
Making Change with DERIVE: Different Approaches

by Adi Ben-Israel and Wolfram Koepf

RUTCOR, Rutgers University, New Brunswick, NJ 08903-5062, U.S.A., and

Konrad-Zuse-Zentrum, Heilbronner Str. 10, 10711 Berlin, Germany

1. MAKING CHANGE

We solve here the problem of making change, using a minimal number of coins. This problem

is a special case of the so-called knapsack problem, see [2], [1].

Consider a currency with N distinct coins of weights (i.e. face values)

w1 > w2 > · · · > wN = 1 .

For example, in the USA the coins are

w1 = 50 cents (half dollar), w2 = 25 cents (quarter), w3 = 10 cents (dime),
w4 = 5 cents (nickel), w5 = 1 cent (penny).

If paper currency is included, then w1 = 106 cents (ten thousand dollars), w2 = 105 cents,

etc.

Problem: Given a cash amount of y cents, represent it using the minimal number of coins.

Formulation: Let IN0 denote the set of nonnegative integers. The minimal number of coins

required to represent y is

V (y) := min

N∑
i=1

xi s.t.

N∑
i=1

wi xi = y (xi ∈ IN0 , (i = 1, . . . , N)) .

We solve the problem initially for the USA currency: The given formulation, using USA

coins, is

V (y) := min x1 + x2 + x3 + x4 + x5 (1a)

s.t. 50 x1 + 25 x2 + 10 x3 + 5 x4 + x5 = y (1b)

x1 , x2 , x3 , x4 , x5 ∈ IN0 . (1c)

Let the decision xk be made in stage k, k = 1, 2, 3, 4, 5. In particular:

Stage 1: Decide how many half–dollars to use. The set of allowable decisions is

X1(y) = {x ∈ IN0 : 50 x ≤ y} .

The optimal value function V1(y) is the same as V (y) of (1a).

Stage 2: The set of allowable decisions is

X2(y) = {x ∈ IN0 : 25 x ≤ y} .

The optimal value function is

V2(y) := min x2 + x3 + x4 + x5

s.t. 25 x2 + 10 x3 + 5 x4 + x5 = y

x2 , x3 , x4 , x5 ∈ IN0 .

Stage 5: Decide on x5 (the number of penny coins), with allowable decisions

X5(y) = {x ∈ IN0 : x ≤ y} .

1



The optimal value function is V5(y) = y.

We can compute the optimal value functions recursively, for all relevant y ∈ IN0.

V5(y) = y

V4(y) = min {x+ V5(y − 5x) : 5 x ≤ y , x ∈ IN0}
V3(y) = min {x+ V4(y − 10x) : 10 x ≤ y , x ∈ IN0}
V2(y) = min {x+ V3(y − 25x) : 25 x ≤ y , x ∈ IN0}
V1(y) = min {x+ V2(y − 50x) : 50 x ≤ y , x ∈ IN0}

No computation is required in stage 5, since V5(y) = y for all y ∈ IN0 . The optimal value

function V1 has to be computed only for the given initial cash, say y = y1, however the

intermediate o.v. functions (V4, V3 and V2) have to be computed for all values of y ≤ y1.

An alternative formulation: For symbolic computation we prefer recursion with a single

function, rather than the 5 different functions Vk, in the above computation. It is indeed

possible to use here the function V (y) of (1a), and do recursion on the values of the state

variable y. This recursion is

V (y) = 1 +min {V (y − 1) , V (y − 5) , V (y − 10) , V (y − 25) , V (y − 50)} (4a)

V (0) = 0 (the boundary condition) (4b)

V (y) = ∞ if y < 0 , (in order to exclude negative arguments of V in (4a)). (4c)

2. FIRST DERIVE SOLUTION

We solve this problem with Derive Version 3.0. First introduce the USA coins

coins:=[1,5,10,25,50]

The following Derive program is a direct translation of (4a)–(4c).

V(n):=IF(n=0,0,

1+MIN(VECTOR(IF(n>=ELEMENT(coins,k_),V(n-ELEMENT(coins,k_)),inf),

k_,1,DIMENSION(coins))))

For example, V(7) simplifies to 3, one nickel and two pennies.

This function may not work in older versions of Derive. In Derive Version 2.60, we get

“?” when simplifying MIN(1,inf). This bug was corrected in Version 3.0. If you use an

older version, replace ∞ in V(n) by a sufficiently large number, say 106.

A table with the first 10 values of n and V(n) is (recall that x‘ denotes the transpose of x)

VECTOR([n,V(n)],n, 1, 10)‘ giving

[
1 2 3 4 5 6 7 8 9 10
1 2 3 4 1 2 3 4 5 1

]
.

3. SECOND DERIVE SOLUTION

However, the above program is slow, because the values of V(n) are computed from scratch

each time they are needed, see also § 10.6 of the DERIVE manual. To avoid this we propose

another program which records the previous values through the APPEND command

V1(n) := ITERATE(APPEND(g_,[[DIMENSION(g_),1+MIN(VECTOR(

IF(DIMENSION(g_)-ELEMENT(coins,k_)<0,inf,

IF(DIMENSION(g_)-ELEMENT(coins,k_)=0,0,

ELEMENT(g_,DIMENSION(g_)-ELEMENT(coins,k_)+1,2))),

k_,1,DIMENSION(coins)))]]),g_,[[0,0]],n)

2



This generates a list of [k,V(k)] for k = 0, 1, . . . , n. For example

V1(10)‘ simplifies to

[
0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 1 2 3 4 5 1

]
.

The sought value V(n) is the (n+1,2)th of V1(n). It is computed by

V2(n) := ELEMENT(V1(n),n+1,2)

For example, V2(59) gives 6.

4. THIRD DERIVE SOLUTION

As shown in [2], the solution of the current problem agrees with the greedy solution,

using the maximal number of the highest–valued coin before trying lower–valued coins. The

greedy solution is computed by

x1 =
⌊ y

50

⌋

x2 =

⌊
y − 50 x1

25

⌋

x3 =

⌊
y − 50 x1 − 25 x2

10

⌋

x4 =

⌊
y − 50 x1 − 25 x2 − 10 x3

5

⌋

x5 = y − 50 x1 − 25 x2 − 10 x3 − 5 x4

where �α� denotes the largest integer ≤ α. Programming this solution (recursively) in

Derive we get

GREEDY(n) := IF(n=0,0,1+GREEDY(MIN(VECTOR(

IF(n>=ELEMENT(coins,k_),n-ELEMENT(coins,k_),inf),

k_,1,DIMENSION(coins)))))

For example, GREEDY(59) gives 6, in agreement with V2(59).

However, the optimality of the greedy solution is a property of the currency, not of the

problem. To see this consider the currency obtained by adding a 20 cents coin to the USA

coinage (see [2, Example 2]):

coins := [1,5,10,20,25,50]

then V2(40) gives 2 but GREEDY(40) is 3.

Currencies for which the greedy solution is optimal are called orderly, see [3]. Necessary

and sufficient conditions for orderliness are given in [2] and [1].

Another example of orderly currency is the coinage used in Germany

coins:=[1,2,5,10,50]

Here V1(10)‘ gives

[
0 1 2 3 4 5 6 7 8 9 10
0 1 1 2 2 1 2 2 3 3 1

]
.

5. FINAL REMARKS

It is instructive to compare the running times of the various algorithms mentioned above. We

suggest that you compare the running times for the calculations VECTOR([n,V(n)],n,1,20),

V1(20), V1(100), and VECTOR([n,GREEDY(n)],n,1,100) on your computer. Then you

3



realize that additional information, such as that the greedy solution is applicable, can shorten

the computation significantly. On slow machines this could be the difference between being

able to solve a problem or not. You may try to program the greedy solution iteratively which

(for large n) is much faster than our recursive approach. Interested readers may obtain such

a solution from the authors.

Finally we consider the

Fibonacci currency: The Government of Fibonia decided to base its currency on the

Fibonacci numbers {Fn}, defined by

F1 = F2 = 1 , Fn := Fn−1 + Fn−2 , n ≥ 3 .

These numbers can be computed recursively as follows (see § 10.6 in the DERIVE manual)

FIB_AUX(n,next,current) := IF(n=0,current,FIB_AUX(n-1,next+current,next))

FIB(n) := FIB_AUX(n,1,0)

The first 15 Fibonacci numbers are VECTOR(FIB(n),n,1,15) which simplifies to

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 6105] .

Every positive integer y can be represented as a sum of Fibonacci numbers

y =
k∑

i=1

Fi xi , where k is determined by Fk ≤ y < Fk+1 (5)

and all xi = 0 or 1. Moreover, the minimal number of Fibonacci numbers representing y

is given by the greedy solution, computed recursively by,

V (y) = 1 + V (y − Fk) , (6)

see e.g. [4, p. 6]. The minimal representation (5) cannot have xn−1 = xn = 1 for any n,

since then Fn+1 would be used instead of Fn−1 and Fn.

For this reason the Fibonian currency uses every second Fibonacci number, i.e. the Fi-

bonacci numbers with even indices {F2 , F4 , F6 , F8 , F10 , . . . }. The first 5 values are

coins := VECTOR(FIB(2*n),n,1,5) giving [1, 3, 8, 21, 55]. The Fibonacci currency

is orderly, see [2], so we can use GREEDY(n) instead of the slower V2(n).

As an exercise, we ask the reader to compute VECTOR([n,GREEDY(n)],n,1,99) for the US,

German and Fibonacci currencies. Then plot the three graphs, and compare. Conclude

that the Fibonacci currency is quite economical, in the sense that fewer coins are required,

on the average, than in the other two currencies (why?).

Note: To plot set Plot Options State to Connected.

References

[1] T.C. Hu and M.L. Lenard, “Optimality of a heuristic solution for a class of knapsack

problems”, Operations Res. 24(1976), 193–196

[2] M.L. Magazine, G.L. Nemhauser and L.E. Trotter, Jr., “When the greedy solution

solves a class of knapsack problems”, Operations Res. 23(1975), 207–217

[3] S.B. Maurer, “Disorderly currencies”, Amer. Math. Monthly 101(1994), p. 419

[4] M.R. Schroeder, Number Theory in Science and Communication, Second Edition,

Springer–Verlag, 1986

4


