) Two linearly independent solutions of the differential
equation

Lu(y(x)) = 0(x)y"(x) + 7(x))'(x) + 2 y(x) = 0,

are P, and Q,, where (P,), is the polynomial sequence, orthogonal with respect to the weight
function p defined on the interval (a,b), satisfying Egs. (3) and (4). The constant 1,
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is given by
- —g((n —1)e" +27).
0, is the function of the second kind, defined by

L R
00 = - [ HE g, (36)

(2) The polynomials P,, and the function O, are two linearly independent solutions of the recurrence
equation (1).

Notice that the representation of Q, given above is valid for x ¢ [a,b]. But this representation
is still valid for x € [a,b] by analytic continuation [28] or by taking Cauchy’s principal part in the
integral of (36) [14]. P, and Q, are given for each classical situation in terms of hypergeometric
functions (see Section 5).

3. Factorization of fourth-order differential operators

Given (P,), a classical orthogonal polynomial sequence, we consider in general all transformations
which lead to new families of orthogonal polynomials denoted by (P, ), and are related to the starting
sequence by

Pu(x) = A,(x)P |+ Bu(x)Puik, n =k, (37)

where 4,, and B, are polynomials of degree not depending on n, and &,k € N. We have the following:

Theorem 1. (1) The orthogonal polynomials (P,),>r satisfy a common fourth-order linear differ-
ential equation

Fa(p(x)) = JaCx, )y (x) + J3(x,m)y" (x) + Ja(x,n) y" (x)
+J1(x, )y (x) + Jo(x, n) y(x) = 0, (38)

where the coefficients J; are polynomials in x, with degree not depending on n.
(2) The operator F, can be factored as product of two second-order linear differential operators
S, and T,

[Fn - Sn—l]—n; (39)
where the coefficients in' S, and T, are polynomials of degree not depending on n.

Proof. In the first step, we solve Eq. (37) in terms of P}(qlJr)k_1

]sn(x) B Bn(x)Pn+k(x)

(1) _
Pn+k—l(x) - A (x)

(40)




308 M. Foupouagnigni et al. | Journal of Computational and Applied Mathematics 162 (2004) 299—-326

and substitute the previous relation in Eq. (33) in which #n is replaced by n + k. Then we use (5)
(for P, ) to eliminate the term P,/ (x) and get

Mn+k(pn) = bIP:H-k + bOPn+k: (41)
where b; are rational functions and M, a second-order linear operator given in terms of operator

L4 (see (33)) by

* Y
MHWW=£M%<A>- (42)

!

Next, we take derivative in (41) and use again (5) to eliminate P, ,(x), and get

[MnJrk(Pn)]/ = CIP;/H.k + coPpik. (43)
We reiterate the same process using the previous equation and get
My (Po)]" = di Py + doPris (44)

where ¢; and d; are again rational functions.
The fourth-order differential equation is given in determinantal form from (41), (43) and (44)

by by Mu(Py)
FuP)=|c1 ¢ [Mu(Py)] | =0. (45)
di dy [My(Py)]"
The previous equation can be written as
Fu(Py) = ea[Myy i (P)]" + e1[My ()] + eoM,y i1 (Py) =[S, T,1(Py) = 0, (46)
where the second-order differential operators S, and T, are given by
Si=e?*+eZ+e, T,=M,u. (47)

We conclude the proof by noticing that after cancellation of the denominator in (45), the coefficients
e; are polynomials of degree not depending on n. [

It should be mentioned that the previous method was first developed in [4]. The more general
situation considered in [23] gives the fourth-order differential equation for the orthogonal polynomial
sequence in the form

5 (k+1)
Py=P,+ QPn—(k+])’

where Q is a polynomial of degree £ and (P, ), a semi-classical orthogonal polynomial sequence. The
previous theorem (also valid for semi-classical orthogonal polynomials (see Section 5.5)) therefore
extends the results given in [23]. In addition, we would like to mention that the factorization pointed
out in the previous theorem (except some particular cases listed below) seems to be a new result
and has many applications as will be shown later. This factorization was known for some particular
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cases: the case of the first associated classical orthogonal polynomials (see [29]), which is obviously
a consequence of (33) and the case of co-recursive orthogonal polynomials given explicitly in [31].

In what follows, we will denote by [Fﬁf), [F kpl [F{rk “ [Flk A and [F[k #4] the fourth-order differential
operators (obtained after cancellation of common factors) for the rth associated, the generalized
co-recursive, the generalized co-recursive associated, the generalized co-dilated, and the generalized
co-modified orthogonal polynomials.

3.1. Some consequences

For the rth associated classical orthogonal polynomials (P,(f)),,, we have used the previous theorem
and the representation given in (13) to compute the operators S, and T, using Maple 7 [27].

Proposition 1. The two differential operator factors of the fourth-order differential operator for
the rth associated classical orthogonal polynomials are

S =6P,_\ D* +[(t + )Py — 20P._ 1D + [(1 + Jpsr — Ip_1)Pry — 27P._ ], (48)

T =6P._ 9% — P,y[(1 — 20")P,—y + 20P._ |12
+ (22 = 0P Py 20P, Py (0" = 7 iy AP, (4)

where r € N+ and (P,), is the sequence of classical orthogonal polynomials satisfying (5).
Moreover, we have

SOTY = P2 FY, (50)
where
[F(r) =0’9* + 500’7 + (606" —27'c + 210’ + 2/ 4r0 + 2)p_10 — 24 30’2)
+ 3016 + dpyrd’ — 17 + 16" + 0’62

F [Consr — 2pe 1)+ G + Ap—1)a” + 76" — %], (51)

Remark 1. It should be mentioned that the factorization pointed out in (50) for generic » was already
known for the first associated (r = 1) [29]:

FD=(62* + (t+0)D + 1 4+l 6D + (26" — )T + 6" — 1 4 dpi1). (52)

Eq. (51) gives a new representation of the fourth-order differential equation for the rth associated
classical orthogonal polynomials in terms of &, 7 and 4, and of course can be brought in the
form of known results [36,5,38]. From this representation, we recover easily the simple form of the
fourth-order differential equation for »th associated classical orthogonal polynomials, given in [21]

FO =FY + (1 —»)[(n+r —2)d" +271[262° + 36’7 — (n* — 1)d"],

where F(" is given by (52).
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Corollary 1. The fourth-order differential operator can also be factorized as
SOTY =00 R, (53)

where the operators S\ and TV are obtained from the operators SY” and T\, respectively by
replacing the polynomials P._\ with the function Q,_,, i.e.,

SV =60, 12* + [(x + 0" )0r—1 — 200,17 + [(*' + Jnsr — 2p—1)Or—1 — 2701, (54)

T =602 \7* — 0,-1[(r — 20")0,—1 + 200,19
+ [2(T - O-/)Qrle;,f—l + 20—Q;—1Q;—] + (OJ/ -7 + )vn-&-r + /Irfl )Qf—l] (55)
The proof is obtained by computation utilizing the fact that Q, satisfies (5).

Proposition 2. The operator T, for the generalized co-recursive and co-dilated classical orthogonal
polynomials (P*H)), and (P,‘,k’l‘)n (with k = 1), denoted, respectively, by Tk, T‘,,k’ﬂ‘ are obtained
in the same way:

T = 6P;7* — Pil(t — 20" )Py + 40P} 12
+[4(t — &Py P, + 66P, P}, + (o + 224 + " — )P}, (56)

TR =6P2 P} — Pt Ph20(Pe—1Pi) + (t — 26" )Py 1PL1Z
[t + Ak + 2o+ 0" = HWPE_ PE 4 (= o' )P P}
+26P,_ P, P} +20P}_ PP, + 20P,_|P,P;_ Py]. (57)

The operators S,, for the generalized co-recursive and co-dilated classical orthogonal polynomials
are very large expressions; however, they can be obtained using the previous theorem and Egs. (22)
and (32). The same remark applies for the factors S, and T, of the fourth-order differential equation
satisfied by the generalized co-recursive associated and co-modified classical orthogonal polynomials.

4. Solutions of the fourth-order differential equations

In the following, we solve the fourth-order differential equation satisfied by the five perturbations
listed in Section 2 and represent the new families of orthogonal polynomials in terms of solutions
of second-order differential equations.

Theorem 2. Let (P,), be a classical orthogonal polynomial sequence, r € N~ and (P,(f))n the rth
associated of (P,),. Four linearly independent solutions of the differential equation

FO(y)=0 (58)
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satisfied by (PY),, where F is given by (51), are:

A(x) = pOX)Py—1 (X)Pr(x),
B (x) = p(x)Py—1(x) 0 (x),
C(x) = p(x)Qr—1(X)P,yr(x),
D(x) = p(x)Qr—1(x)Qnir(),

0, denoting the function of second kind associated to (P,), which is defined by (36).
Moreover, P,(f) is related to these solutions by

BY(x) — C(x)
vol'r—1

— p(x)(Prfl(x)Qnﬂ’(x) B Qrfl(x)Pn+r(x))
vol'r—1

P (x) =

, VneN, VreN.y,

where Iy is given by (14) and vyy defined as

o [ oo
a
Proof. In the first step, we solve the differential equation
T () =0.
To do this, we use (35), (42) and (47) to get

TO() =M, (»)

Y
:P3 [l_*
r—1"%n+r <Prl >

= Pi—l pLysr(2),

311

(59)

(60)

(61)

(62)

where y =zpP,_;. Since the two linearly independent solutions of L,.,(z) =0 are P, and Q,.,
(see Lemma 2), the two linearly independent solutions of Tgf)( y) =0 (which are also solutions of

(58) thanks to (50)) are

AL (x) = PPy (X)Pr(x),
Bgzr)(x) = p(X)P,—1(x)Op+r(X).

(63)

Use of (55) utilizing the fact that the weight function p and the function Q, satisfy (3) and (5),

respectively, leads to

TO) = 0 pLusr(2),

(64)
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where y=zpQ,_;. Eq. (64) permits us to conclude that the two independent solutions of TO( y)=0
(which are also solutions of (58) thanks to (53)) are given by

Cr(zr)(x) = p(x)Qr—l(x)Pn+r(x)s
Dgzr)(x) = p(x)Qrfl(x)QrH-r(x)'

The four solutions of (58) obtained are linearly independent since P, and @O, are two linearly
independent solutions of (5) and have different asymptotic behaviour (see Section 5.1).

It should be mentioned that computations with Maple 7 using the fact that P, and Q, satisfy (5),
confirm that the functions 4, BY”, ¢\ and D’ satisfy (58). Also, notice that the structure of the
solutions of Eq. (58) given by (59) was suggested by Hahn [16].

To prove (60) one has to remark that since (P,), and (Q,), satisfy (1), each solution given in
(59) satisfies the recurrence equation

n+l (x - ﬁn+r)X Vn+an—l: nz 1. (65)
Therefore, the function Xn(r) defined by

p(x)(Prfl(x)Qn+r(x) - Q,-,I(X)P,H,,-(X))
yOFrfl ’

X000 =

=1,

fulfills (65). It remains to prove that the initial values are XO(’) = I,Xfr) =x — fB,.. We have
X(r—H) _ p(x)(Pr(x)Qr+l(x) - Qr(x)PrH(x))
) —

yorr
_ PP ()(x = Br)Or(x) = prQr1 ()] = Or(0)[(x — Br)Pr(x) = 7-Pr1(X)])
“/oﬂ
— p(x)(Pr—l(x)Qr(x) B Qr—l(x)Pr(x))
yOFr—l
=X

We deduce that
x=x", r=1

A computation using (36) and (61) gives
p(x)(PO(x)Ql(x) — Qo(x)P1(x))

X =

S—X S—X

(s = Po)p(s)ds  (x—Po) [ p(s)ds
Vo / /

Therefore,

x"=1, r=1
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Use of (1) for P,,; and O, and the previous equation gives
X7 =(x = p)xy” =x — B,

We therefore conclude that
XD =P", r=1,n=0,

since (Pf,r))n is the unique solution of recurrence equation (65) with the initial conditions
PY=1, PV=x-p. O

Remark 2. The results of the previous theorem are still valid if we replace P, and O, in Egs. (59)
and (60) by two other linearly independent solutions of Eqs. (1) and (5). In fact, the structure of
the solutions given in (59) remains the same. The same remark applies for (60) except that the
denominator in (60) may be a different constant (with respect to x) factor.

Theorem 3. Let (P,), be a classical orthogonal polynomial sequence, k € N and (P%"), the gen-
eralized co-recursive of (P,),. Four linearly independent solutions of the differential equation

FErl(y)y=0, n=k+1 (66)
satisfied by (P*H),, are (with n =k + 1)

AFH(x) = p(x)PF(x)P(x),

BIHI(x) = p(x)PF(x)Qu(x),

CIH(x) = [Tk + 1p(x)Pe(x) Qi (¥)1Po(x),

DIH(x) =[0Ik + up(x)Pr(x)Qi(x)]0u(x),

where Q, is the function of second kind associated to (P,), defined by (36).
Moreover, P s related to these solutions by

plisl _ Yol 'k + p(x)P(x) Ok (x)1Pu(x) — tp(x)PF(x)0n(x)
" Yol'x

(67)

. k=0, n=k+1. (68)

Proof. By analogy with the proof of Theorem 2, we show using (20), (42) and (47) that
T(y) = pPiLy(2),

where TIF# is given by (56) and y = zpP?. Therefore, A% and B given by
AFx) = p)P{)P(x),  BIE() = p()PE(0)0u(x),

are two linearly independent solutions of

T =0,
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Next, we use (19) and (60) and get

Clln — yBlkrl

PlEk"u] —
Yol 'k

, n=k+1 (69)

Since the generalized co-dilated polynomials P%#! and the function B¥# given by (67), are both
solutions of the linear homogeneous differential equation

Fer(y») =0, nz=k+1,

it follows from (69) that the function CI:#1 given by (67), is also solution of the previous equation.
Computations show that the function DI*#l given by (67) is also solution of the previous differential
equation. One can also prove that D% is solution of the previous differential equation by following
the proof given in [13] for the discrete case.

To complete the proof, we notice that A-#, Blku - Clkil and CIEH are four linearly independent
solutions of F%#(y) =0 since P, and Q, are two linearly independent solutions of (5) enjoying
different asymptotic properties. [

In the following, we give the equivalent of the previous theorem for the co-dilated classical

orthogonal polynomials. The proof is similar to the one of the previous theorem by using relations
(27), (28), (42), (47), and (60).

Theorem 4. Let (P,), be a classical orthogonal polynomial sequence, k € N and (P,',k"ll),, the gen-
eralized co-dilated of (P,),. Four linearly independent solutions of the differential equation

Fel(py=0, n=k+1, (70)
satisfied by (P,‘,k’i‘)n are (with n =z k+1)

AR () = ()P 1 (X)L (x)P(x),
BIl(x) = p(x) Py 1 (x)Pi(x)0n(),

. (71)
ClA@) = [oTk + (2 = Dyep(0)P—1 () 0k (x)IPa(x),
DI (x) = [pol i + (2 = 1)pep(x)Pi1 ()0 (x)]Qn(x0).
The co-dilated P,'lk’)~| is related to these solutions by
pleil _ [yol 'k + (A — D)y p(x)Py—1(x) Ok (x)1Py(x) — (4 — 1)y p(x)Pr—1(x)Pr(x)O,(x)
" volk ’
n=k+1. (72)

We furthermore give the solutions for the generalized co-recursive associated and the generalized
co-modified classical orthogonal polynomials. The proofs are similar to the previous ones.
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Theorem 5. Let (P,), be a classical orthogonal polynomial sequence, k € N, r € N.( and (P,?’k’“ } I

the generalized co-recursive associated of (P,),. Four linearly independent solutions of the differ-
ential equation

Firkrd(p)y =0, n=k+1, (73)
satisfied by (P,,{"’k’”} ). are (with n =k + 1)

Air’k’#}(x) = (VOFk+rPrfl(x) - :up(x)Pk+r(x)[Pr71(x)Qk+r(x) - Qrfl(x)Pk+r(x)])p(x)sPn+r(x)a

B (x) = (9ol kg r Pr—1 () — () Pisr ()[Pr—1 () Qpsr (%) — Op—1 ()P (X)) p(6) Dt (),

er’k’#}(x) = (’})OFkJerr—l(x) - :up(x)QkJrr(x)[Pr—l(X)QkJrr(x) - Qr—l(x)Pk+r(x)] )p(x)Pn+r(x):

Dir,k’ﬂ}(x) = (yOFk—O—rQrfl(x) - :up(x)Qk+r(x)[Prfl(x)Qk+r(x) - Qrfl(x)Pk+r(x)])p(x)Qn+r(x)'

Moreover, PY"** s related to these solutions by

ey _ [ Pr=1(0)  up() Py (0)[Pr—1 (0) Ok (%) — Or—1 (X)) P ()]
Pn M= < 'VOFrfl V%Fr—lrkJrr p(x)Qn+r(x)
Or—1(x)  pup(xX)Oksr(0)[Pr—1(x) Okr(x) — Or—1(X)Prsr(x)]
- < ”/Orrfl - V%Fr—leJrr ) p(x)Pn+r(x),
r=1, n=k+1. (74)

Theorem 6. Let (P,), be a classical orthogonal polynomial sequence, k € N and (P*r), the
generalized co-modified of (P,),. Four linearly independent solutions of the differential equation

Fersd(py =0, n>=k+1, (75)
satisfied by (P*rA), are (with n >k + 1)

AVRA) = [(4 = DpePro1 (0)Pe(x) + 1P p(x)Pa(x),

BE#A(x) = [(4 = D)pePi—1(x)Pi(x) + P (x)]p(x)Qu(x),

CUHA(x) = [Tk + (4 — 1)pep()Pi1 (x)Ok(x) + pp(x)Py(x) Ok (x)1Py(x),

DY) = [yl k + (2 — Dpep()Pr—1(x)Ok(x) + 1p(x)Pi(x) 04 ()10 (x).

(76)

The co-dilated P**7 is related to these solutions by

plenl (1 " (4 — 1)VkP(X)Pk—1(X)$1;SX) + MP(X)Pk(X)Qk(x)> Po(x)
oLk

(2 = D)pip(x)Pi—1(X)Pi(x) 4 up(x)P(x)
Yol'x

0.(x), n=k+1. (77)
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5. Applications
5.1. Asymptotic formulas for the four solutions

We use results given in Theorem 2 and the asymptotic formula for the function of the second
kind (see [28, p. 98])

. H?: Vi 1
0n0) = = (1 * O(x))

to get the following formulas for the solutions given in relation (59):

Theorem 7.

Aglh)(x) — xn+2r—1p(x) < +0 (i))
n+r 1

e =L (1+0(1)).

) = —x Hyl (1+0(1)).

r—1 n+r
i i i 1
Dﬁl}’)(x) — HI:O Y Hl 0 Vi (1 + O<x>) .

,O(X )xn+2r+l

(78)

5.2. Hypergeometric representation of the solutions

We give for each classical situation a hypergeometric representation of the polynomials P,, the
function of the second kind Q,, four linearly independent solutions of the differential equation for
P{"” and relations between these solutions and the associated polynomials. In what follows, (a); and
oIy denote the Pochhammer symbol and the generalized hypergeometric function, respectively, and
are defined by

(@=ala+1)---(a+k—1), keN, (a) =1,

JF, a1,a2,...,4 Z(al)k(az)k"'(ap)k xj)
by, by,. .,b (b)k(b2)g -+ (by )i k!
where p and g belong to N, and x, a, a; and b; are complex numbers. The ,F,(x) is well defined

if no b;, 1 <i<gq is a negative integer or zero and it constitutes a convergent series for all x if
p<gq,orif p=qg+1and x| <.
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5.2.1. Monic Jacobi polynomials p,(f"ﬁ)

We denote by pff‘ﬂ ) the monic Jacobi polynomials and qff‘ﬂ ) the corresponding function of the
second kind. The data are [28, p. 286]:

ox)=1—x% 1x)=—(a+p+2x+p—0a, a>—1, f>—1,
px)=(1—-x)y(1+x)f, I1=[-11],

Ah=nn+a+p+1),

'gz_az
B, =
"T@ntotB2ntotfr2)
_ 4n(n+ oa)(n+ p)(n + o+ f)
N RV e ey )
wp 2+ 1), —mn+oa+p+1|1
T et ) w1 7 |

@p) _ (_1)n22n+a+ﬂ+ln!F(n 4o+ DI(n+4+1)
T =x) A x)(na+ B+ DR+ a+ B+ 2)

n+ln+a+1| 2
X2F1 1—x .

2n4o+f+2
It should be mentioned that for n=0 and o + f+ 1 =0, qg“’ is constant with respect to x.
In this case, the nonconstant solution of Eq. (5) is given in [34, p. 75].
From Theorem 2 and the previous data, four linearly independent solutions of the fourth-order
differential equation

—1—0a)

(1 —x*)2y""(x) — 10x(1 — x*)y""(x) + (=8 + 2xp* — 2x0* — o + 2n* — 2nox® — 2nfx*
—2x%af — 4nrx? — drox® — 4rPx® — 2nx® — x*o® — 4r’x® — 2n*x?
— X2 4 2n + 4Pr + dar + 24x% + 2no + 4nr + 2nf + 20 — B+ 4r)y" (x)
+ (—12xr% — 3xp% — 12xnr — 6xn* — 6xn — 3x0° — 12xrf — 6x08
— 6xnf — 6xno — 12xro + 12x — 302 + 36%)y'(x)

+n2+n)n+1+a+p+2r)n—1+a++2r)y(x)=0 (79)
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satisfied by the rth associated Jacobi orthogonal polynomials [36] (see also [5]) are:
1—x
2
1 —x
2 9

1 —x n+r+lLn+r+oa+1
F
2 )P 2t 2r+atpt2

1_r7r+a+ﬂ
a4+ 1

AV =1 = x)*(1 +x)F (

—n—rn+r+o+f+1
><2F1 4
o

l—rr+oa+f
o+ 1

B;?/ = (1 — x)_"_r_lel (

rr+o

2r+a+f

2
1—x)°
2 —n—rn+r+o+pf+1
2F

1 —x
I —x o+ 1 2 )’
2
1 —x

2
1_x) . (80)

The use of (60), the previous data and the fact that

CV) = (1 —x)"F <

PR ) B (U
" (1 +x)F 2ot f

. n+r+lLn+r+a+1
X
U 42 dat g2

r—1 22r+o<+/f71(2l" + o+ ﬁ —DI'(HI(r+ o) (r+ ﬁ)F(V 4o ﬁ)
g%: I'Qr+ o+ f)>? , reNs,

allow us to represent the associated Jacobi polynomials P (r € N) in terms of the hypergeometric
functions (see also [36]).

(1 —x)*(1 + )PP 0)g D) — ¢ ) pP(x))

PO = i ,
i=0 /1

I"GN>0.

Remark 3. Note that A7), BY), CV) and D\) are multiples of the functions (59) in order to be as
simple as possible. This applies also for the Laguerre and Hermite case below.
Since ,F constitutes a convergent series for |x| < 1, functional relation (see [28, p. 270])

(a,ﬁ 1)
2F1 X -

Y X

1) (81)
X

_IOEB =) [(PIATT
T I(AI(y — ) T\Uta—p

rorG=p) o (B
rara—pnY 2F‘< .
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can be used in order to get for the functions g%/, 4\, BY), CV) and D!} given above a repre-

sentation with convergent series expansion when |x| > 1.

5.2.2. Monic Laguerre polynomials I

We denote by /% the monic Laguerre polynomials and ¢ the corresponding function of the second
kind. The data are [28, p. 286]:

ox)=x, tx)=a+1—-x, a>-—1,
p(x)=x%"", I=[0,00),
Ah=n, p,=2n+1+0a 7y,=nn+a),

@x)=(—1)"n'e™I(n+ o+ 1)eGn+ o+ 1,0+ 1,—x),

Lx)=((=1)"(a+1), 1F1< -
o+ 1

where G(a,b,x) is the confluent hypergeometric function of the second kind (see [28, p. 272]) and
related to the confluent hypergeometric function |F; by
x) . (82)

I - o I'(y—1) ,_. a—y+1

(«—7y+1) Y
In case of convergence, the function G(o,y,x) can also be represented by the hypergeometric function
2Fy (see [1, Chapter 13]) as
1
— ) . (83)
X

From Theorem 2 and the previous data, four linearly independent solutions of the differential equation
[5] (see also [2])

o1 4+o—y
G(a,y,x) =x % F, (

XY™ (x) 4 5xy"(x) 4+ (4 + 2xn + 4xr — x> + 2x00 — o))" (x)
+(6r — 3x + 3+ 3n)y'(x) +n(2 +n)y(x) =0 (84)

satisfied by the rth associated Laguerre orthogonal polynomials are:

—n—r
X ]Fl X B
o+ 1

x) Gn+r+o+ Lo+ 1,—x),

") I —r
An,L = x“e_xlFl

o+ 1

1—r

BS,% :x“IFl
o+ 1
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—n—r
Cfl}l), :xdG(V + o, o —+ 1,—x)1F1 x|,
’ a+1
D) =x""G(r + oo+ 1, —x)G(n +r + o+ 1,a+ 1, —x). (85)

The use of (60), the previous data and the fact that
r—1
[T =rere+aw,
i=0

allow us to represent the associated Laguerre polynomials P (r€Nsg) in terms of the hypergeo-
metric functions

(=)™ (n+r+ o+ 1)x*
I'(e+1)

I'(n+r+1) 1—r
X( o <<x+1

—n—r

P(x) =

x> Gn+r+o+ Lo+ 1,—x)

x)) . re N>o.
5.2.3. Monic Hermite polynomials h,
We denote by 4, the monic Hermite polynomials and by ¢, the corresponding function of the
second kind. The data are [28, p. 286]:

— G(V+OC,OC+ 1,—x)1F1 (

o+ 1

ox)=1, 1(x)=—-2x,

p(x):eixza I:(_OO9+OO)a

n
jL11:2, =0, n=— 5>
n, p Tn =3
: nl—n |
n T K8 A~
hn(x) =G (_2: 2ax2> :xnzFO 2 2 - ; >

qn(x) — \/Enlz—nex2+in(n—l )/2h7n71(i)6)

:\/ﬁnEZ*”exz““(”*l)/zG <n%2— 1,%, —x2> )

From Theorem 2 and the previous data, the four linearly independent solutions of the differential
equation [5] (see also [2])

YIO0) + (dn + 8 — 40%))"(x) — 12x)/(x) + 4n(2 + ) p(x) = 0 (86)
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satisfied by the rth associated Hermite orthogonal polynomials are:

. 1—r 1 n+r 1
A =e™G PG ———. 5.7
n,H < 2 929x 2 azax 5
. 1—7r 1 n+r+11
n,H < P 927x ) 2, X
o _ (1 ontrl o,
Cn,H_G<2’2’ x>G( 2 723x 5

1 n+r+11
D(’”) _ x? f -2 rprrYe 22 )
n,H € G<2725 X G 2 ’2, X

By using (60), the previous data and the fact that

r—1
[17:i=vzre'—,
i=0

we represent the associated Hermite orthogonal polynomials P (reNsyp) as

PO (x) = )2 (2 n—1 1n(n+l)/2F(n+r)G (1 —r 1,x2> G <”+”+1 1,—x2>

I'(r) 2 72 2 72
rl o, n+r 1 ,
— - N~ o.
G(zz X>G< 2 32ax>>7 re >0

5.3. Extension of results to real order of association
Let v be a real number with v > 0 and (P(v))n the family of polynomials defined by
PUL() = (6= Busn) P = un P (), n> 1
with the initial conditions
PO =1, P =x—p

where f,., and y,., are the coefficients f, and 7y, of Eq. (1) with n replaced by n + v.

321

(87)

(88)

(89)

We assume that the starting family (P,), defined in (1) is classical. The coefficients f, and 7y,
are therefore rational functions in the variable n [18,19,28] and the coefficients f,,, and y,,, are
well defined. When v,., # 0, Vn > 1, the family (Pf,r))n, thanks to Favard’s theorem [12,8], is
orthogonal and represents the associated of the family (P,), with real order of association. The
notion of associated orthogonal polynomials with real order of association has been investigated by

several authors (see for example [2,6,20,36]).
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Theorem 8. Let (P,), be a family of classical orthogonal polynomial, v =0 a real number and
(P, the v-associated of (Py)n. We have:
(1) (P, satisfies

F(y) =0, (90)

where FS is the operator given in (51) with r replaced by v.
(2) The differential operator ¥ factorizes as

SYT = UL R,
§MTW = 3 FW), (o1)

where the operators SY, TV, SO, T are those given in Eqs. (48)~(55) with r replaced by
v, P, and Q, are replaced by U, and V,, respectively. U, and V, are the two linearly independent
solutions of the differential equation (see [28])

a(x)y"(x) + ©(x)y'(x) + A y(x) =0 (92)
with U, =P,, V,=Q, for v=reN and
= —%((v —1)d" +27). (93)

Four linearly independent solutions of the differential equation (90) are given by
AP@) = p) U1 (1) Uy (),
BY(x) = p() U1 () s(x),
C(x) = p)V 1 (X) Ui (),
D(x) = p()Vyi (1) V().
where p(x) is the weight function given by (3).

(94)

Proof. (1) Let n be a fixed integer number and define the function @ by
P . R+ — R,
v — F(PY(x)),

where R, is the set of positive real numbers. Using relation (88) for fixed x, @(v) can be written
as rational function in v. In fact, for the classical orthogonal polynomials, the three-term recurrence
relation coefficients 5, and 7, are rational functions in the variable n. Using Eq. (58) we get

o(r) =FI(PI(x))=0, VreN. (95)

We then conclude that &(v) is a rational function with an infinite number of zeros. Therefore,
d(v)=0, Ve R,, and (P"), satisfies (90).

(2) Eq. (91) are proved by a straightforward computation using that U, and U, satisfy (92).

(3) The functions given in (94) are represented as products of functions satisfying homogeneous
differential equation of order 1 (for p) and 2 (for U and V). These functions therefore satisfy



M. Foupouagnigni et al. | Journal of Computational and Applied Mathematics 162 (2004) 299326 323

a differential equation of order 4(=1 x 2 x 2) which is identical to (90). Notice that by linear algebra
one can deduce the differential equation of the product (94), given the differential equations of the
factors, since they have polynomial coefficients. This can be done, e.g., by the Maple command
‘diffeqxdiffeq’ [33] of the gfun package.

We conclude the proof by noticing that the results of the previous theorem can be used to extend
Theorem 5 to the generalized co-recursive associated of classical orthogonal polynomials with real
order of association as was done for the classical discrete case in [13]. O

5.4. Solutions of some second-order differential equations

Proposition 3. The two linearly independent solutions of the differential equation
sy =0,
where the operator S (see (48)) is given by
S = 6P, D% + [(t+ ¢ )Pr_1 —20P._1Z + [(*' + dnir — Zr_1)Pr_y — 2TP._|]
are:
E(x) = 6(x)p(x)(Qr—1(¥)P_ 1 (x) = Pro1(0)Q) 1 () (Prsr (¥)P_ 1 (x) = Proi ()P (X)),
F7(6) = 0(0)p()(Qr1 ()P (x) = Proa() Q)1 ()N Qs (¥)P} 1 (x) = Proy ()0, (X)),

Proposition 4. The two linearly independent solutions of the differential equation
sy =0,
where the operator SU) (see (94)) is given by
SV =6U,1Z2* + [(x + 0" )Uy—1 — 26U, |12 + [(*" + Ay — dv—1)Uy—1 — 20U
are:
EP(x) = a(x)p) (V1)U (x) = Uy 1 )V, ()N U (U (¥) = Uy 1 () Uy (3)),

F(x) = a(x)p(x) (Vi1 () Uy () = Uyt )V 1 ) Vi) Uy () = Uyt (0)V 1, (3)).
Here, U, and V, are solutions of (92).
Proof. Since the functions C\” and D!’ are solutions of equation F{’(y)=0 (see Theorem 2), we
use the factorization given by (50) and get

SOTP) =P F () =0
for y e {C”,D{’}. We therefore conclude that the functions E\ and F\" defined by

EM — ‘ﬂ'(r)(c(r)), FU) — ‘ﬂ'(r)(D(V))’

satisfy SS,V)( y) = 0. Computations using the fact that P, and Q, satisfy (5) lead to the expressions
given in Proposition 3. The proof of Proposition 4 is similar to the one of Proposition 3 by using
Theorem 7. O
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Remark 4. (1) The previous propositions give solutions to families of second-order differential equa-
tions. In particular, Proposition 3 solves a family of second-order differential equations with poly-
nomial coefficients.

(2) For fixed integer », and for different classical situations, we have tried without success to
solve the differential equation S,([)( v) =0 using Maple 7 or Mathematica 4.1 [37].

(3) Mark van Hoeij [35] was able to solve differential equation Sﬁ,r)(y) = 0 for fixed integers
r using an algorithm he is currently developing and which extends the capabilities of algorithms
aimed at solving second-order linear homogenecous differential equation with polynomial
coeflicients.

5.5. Extension of results to semi-classical cases

The proof of Theorem 1, which is the starting point of this paper, uses merely the second-order
differential equation (5) and relation (33). Now, we suppose that the family (P,), is semi-classical
[3,17,25,26]. This implies that (P,), is orthogonal satisfying a second-order differential equation of
the form

Mn(1(x)) = (%, m)y" (x) + L (x, 1)y (x) + Io(x, ) y(x) = 0, (96)

where the coefficients /;(x,n) are polynomials in x of degree not depending on n. For semi-classical
orthogonal polynomials an equation of type (33) is known and can be stated as [4,5]

V(P2 (x)) = a1 (x)Ph(x) + ao(x)Pa(x), (97)

where a; are polynomials and M, a second-order linear differential operator with polynomial coeffi-
cients. Use of the two previous equations leads to the following extension.

Theorem 9. Given (P,), a sequence of semi-classical orthogonal polynomials satisfying (96) and
(P, a family of orthogonal polynomials obtained by modifying (P,), and satisfying

Pou(x) = Au(x)P) |+ Bu(x)Pu, n =K, (98)

where 4, and B, are polynomials of degree not depending on n, and k,k' € N, we have the following:
(1) The orthogonal polynomials (P,),> satisfy a common fourth-order linear differential equa-
tion
Fa(p(x)) = Ka(x,m)y™" (x) + K3(x,n) y" (x) + Ka(x,m) " (x)
+Ki(x,n)y'(x) + Ko(x,m) y(x) =0, (99)

where the coefficients K; are polynomials in x, with degree not depending on n.
(2) The operator F, can be factored as product of two second-order linear differential operators

X,F,=S,T,, (100)

where X, and the coefficients of S, and T, are polynomials of degree not depending on n.
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The proof is similar to the one of Theorem 1 but with (96) and (97) playing the role of (5) and
(33), respectively.

The previous theorem covers the modifications such as the rth associated, the general co-recursive,
the general co-dilated, the general co-recursive associated and the general co-modified semi-classical
orthogonal polynomials.

When the orthogonal polynomial sequence (P,), is semi-classical, in general it is difficult to
represent the coefficients of the differential operators M,,, N?ﬂ,,, F,, S, and T, in terms of the
polynomials ¢ and , the coefficients of the functional equation (see [26, p. 37]) satisfied by the
regular functional with respect to which (P, ), is orthogonal.

However, for particular cases (for example if the degrees of polynomials ¢ and s are small), it is
possible after huge computations to give the coefficients of the differential operators M, Mn, F.. S,
and T, explicitly, and therefore look for functions annihilating these differential operators.
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