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ABSTRACT

In this lecture we show how to calculate formal power series expansions
of analytic functions, and to manipulate general formal power series using
MACSYMA.

1. MaAcsyMA’s Built-in Capabilities

For the purpose to calculate formal power series expansions of analytic functions,
MACSYMA® provides the command powerseries(expr,z,7¢) that calculates the power
series expansion for expr with respect to the variable z at the point of development
xo. Examples are

(C1) powerseries(exp(x),x,0);

INF
=== I1
\ X
(D1) > -
/ I1!
I1 =0
(C2) powerseries(sin(x),x,0);
INF
==== I2 212 +1
\ (-1 X
(D2) > s
/ (2 12 + 1)!
12 =0
(C3) powerseries(1/(1-x) alpha,x,0);
INF
\ 13 13
(D3) > BINOMIAL(- ALPHA, I3) (- 1) X
/
I3 =0



(C4) powerseries(sin(x+y),x,0);

INF INF
==== I4 2 14 ==== I4 214 + 1
\ -1 X \ -1 X
(D4) (>  mmmmmmmmmee- ) SIN(Y) + (>  =m—mmmmmmmmemeee ) COS(Y)
/ (2 14)! / (2 T4 + 1)
I4 =0 I4 =0

While the last result is not exactly what we requested, i.e. the power series expansion
of a sum (namely the simplified expression sin(z +y) = cos x sin y + sin  cos y) rather
than the sum of two power series expansions, and cannot be brought into a single
power series object by MACSYMA’s simplifiers, this is apparently a reasonable result
as it represents the function by its odd and even parts (with respect to x). The
situation is much more inappropriate in the example

(C5) powerseries(exp(x)*sin(x),x,0);

INF INF
==== I5 ==== 15 215 + 1
\ X \ -1 X

(D5) (> -==) > mmmmmmmm—m——————-
/ 5! / (2 15 + 1!
I5 =0 I5 =0

where the product of two power series expansions is returned rather than the power
series expansion of the product as requested. The MACSYMA implementation of
powerseries(f,z,rq) is not based on an algorithm but uses a chain of certain heuristic
steps which gives the result in some cases. MACSYMA’s procedure is at follows:

1. MACSYMA tries to expand f in the variable z — xy, e.g. using addition theorems,
fl
2. logarithms In f are handled by the rule In f = / 7,

3. for rational functions a (real nonalgebraic) partial fraction decomposition is
used,

4. the power series expansions of the standard elementary functions with point of
development xy = 0 are implemented.

This procedure has the following disadvantages: It fails

1. to find the result for all rational functions, e.g. for f := because of the

use of a real partial fraction decomposition,
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2.

. to find the result for f :=

m, e.g., as the partial fraction implementation
fails to find nonrational roots of the denominator,

. to solve powerseries (exp(x)*exp(y) ,x,0) as the internal simplifier changes

the input into e**¥ before processing,

. to get powerseries(atan(x+a),x,0) or powerseries(atan(x),x,b) because

of the lack of an addition formula for the inverse tangent function,

. to solve the problem for products correctly. Usually as above a product of power

series is returned rather than the power series of the product as requested.

Algorithmic Approach

In four papers we developed an algorithmic approach for the given and connected
problems' ~*. We implemented this algorithm in the symbolic algebra system MATHE-
MATICA', and a MAPLE® implementation was done by Dominik Gruntz. In this sec-
tion we will give some step-by-step examples for calculations of exp-like and rational
type! using MACSYMA.

First we present a MACSYMA session searching for the power series of the ex-
pression f:exp(x)*sin(x). The underlying idea of the method presented can be
generalized to many other examples. We try first to find a second order homoge-
neous, linear differential equation with polynomial coefficients for f.

(C1)

(D1)

(€2)

(D2)

(C3)

(D3)

(C4)

(D4)

(C5)

(D5)

f:exp(x)*sin(x);
X
%E SIN(X)

fp:diff(f,x);
X X
%E  SIN(X) + %E CO0S(X)

fpp:diff (fp,x);
2 %EX COS(X)
eq:fpp+q[1]*fp+q[0] *f;
X X X X
Q (%E SIN(X) + %E COS(X)) + Q %E SIN(X) + 2 %E CO0OS(X)
1 0
solve([q[1]+q[0]1=0,q[1]+2=0], [q[1],q[01]1);

(lQ =-2,0Q =21]
1 0



By setting the coefficients of the rationally independent functions e® sin x and e” cos x
to zero, we find that f is a solution of the differential equation

y' =2y +2y=0.

It is now a reasonable idea to use MACSYMA’s ode command with the series option
to solve this differential equation getting a series solution. However, this method does
not apply for the examples of this section.

So we proceed trying to find a recurrence equation for the coefficients. Therefore

(o)
we set y = > %x” which is an appropriate choice (and will lead to a recurrence

equation similar to the differential equation) if the differential equation has constant
coefficients. We get

(C6) y:sum(b[n]l*x"n/n!,n,0,inf);

INF N
==== B X
\ N
(D6) S
/ N!
N=20
(C7) diff(y,x);
INF N -1
==== N B X
\ N
(D7) > o
/ N!
N=20
(C8) yp:changevar(%,k=n-1,k,n);
INF K
——— (K + 1) B X
\ K+ 1
(D8) S
/ (K + 1)!
K=-1
(C9) diff(y,x,2)$
(C10) ypp:changevar (%,k=n-2,k,n);
INF 2 K
==== (X +3K+2)B X
\ K+ 2
(D10) S
/ XK + 2)!
K=-2



Now the left-hand side of the differential equation reads

(C11) ypp-2*yp+2*y;

INF N INF 2 K
==== B X ==== (K +3K+2) B X
\ N \ K+ 2
(b11) 2 > —----- + > s
/ N! / (K + 2)!
N=20 K=-2
INF K
==== (K + 1) B X
\ K+ 1
-2 > e
/ (K + D!
K=-1
(C12) intosum(%);
INF N INF 2 K
==== 2B X ==== (K +3K+2)B X
\ N \ K+ 2
(p12) >  —-———-—- + > s
/ N! / (K + 2)!
N=20 K=-2
INF K
==== 2 (K+ 1) B X
\ K+ 1
+ > (- ——m——----- )
/ (K + 1!
K=-1
(C13) sumcontract(%);
INF 2 N N N
==== (N +3N+2)B X 2 (N+1)B X 2B X
\ N + 2 N + 1 N
(D13) > (- —————— + - )
/ N+ 2)! (N + 1)! N!

N=20

As the right-hand side of the differential equation is zero, all coefficients of this power
series must equal zero. This leads to

(C14) coeff(part(%,1),x,n)=0;



2
(N +3N+2)B 2 (N + 1) B 2 B

(D14)  mmmmmmmmmmmmm e o o + --=- =0
(N + 2)! (N + 1) N!

(C15) factcomb(%);

B 2 B 2B
N+ 2 N+ 1 N
(d15) e m e 4+ -—— =0
N! N! N!
(C16) eql:ratsimp(%*n!);
(D16) B - 2B +2B =0
N+ 2 N+ 1 N

so that we get a constant coefficient recurrence equation for b,. For this kind of
recurrence equations the setup b, := t" leads to a solution.

(C17) define(b[n],t"n);

N

(D17) B :=T
N
(C18) eq2:ev(eql);
N + 2 N+ 1 N
(D18) T -2T +2T =0
(C19) ratsimp(%/t"n);
2

(D19) T -2T+2=0
(C20) sol:solve(%,t);
(D20) [T=1-%I, T=%I + 1]

Thus we find two complex solutions for the recurrence equation which is linear, so
each linear combination gives also a solution. The special solution to our problem
is derived by introducing the initial values. In (D24) below, we know the result
should be real (because f is real), and rectform is used to obtain the real result (and
simultaneously verifies that the result is real!).

(C21) remarray(b)$

(C22) define(bln],a*(rhs(first(sol))) "n+b*(rhs(last(sol))) n);
N N

(D22) B := (JT +1) B+ (1 -%I) A

N

(C23) solve([b[0]=subst(x=0,f),b[1]=subst(x=0,fp)], [a,b]l);



hT hT

(D23) [[A=--,B=---]1]
2 2
(C24) subst(%,b[n]);
N N
(1 - %) »I 4T (I + 1)
(024) e o
2 2
(C25) result:rectform(%);
N/2 %PI N
(D25) 2 SIN(---—-—- )
4
(C26) remarray(b)$
(C27) define(bln],result);
N/2 %PI N
(D27) B :=2  SIN(---——- )
N 4
(€c28) b[nl$
(C29) ev(y);
INF N/2 %PI N N
==== 2 SIN(----- ) X
\ 4
(D29) > e
/ N!
N =20

Line (C27) defines the array b as a pointer pointing to define’s second argument.
Only the invocation (C28) gives the symbol b[n] for the special argument n the
desired value that can be used for the evaluation (C29). These evaluation schemes
are considered in another lecture.

Also for some rational functions powerseries fails to obtain an expansion. But
finding the complex partial fraction decomposition and using the binomial series will
always lead to the desired result. An example is

(C1) f:1/(x"2+2xx+2);

1
oy e
2
X +2X + 2
(C2) powerseries(f,x,0);
(D2) Unable to expand
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The next procedure calculates the complex partial fraction decomposition of f.
(C3) gfactor(f);

3) e

(C4) f:partfrac(},x);

(D4) e o
2 X+ %I + 1) 2 (X - %I + 1)

Next we ascertain if MACSYMA is able to find the power series of f in the above form.

(C5) powerseries(f,x,0);
(D5) Unable to expand

As this is not the case, we handle the two summands separately.

(C6) powerseries(first(f),x,0)+powerseries(last(f),x,0);

INF INF
==== I3 1I3 ==== I4 14
\ -1 X \ -1 X
K > mmmmmmmmm—m- W > e
/ I3 +1 / I4 + 1
==== (%I + 1) ==== (1 - %D
I3 =0 I4 =0
(D6) s o e
2 2

(C7) sol:sumcontract(intosum(%));

INF
==== I4 14 I4 14
\ (-1 X (-1 X
(o7) T )
/ I4 + 1 I4 + 1
==== 2 (BT + 1) 2 (1 -7%D
I4 =0
(C8) rectform(sol);
Is X ©positive or negative?
p;
INF -I4 -1
\ 2 I4 WPI (I4 + 1) I4
(D8) > 2 - D SIN(--————-————- ) X
/ 4
I4 =0



If a power series expansion at the origin exists, it is valid in some open interval
containing the origin. So there is no loss of generality to introduce x to be a positive
variable at MACSYMA’S request.

Another example is the arctan function whose derivative is rational and the same
procedure applies.

(C1) f:atan(x-x0);
(D1) - ATAN(XO0 - X)

(C2) powerseries(f,x,0);
(D2) Unable to expand

(C3) fp:diff(f,x);

(3) e

(C4) gfactor(fp);

(D4) e

(C5) fp:partfrac(%,x);

(D5) e
2 (- X0 + X + %D 2 (- X0 + X - %D

(C6) powerseries(fp,x,0);
(D6) Unable to expand

(C7) powerseries(first(fp),x,0)+powerseries(last(fp),x,0);

INF INF
==== I3 I3 ==== I4 T4
\ -1 X \ -1 X
/2 WL > mmmmmmmmm—m
/ I3 + 1 / 14 + 1
==== (4I - X0) ==== (- X0 - %I)
I3 =0 I4 =0
(D7) s o
2 2

(C8) sumcontract(intosum(%));

INF
==== I3 13 I3 1I3
\ W (- 1) X % (-1) X

(D8) > (mmmmmmmmm s )
/ I3 + 1 I3 + 1
==== 2 (%I - X0) 2 (- X0 - %I)
I3 =0



(C9) sol:-atan(x0)+integrate(%,x);

INF
==== I3 I3 +1 I3 I3 + 1
\ % (-1) X %I (- 1) X
(D9) >  (mmmmmm e )
/ I3 +1 I3 + 1
==== 2 (I3 + 1) (%I - X0) 2 (I3 + 1) (- X0 - %)
I3 =0
- ATAN(XO0)
(C10) rectform(sol);
Is X ©positive or negative?
ps
- 13 -1
INF I3 I3 +1 2 2 WPI
=== (- 1) X (X0 + 1) SIN((I3 + 1) (ATAN(X0) + ---))
\ 2
(D10) > @ mmmmm
/ I3 + 1
I3 =0
- ATAN(XO0)
(C11) changevar(%,i4=13+1,14,1i3);
INF I4 14 2 I4 ATAN(X0) + %PI I4
==== (- 1) X SIN(-—————————————— - )
\ 2
(D11) D - ATAN(XO0)
/ 2 14/2
==== I4 (X0 + 1)

I4 =1

o0
We present another example finding the power series expansion Y a,z" for f(z) =
n=0

———, and showing that the coefficients a,, fulfill the recurrence equation

Qp = Qp1+ a2 (n2>2)

and the initial conditions
ay = 0 )

01202:1,

and so are the Fibonacci numbers. We then calculate the 1000 Fibonacci number

a1000 using the coefficient formula found. As the gfactor command does not apply

with nonrational factors, we find the factors of the denominator by the solve com-

mand. Further, as the powerseries command does not apply for the summands that

are the output of partfrac, we calculate the partial fraction decomposition ourselves.
The following MACSYMA code solves the given example:
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f:x/(1-x-x"2);
solve(denom(f) ,x);
f1:a/(x-rhs(first(%)))+b/(x-rhs(last(%)));
ratsimp(£f1/£);
expr: h*2*x;
solve([coeff (expr,x,0)=0,coeff (expr,x,1)=2]1,[a,b]l);
f:subst(%,f1);
SQRT(5) - 5 SQRT(5) + 5
SQRT(5) - 1 SQRT(5) + 1
10 X - ——————————- ) 10 X + ——=—=——————- )
2 2
powerseries(first (f) ,x,0)+powerseries(last(f),x,0);
sol:sumcontract (intosum(%)) ;
coeff (part(%,1),x,1i2);
subst(i2=n,%);

(- SQRT(5) - 5) (- 1) 2 (SQRT(5) - B) (- 1) 2

5 (SQRT(5) + 1) 5 (1 - SQRT(5))

/* calculate fib(1000) */
ratsimp(subst(n=1000,%)) ;

4346655768693745643568852767504062580256466051737178040248172908953655541794905#
1890403879840079255169295922593080322634775209689623239873322471161642996440906#
533187938298969649928516003704476137795166849228875

/* find the recurrence relation */
fp:diff(f,x);

eq:fp+qgx*f;

solve(eq,q);

y:sum(al[n]*x"n,n,0,inf);
yp:diff(y,x);

(x73+x72-x) *yp+(x"2+1) *y;

expand (%) ;

summ: intosum(%) ;
f1:changevar (part (summ,1) ,k=n+2,k,n);
f£2:changevar (part (summ,2) ,k=n+2,k,n) ;
£3:changevar (part (summ, 3) ,k=n+1,k,n) ;
f4:part(summ,4);

f5:part (summ,5) ;

sumcontract (f1+f2+f3+f4+£5) ;
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part (%,1);
coeff (part(%,1) ,x,n)=0;
solve(%,aln]);

3. Formal Power Series of the Hypergeometric Type

In the last section we developed a method with which we were able to extend MAC-
SYMA’s capabilities to find the not truncated power series expansions of certain ana-
lytic functions. Here we proceed with this matter in extending the described method
to a very large class of hypergeometric type functions', what this exactly means, will
be discussed later. As a motivation we generate a MACSYMA session searching for the
power series development of the arccos function. Note that MACSYMA was not able to
expand powerseries(acos(x),x,0) (until Version 415), even if MACSYMA was able
to get the correct answer for powerseries(asin(x),x,0) (and acosz = 7/2—asinz).
The arccos function is an especially nice example to show what’s going on. We shall
introduce the necessary new steps when they appear.

We begin to search again for a second order linear, homogeneous differential equa-
tion with polynomial coefficients for f := acos x.

(C1) f:acos(x);
(D1) ACOS(X)

(C2) fp:diff(f,x);

1
(D2) o
2
SQRT(1 - X )
(C3) fpp:diff(fp,x);
X
(D3) -
2 3/2
1-Xx)

Obviously there will no differential equation exist in which f explicitly occurs, so we
look for one between f’ and f”.

(C4) fpp+q*fp;
(D4) e
2 2 3/2
SQRT(1 - X ) (1 -X)

(C5) sol:solve(%=0,q);

12



(D5) Q= -—----- ]

The above procedure showed that f is a solution of the differential equation
(2> =1)y" +2y =0.

The MAcSYMA built-in function ode with the series option is able to solve this
differential equation — as other hypergeometric type equations — having the desired
series as output, and it remains to use the initial conditions to eliminate the two
generated constants (this is only true until version 416. From version 417 on the
series package tries to find a closed form solution, and does not give a series output for
the examples of this section.). On the other hand, this output contains Pochhammer
symbols, and cannot be brought into a simpler form.

Therefore — and also because this approach will give us insight about the general
situation — we proceed in translating this differential equation into a recurrence
equation for the coefficients a,, (n € IN) of f as before.

(C6) y:sum(alnl*x°n,n,0,inf)$

(C7) yp:diff(y,x)$

(C8) ypp:diff(yp,x)$

Substituting these expression into the left hand side of the differential equation yields

(C9) (x~2-1)*(ypp+q*yp);

INF INF
2 \ N-1 \ N -2
(D9) & -1 @ » NA X + > (N-1)NA X )
/ N / N
N =20 N =0
(C10) ratsimp(subst(sol,%));
INF INF
\ N -1 2 \ 2 N -2
(D10) X > NA X + X -1) > (N -N) A X
/ N / N
N=20 N=20

(C11) sum:intosum(expand(%));

13



INF INF

\ N\ 2 2 N -2 N -2
(D11) > NA X + > X (N A X -NA X )

/ N / N N

N=0 N =0
INF
\ N -2 2 N -2
+ > (N A X -N A X )
/ N N
N=0

(C12) fi:part(sum,1)$

(C13) f2:part(sum,2)$

(C14) £3:changevar(part(sum,3),k=n-2,k,n)$
(C15) sumcontract(f1+£f2+£3)$

(C16) expand(%);
INF

(D16) > (-N A X -3NA X -2A X +N A X)

This finally gives the left-hand side of the differential equation in power series form.
As the right-hand side equals zero, all coefficients must vanish.

(C17) coeff(part(%,1),x,n)=0;
2 2
(D17) - N A -3NA -2 A + N A =0
N + 2 N+ 2 N + 2 N

(C18) solve(%,al[n+2]);

(D18) [A = e ]

(C19) recursion:part(%,1)/aln];

14



(o1 e N

Until now the procedure was as in the last section. Now come the new aspects. The
point is that there is a procedure for solving the resulting recurrence equation that is
always successful if the recurrence equation is of the hypergeometric type, i.e., of the
form

QAp4m .
S = R(n)

where m € IN is a positive integer, and R is a rational function in the variable n. On
the other hand, many examples in applications are of the hypergeometric type.

Suppose first m = 1, the ordinary hypergeometric case. Then “Z—:l = R is rational
in n (so that the ratio test for convergence applies). It is now essential to factor R.
Then we get

anﬂ:C_(n+a1)-(n+a2)---(n+ap) (1)
n (n+p1)-(n+p62) - (n+5,)

It is easily established that there is the following explicit representation for the coef-
ficients

n (al)n . (O{Q)n [N (O{p)n “ap (2)
where (a), denotes the Pochhammer symbol or shifted factorial defined by

a, = C

(@) = 1, ifn=0
@ = ala+1)(a+2)---(a+n—1), otherwise

This can be proved just by substituting the explicit formula Eq. 2 into Eq. 1 and
noting that Eq. 1 given ag has a unique solution.
If m > 1, then one decomposes f by m shifted series

m—1 00 m—1
10 = 5 (Samenya4) = 500 07)
j=0 \k=0 §=0

with functions f; (j = 0,...,m—1) each of which is ordinarily hypergeometric, so
that their coefficients can be found by an application of Eq. 2.

Let us now proceed with our MACSYMA session. We calculate the first few co-
efficients from the values of the function f (defined in (C1)) and its derivatives by

_ ™)

Taylor’s Theorem: a, = —5=.

(C20) al0]:subst(x=0,f)/0!;

(D20) -—=

15



(C21) al1]:subst(x=0,fp)/1!;
(D21) -1

(C22) al2]:subst(x=0,fpp)/2!;
(D22) 0

As in the given case m = 2, and since ay = 0, it turns out that all even coefficients
as, (k € IN) except ag vanish, and so this proves that f — f(0) is odd (without the
use of a built-in simplification rule like acos (—x) — m — acos x). In that case it will
be more convenient to work with the power series

h(z) =" cpa®
k=0

for which f(z) — f(0) = zh(z?), and so ¢x = agey1 (k € N). To introduce the new
variables, we substitute 2k + 1 for n. This yields

(c23) cl0]:al11$

(C24) subst(n=2*k+1,recursion);

(D24)  —memmee- = o
2K+ 1 2K+1) +3 @2K+1)+2

We introduce ¢, (k > 0):

(C25) clk+1]/clk]l=factor(rhs(%));

C 2
K+ 1 (2K + 1)
(b2 e =
Y 2 (K+1) (2K + 3)
K
(C26) rat:rhs(%);
2
(2 K+ 1)

(D26) e
2 (K+1) (2K + 3)

(C27) solnum:solve(num(rat),k);

(D27) K =- -]

(C28) multiplicities[1];
(D28) 2
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(C29) solden:solve(denom(rat) ,k);
3
(D29) [K=--,K=-1]
2
(C30) leadcoeff:coeff (expand(num(rat)),k,2)/coeff (expand(denom(rat)),k,2),eval;

(D30) 1

The above calculations with the aid of Eq. 2 lead to the Pochhammer representation
of ¢

NORONS
(3),- s

What will now be important, is to find ways to simplify expressions like this to bring
them in a more familiar form using factorials. We have implemented those simplifi-
cation rules for the function Pochhammers (a, k) := (a); in the file pochhammer .mac
which we load into our session. (We would have liked to use the MACSYMA built-in
function pochhammer (a,k), but from Version 417 on all occurrences of pochhammer

are replaced by the Gamma function, and our results would neither look very nice
nor familiar.) The content of this file will be discussed later.

(C31) load("pochhammer.mac")$

(C32) Pochhammers(1/2,k) "2/ (Pochhammers(3/2,k)*k!)*c[0];

(D32) iy

(C33) res:factcomb(%*x(2xk+1))/(2xk+1);
(D33) e

(2K + 1) 4 K!
(C34) remarray(c)$

(C35) define(c[k],res)$
(C36) clkl$

(C37) h:sum(c[k]*z"k,k,0,inf);

INF

==== K

\ (2K! Z
(D37) - > e

/ K 2

==== (2 K+ 1) 4 K!

K=0

17



(C38) declare(x,complex)$

(C39) al0]+x*subst(z=x"2,h);

INF
==== 2 K
%PI \ (2 K!'X
(D39) -—— - X >  mmmmmm——
2 / K 2
==== (2 K+ 1) 4 K!
K=20
(C40) f:intosum(%);
INF
==== 2K + 1
\ (2K!'X %P1
(D40) > (- - ) + ——-
/ K 2 2
==== (2K + 1) 4 K!
K=20

This is the desired power series expansion for the arccos function.

Now we explain how we implemented the simplification rules for the Pochhammer
symbol. This is most easily done by pattern matching rules. First we implement the
rule Pochhammers (a,0) — 1 which should hold for arbitrary a. This is done by the
following MACSYMA code.

matchdeclare(arbitrary_arg,true);

matchdeclare(zero_arg, check_zero) ;
check_zero(x) :=is(x=0) ;

/* Pochhammers(a,0) -> 1 %/
tellsimp(Pochhammers (arbitrary_arg,zero_arg),1);

Next, the Pochhammer symbol Pochhammers (n, k) can be easily represented using
factorials if n € IN. We suppose here and in the further declarations k to be arbitrary
even though MACSYMA substitutes the Gamma function for the factorials whereas
the Pochhammer symbol is not defined in the case that & is not a nonnegative integer.
But as we intend to use the Pochhammer symbols only for the coefficients of power
series with nonnegative integer coefficients that are indexed by a formal variable, we
prefer doing so rather than declaring £ and all other occurring indices as integers.

matchdeclare(pos_int_arg,check_integer);
check_integer(x) :=integerp(x) and is(x>0);

/* Pochhammers(n,k) -> (n+k-1)!/(n-1)! %/

tellsimp(Pochhammers (pos_int_arg,arbitrary_arg),
(pos_int_arg+arbitrary_arg-1)!/(pos_int_arg-1)!);
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Now a more sophisticated rule is used. We saw in our example that it may be of some
importance to have a rule for Pochhammers (a, k) for numbers a that differ by 1/2
from an integer. Therefore observe that for b # 0 and k£ € IN

(2b)ar, = 26(20+1)(20+2)---(2b+ 2k — 1)
20(204-2)(20+4) - - - (2b+2k—2) - (204+1)(20+3)(2b+5) - - - (2b+2k—1)

1 1
= P(b1)(b42) - (bHE—1) - Qk(b +§> (b +;> (b +g> : -(b +§+k—1>
1
= 20 (v+5)
2/
so that we get
1 (20) 2k
bt —) —
< * 2>k - (b)e
and by the substitution a := b+ %
(20, — 1)2k

This is implemented by the MACSYMA code

matchdeclare(half_int_arg,check_half);
check_half (x) :=integerp(x+1/2) and is(x>1);

/* Pochhammers(a,k) -> Pochhammers(2a-1,2k)/(4"k*Pochhammers((2a-1)/2,k) */
tellsimp(Pochhammers (half_int_arg,arbitrary_arg),
Pochhammers (2*half_int_arg-1,2*arbitrary_arg)/
(4"arbitrary_arg*Pochhammers ((2xhalf_int_arg-1)/2,arbitrary_arg))
)

Note that the above formula holds only for b # 0 and so for a # % For this value we
have

<1> 13 2%-1 1 (2k)! (2k)!
2/ 2 2 2 2k 2.4...2k 4k. k17

which is implemented by the rule

matchdeclare(onehalf_arg,check_onehalf);
check_onehalf (x):=is(x=1/2);

/* Pochhammers(1/2,k) -> (2k)!/(4"kxk!) */
tellsimp(Pochhammers (onehalf_arg,arbitrary_arg),

(2*arbitrary_arg) !/ (4" arbitrary_arg*arbitrary_arg!));

For negative numbers that differ by 1/2 from an integer we use the rule
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matchdeclare(half_int_arg_neg,check_half_neg) ;
check_half_neg(x):=integerp(x+1/2) and is(x<1);

tellsimp(Pochhammers(half_int_arg_neg,arbitrary_arg),
product (half_int_arg neg+j-1,j,1,entier(-half_int_arg neg))*
Pochhammers (half_int_arg_neg+entier(-half_int_arg_neg)+1,
arbitrary_arg-entier(-half_int_arg_neg)-1)

)

Last but not least we implement the rule Pochhammers(a, k) — a(a+1)--- (a+k—1)
for £ € IN by

/* Pochhammers(a,k) -> a(a+l)...(atk-1) */
tellsimp(Pochhammers (arbitrary_arg,pos_int_arg),
product (arbitrary_arg+j-1,j,1,pos_int_arg));

Many functions in applications are of the hypergeometric type, so that the given pro-
cedure often is applicable. Here are some more examples. We give only the important
parts of MACSYMA'’s output.

Example 1. By the following MACSYMA commands we find the power series expan-
sion of the error function erf z with respect to x at the point z = 0.

/* exercise erf(x) */
frerf(x);
powerseries(f,x,0);
fp:diff(£f,x);
fpp:diff (fp,x);
deq:ypp+p*yp;
fpp+p*fp;
solve(%=0,p);
deq:subst (%,deq) ;
YPP + 2 X YP
y:sum(al[n]*x"n,n,0,inf);
yp:diff(y,x);
ypp:diff (yp,x);
ev(deq);
intosum(%) ;
part (%, 1) +changevar(part (%,2) ,k=n-2,k,n);
sumcontract (%) ;
coeff (part(%,1) ,x,n)=0;
solve(%,a[n+2]);

recursion:part(%,1)/aln];
a[0] :subst(x=0,f)/0!;
al1] :subst(x=0,fp)/1!;
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cl0]:al1];

subst (n=2%k+1,recursion);
clk+1]/clk]l=rhs (%) ;
factor (%) ;

C K+ 1) (2K + 3)

rat:rhs(%);

solnum:solve(num(rat),k);

solden:solve(denom(rat) ,k);

leadcoeff:coeff (expand (num(rat)),k,1) /coeff (expand(denom(rat)) ,k,2),eval;
load ("pochhammer.mac") ;

(-1) "k*Pochhammers (1/2,k) / (Pochhammers (3/2,k) *k!)*c[0] ;
res:factcomb (%*x(2xk+1))/(2xk+1);

remarray(c) ;

define(c[k] ,res);

clkl$

h:sum(cl[k]l*z"k,k,0,inf);

declare(x,complex) ;

a[0]+x*subst(z=x"2,h);

f:intosum(’);

INF
==== K 2K+ 1

\ 2 (-1) X

> ______________________
/ SQRT(%PI) (2 K + 1) K!
K=0

Example 2. We find the power series expansion of e*’erf z with respect to x at the
point z = 0.

/* exercise exp(x~2)*xerf(x) */
f:exp(x"2)*erf (x);
powerseries(f,x,0);
fp:diff(f,x);
fpp:diff (fp,x);
deq:ypp+qQ*yp+p*y;
fpp+q*fp+p*f;
sol:num(ratsimp(%));
solve([part(sol,1,1)=0,part(so0l,2,2)=0],[p,ql);
deq:subst (%,deq) ;
YPP - 2 X YP -2 Y
y:sum(al[n]*x"n,n,0,inf);
yp:diff(y,x);
ypp:diff (yp,x);
ev(deq);
intosum(%);
part (%, 1) +part (%,2) +changevar (part (%,3) ,k=n-2,k,n);
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sumcontract (intosum(%)) ;
coeff (part(%,1) ,x,n)=0;
solve(%,aln+2]);

recursion:part(%,1)/aln];
al[0] :subst(x=0,f)/0!;
al1] :subst(x=0,£fp)/0!;
cl[0]:al1];

subst (n=2%k+1,recursion);
c[k+1]/c[k]=rhs (%) ;

load ("pochhammer .mac") ;
Pochhammers(1,k)/ (Pochhammers (3/2,k)*k!)*c[0];
res:factcomb (%*x(2xk+1))/(2xk+1);

remarray(c) ;

define(c[k] ,res);

clkl$

h:sum(cl[k]l*z"k,k,0,inf);

declare(x,complex) ;

a[0]+x*subst(z=x"2,h);

f:intosum(’);

INF
==== K 2K + 1

\ 24 K!X

> ____________________
/ SQRT(%PI) (2 K + 1)!
K =0

e® sinh x

Example 3. We find the power series expansion for f(z) := <=

/* exercise e"x*sinh(x)/x */
f:exp(x)*sinh(x)/x;
powerseries(f,x,0);
fp:diff(f,x);
fpp:diff (fp,x);
deq:ypp+qQ*yp+p*y;
fpp+q*fp+p*f;
sol:num(ratsimp(%));
solve([part(sol,1,1)=0,part(sol,2,1)=0],[p,ql);
subst (%,deq) ;
deq:ratsimp (%*x) ;

XYPP+ (2 -2X)YP-2Y
y:sum(al[n]*x"n,n,0,inf);
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yp:diff(y,x);

ypp:diff (yp,x);

ev(deq);

expand (%) ;

intosum(’%) ;

sum: intosum(expand (%)) ;
f1:part(sum,1);

f2:part(sum,2);
£3:changevar (part (sum,3) ,k=n-1,k,n);
f4:changevar (part (sum,4) ,k=n-1,k,n);
sumcontract (f1+f2+f3+f4) ;

coeff (part(%,1) ,x,n)=0;
solve(%,aln+1]);

recursion:part(%,1)/aln];

al0]:1imit(f,x,0);

load ("pochhammer .mac") ;

result:2 n*¥Pochhammers(1,n)/(Pochhammers(2,n)*n!)*a[0];

(N + !
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