TWO FINITE SEQUENCES OF SYMMETRIC Q-ORTHOGONAL POLYNOMIALS GENERATED BY TWO Q-STURM-LIOUVILLE PROBLEMS

Mohammad Masjed-Jamei
K.N.Toosi University of Technology, Department of Mathematics, P.O. Box 16315-1618, Tehran, Iran
e-mail: mmjamei@kntu.ac.ir, mmjamei@yahoo.com
Fatemeh Soleyman
K.N.Toosi University of Technology, Department of Mathematics,
P.O. Box 16315-1618, Tehran, Iran
e-mail: fsoleyman@mail.kntu.ac.ir
Wolfram Koepf
Department of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
e-mail: koepf@mathematik.uni-kassel.de
(Received
2019)

Abstract

By using a symmetric generalization of Sturm-Liouville problems in q-difference spaces, we introduce two finite sequences of symmetric q-orthogonal polynomials and obtain their basic properties such as a second order q-difference equations, the explicit form of the polynomials in terms of basic hypergeometric series, three term recurrence relations and norm square values based on a Ramanujan identity. We also show that one of the introduced sequences is connected with the Little q-Jacobi polynomials.

Keywords: q-Sturm-Liouville problems; symmetric finite q-orthogonal polynomials; Ramanujan's identity; Little q-Jacobi polynomials; norm square value.

1. Introduction

Let us start with the following identity discovered by Ramanujan [10]. For $0<q<1$, $|a|>q,|b|<1$ and $\left|\frac{b}{a}\right|<|x|<1$, we have

$$
\begin{align*}
\Psi(a, b ; q ; x) & =\sum_{n=-\infty}^{\infty} \frac{(a ; q)_{n}}{(b ; q)_{n}} x^{n} \tag{1}\\
& =\prod_{n=0}^{\infty} \frac{\left(1-\frac{b q^{n}}{a}\right)\left(1-q^{n+1}\right)\left(1-\frac{q^{n+1}}{a x}\right)\left(1-a x q^{n}\right)}{\left(1-b q^{n}\right)\left(1-\frac{q^{n+1}}{a}\right)\left(1-\frac{b q^{n}}{a x}\right)\left(1-x q^{n}\right)}
\end{align*}
$$

where

$$
(a ; q)_{n}=\prod_{j=0}^{n-1}\left(1-a q^{j}\right)
$$

We apply this identity (1) for explicitly computing the norm square values of two new finite classes of symmetric q-orthogonal polynomials. In general, classical q-orthogonal polynomials are solutions of a q-Sturm-Liouville problem of the form [9, 10]

$$
\begin{equation*}
L y(x ; q)+\lambda_{q} \varrho(x ; q) y(x ; q)=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
L y(x ; q)=\left(D_{q}\left(r D_{q^{-1}} y\right)\right)(x ; q) \quad(r(x ; q)>0, \varrho(x ; q)>0) \tag{3}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
\alpha_{1} y(a ; q)+\beta_{1} D_{q} y(a ; q)=0, \quad \alpha_{2} y(b ; q)+\beta_{2} D_{q} y(b ; q)=0 \tag{4}
\end{equation*}
$$

and D_{q} is the q-difference operator defined by $[1,2,6]$

$$
D_{q} f(x)=\frac{f(q x)-f(x)}{(q-1) x} \quad(x \neq 0, q \neq 1)
$$

with $D_{q} f(0):=f^{\prime}(0)$, provided that $f^{\prime}(0)$ exists. In the q-Sturm-Liouville problem (2)(4), there is an orthogonality property for eigenfunctions of equation (3) on (a, b) with respect to the weight function $\varrho(x ; q)$. In other words, if $y_{m}(x ; q)$ and $y_{n}(x ; q)$ are two solutions of the problem (2)-(4), then by referring to the boundary conditions (4) at $x=a$ we have

$$
\alpha_{1} y_{m}(a ; q)+\beta_{1} D_{q} y_{m}(a ; q)=0, \quad \text { and } \quad \alpha_{2} y_{n}(a ; q)+\beta_{2} D_{q} y_{n}(a ; q)=0
$$

which is also valid for $x=b$. In the sequel, if the q-analogue of integration by parts $[22,10]$ is applied for $y_{m}(x ; q)$ and $y_{n}(x ; q)$ we find

$$
\int_{a}^{b}\left(y_{m} L y_{n}-y_{n} L y_{m}\right)(x ; q) d_{q} x=0
$$

This means that if $y_{n}(x ; q)$ and $y_{m}(x ; q)$ are two eigenfunctions of the q-difference equation (2), they are orthogonal with respect to the weight function $\varrho(x ; q)$ and

$$
\begin{equation*}
\int_{a}^{b} y_{m}(x ; q) y_{n}(x ; q) \varrho(x ; q) d_{q} x=0, \quad\left(\lambda_{m} \neq \lambda_{n}\right), \tag{5}
\end{equation*}
$$

in which the q-integral operator [8] is defined by

$$
\begin{equation*}
\int_{0}^{x} f(t) d_{q} t=(1-q) x \sum_{j=0}^{\infty} q^{j} f\left(q^{j} x\right), \quad(x \in A), \tag{6}
\end{equation*}
$$

where A is a μ-geometric set for fixed $\mu \in \mathbb{C}[4]$ and the right hand series is convergent. Note that for any arbitrary interval $[a, b]$ we have from (6) that

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{q} x=\int_{0}^{b} f(x) d_{q} x-\int_{0}^{a} f(x) d_{q} x \quad(a, b \in A) . \tag{7}
\end{equation*}
$$

Also, from (6) and (7) one can conclude that

$$
\begin{equation*}
\int_{-b}^{b} f(t) d_{q} t=b(1-q) \sum_{n=0}^{\infty} q^{n}\left(f\left(b q^{n}\right)+f\left(-b q^{n}\right)\right), \quad(b \in A) . \tag{8}
\end{equation*}
$$

Finally, if $b \rightarrow \infty$, (8) changes to [10]

$$
\int_{-\infty}^{\infty} f(t) d_{q} t=(1-q) \sum_{n=-\infty}^{\infty} q^{n}\left(f\left(q^{n}\right)+f\left(-q^{n}\right)\right) .
$$

Recently many symmetric special functions of continuous type have been generalized in $[12,13,14,17,18]$ and a discrete analogue of the main theorem 1 given in this paper on the linear lattice $x(s)=s$ has been proved in [16]. Also, a basic class of symmetric orthogonal polynomials of a discrete variable with four free parameters has been introduced in [15]. In [4], the authors have presented a theorem by which one can generalize q-Sturm-Liouville problems with symmetric solutions.

Theorem 1. Let $\phi_{n}(x ; q)=(-1)^{n} \phi_{n}(-x ; q)$ be a sequence of symmetric functions that satisfies the q-difference equation

$$
\begin{equation*}
\varphi(x) D_{q} D_{q^{-1}} \phi_{n}(x ; q)+\tau(x) D_{q} \phi_{n}(x ; q)+\left(\lambda_{n, q} \theta(x)+\pi(x)+\sigma_{n} \eta(x)\right) \phi_{n}(x ; q)=0, \tag{9}
\end{equation*}
$$

where $\varphi(x), \tau(x), \theta(x), \pi(x)$ and $\eta(x)$ are real functions, σ_{n} is defined as

$$
\sigma_{n}=\frac{1-(-1)^{n}}{2}= \begin{cases}0 & n \text { even }, \\ 1 & n \text { odd },\end{cases}
$$

and $\lambda_{n, q}$ is a sequence of constants. If $\varphi(x),(\theta(x)>0), \pi(x)$ and $\eta(x)$ are even functions and $\tau(x)$ is odd, then

$$
\int_{-b}^{b} \varrho^{*}(x ; q) \phi_{n}(x ; q) \phi_{m}(x ; q) d_{q} x=\left(\int_{-b}^{b} \varrho^{*}(x ; q) \phi_{n}^{2}(x ; q) d_{q} x\right) \delta_{n, m}, \quad \delta_{n, m}=\left\{\begin{array}{cc}
0 & (n \neq m) \\
1 & (n=m)
\end{array}\right.
$$

where

$$
\begin{equation*}
\varrho^{*}(x ; q)=\theta(x) \varrho(x ; q) \tag{10}
\end{equation*}
$$

and $\varrho(x ; q)$ is a solution of the Pearson q-difference equation

$$
D_{q}(\varphi(x) \varrho(x ; q))=\tau(x) \varrho(x ; q)
$$

which is equivalent to

$$
\frac{\varrho(q x ; q)}{\varrho(x ; q)}=\frac{(q-1) x \tau(x)+\varphi(x)}{\varphi(q x)} .
$$

Of course, the weight function defined in (10) must be positive and even, and the function $\varphi(x) \varrho(x ; q)$ must vanish at $x=b$ see [4].

Using the above theorem, we can introduce two finite sequences of symmetric q orthogonal polynomials and obtain their general properties in detail. For this purpose, we should first refer to basic hypergeometric series

$$
{ }_{r} \phi_{s}\left(\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r} \tag{11}\\
b_{1}, b_{2}, \ldots, b_{s}
\end{array} ; q ; z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1} ; q\right)_{k} \ldots\left(a_{r} ; q\right)_{k}}{(q ; q)_{k}\left(b_{1} ; q\right)_{k} \ldots\left(b_{s} ; q\right)_{k}}\left((-1)^{k} q^{\binom{k}{2}}\right)^{1+s-r} z^{k}
$$

where $r, s \in \mathbb{Z}_{+}$and $a_{1}, a_{2}, \ldots, a_{r}, b_{1}, b_{2}, \ldots, b_{s}, z \in \mathbb{C}$. Note in (11) that

$$
(a ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-a q^{j}\right), \quad \text { for } \quad 0<|q|<1
$$

and in order to have a well-defined series in (11), the condition $b_{1}, b_{2}, \ldots, b_{s} \neq q^{-k}$ for $k=0,1, \ldots$ is necessary. The base of definition of such q-hypergeometric series, from historical point of view, is q-numbers defined by

$$
\begin{equation*}
[z]_{q}=\frac{q^{z}-1}{q-1}, \quad z \in \mathbb{C} \tag{12}
\end{equation*}
$$

The classical orthogonal q-polynomials are known in the literature as Askey-Schem of hypergeometric q-orthogonal polynomials [11], see also [3, 7]. Since we need some of them in order to compare with two polynomials introduced in this paper, here we recall some of them whose orders are respectively $(1,1),(2,1)$ and $(2,0)$. For instance

$$
P_{n}(x ; a, b ; q)=\frac{1}{\left(b^{-1} q^{-n} ; q\right)_{n}} 2^{\varphi_{1}}\left(\begin{array}{c}
q^{-n}, a q x^{-1} \\
a q
\end{array} ; q, \frac{x}{b}\right),
$$

are $\operatorname{Big} q$-Laguerre polynomials that satisfy the orthogonality property

$$
\begin{aligned}
& \int_{b q}^{a q} \frac{\left(a^{-1} x, b^{-1} x ; q\right)_{\infty}}{(x ; q)_{\infty}} P_{m}(x ; a, b ; q) P_{n}(x ; a, b ; q) d_{q} x \\
& =a q(1-q) \frac{\left(q, a^{-1} b, a b^{-1} q ; q\right)_{\infty}}{(a q, b q ; q)_{\infty}} \frac{(q ; q)_{n}}{(a q, b q ; q)_{n}}\left(-a b q^{2}\right)^{n} q^{\binom{n}{2}} \delta_{n, m}
\end{aligned}
$$

where $0<a q<1$ and $b<0$. Also

$$
p_{n}(x ; a ; q)={ }_{2} \varphi_{1}\left(\begin{array}{c}
q^{-n}, 0 \tag{13}\\
a q
\end{array} ; q, q x\right)
$$

are known as the Little q-Laguerre polynomials with the orthogonality property

$$
\sum_{k=0}^{\infty} \frac{(a q)^{k}}{(q ; q)_{k}} p_{m}\left(q^{k} ; a ; q\right) p_{n}\left(q^{k} ; a ; q\right)=\frac{(a q)^{n}}{(a q ; q)_{\infty}} \frac{(q ; q)_{n}}{(a q ; q)_{n}} \delta_{n, m}, \quad(0<a q<1)
$$

and

$$
\begin{aligned}
L_{n}^{(\alpha)}(x ; q) & =\frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n}}{ }_{1} \varphi_{1}\left(\begin{array}{l}
q^{-n} \\
\left.q^{\alpha+1} ; q,-q^{n+\alpha+1} x\right) \\
\\
\end{array}\right) \frac{1}{(q ; q)_{n}} 2 \varphi_{1}\left(\begin{array}{c}
q^{-n},-x \\
0
\end{array}, q,-q^{n+\alpha+1}\right)
\end{aligned}
$$

are q-Laguerre polynomials with two orthogonality properties

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{x^{\alpha}}{(x-; q)_{\infty}} L_{m}^{(\alpha)}(x ; q) L_{n}^{(\alpha)}(x ; q) d x \\
& =\frac{\left(q^{-\alpha} ; q\right)_{\infty}}{(q ; q)_{\infty}} \frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n} q^{n}} \Gamma(-\alpha) \Gamma(\alpha+1) \delta_{n, m}, \quad(\alpha>-1),
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{-\infty}^{\infty} \frac{q^{k \alpha+k}}{\left(-c q^{k} ; q\right)_{\infty}} L_{m}^{(\alpha)}\left(c q^{k} ; q\right) L_{n}^{(\alpha)}\left(c q^{k} ; q\right) \\
& =\frac{\left(q,-c q^{\alpha+1},-c^{-1} q^{-\alpha} ; q\right)_{\infty}}{\left(q^{\alpha+1},-c,-c^{-1} q ; q\right)_{\infty}} \frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n} q^{n}} \delta_{n, m} \quad(\alpha>-1, \quad c>0)
\end{aligned}
$$

The Little q-Jacobi polynomials are defined by

$$
J_{n}(x ; a, b ; q)={ }_{2} \varphi_{1}\left(\begin{array}{c}
q^{-n}, a b q^{n+1} \tag{14}\\
a q
\end{array} ; q, q x\right)
$$

which satisfy the orthogonality property

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{(b q ; q)_{k}}{(q ; q)_{k}}(a q)^{k} J_{m}\left(q^{k} ; a, b ; q\right) J_{n}\left(q^{k} ; a, b ; q\right) \\
& =\frac{\left(a b q^{2} ; q\right)_{\infty}}{(a q ; q)_{\infty}} \frac{(1-a b q)(a q)^{n}}{\left(1-a b q^{2 n+1}\right)} \frac{(q, b q ; q)_{n}}{(a q, a b q ; q)_{n}} \delta_{n, m}
\end{aligned}
$$

where $0<a q<1$ and $b q<1$ and

$$
M_{n}\left(q^{-x} ; b, c ; q\right)={ }_{2} \varphi_{1}\left(\begin{array}{c}
q^{-n}, q^{-x} \\
b q
\end{array} ; q,-\frac{q^{n+1}}{c}\right)
$$

are known as q-Meixner polynomials with the orthogonality property

$$
\begin{aligned}
& \sum_{x=0}^{\infty} \frac{(b q ; q)_{x}}{(q,-b c q ; q)_{x}} c^{x} q^{\binom{x}{2}} M_{m}\left(q^{-x} ; b, c ; q\right) M_{n}\left(q^{-x} ; b, c ; q\right) \\
& =\frac{(-c ; q)_{\infty}}{(-b c q ; q)_{\infty}} \frac{\left(q,-c^{-1} q ; q\right)_{n}}{(b q ; q)_{n}} q^{-n} \delta_{n, m} \quad(0 \leq b q<1, \quad c>0)
\end{aligned}
$$

Finally

$$
\begin{aligned}
h_{n}(x ; q) & =q^{\binom{n}{2}}{ }_{2} \varphi_{1}\left(\begin{array}{c}
q^{-n}, x^{-1} \\
0
\end{array} ; q,-q x\right) \\
& =x^{n}{ }_{2} \varphi_{0}\left(\begin{array}{c}
q^{-n}, q^{-n+1} \\
-
\end{array} ; q^{2}, \frac{q^{2 n-1}}{x^{2}}\right)
\end{aligned}
$$

are Discrete q-Hermite polynomials with the orthogonality property

$$
\begin{aligned}
& \int_{-1}^{1}(q x,-q x ; q)_{\infty} h_{m}(x ; q) h_{n}(x ; q) d_{q} x \\
& =(1-q)(q ; q)_{n}(q,-1,-q ; q)_{\infty} q^{\binom{n}{2}} \delta_{n, m}
\end{aligned}
$$

and

$$
V_{n}^{(a)}(x ; q)=(-a)^{n} q^{-\binom{n}{2}} 2 \varphi_{0}\left(\begin{array}{c}
q^{-n}, x \\
-
\end{array} ; q, \frac{q^{n}}{a}\right)
$$

are Al-Salam-Carlitz II polynomials that satisfy the orthogonality property

$$
\begin{aligned}
& \int_{a}^{1}\left(q x, a^{-1} q x ; q\right)_{\infty} V_{m}^{(a)}(x ; q) V_{n}^{(a)}(x ; q) d_{q} x \\
& =(-a)^{n}(1-q)(q ; q)_{n}\left(q, a, a^{-1} q ; q\right)_{\infty} q^{\binom{n}{2}} \delta_{n, m} \quad(a<0)
\end{aligned}
$$

Here Let us add that the q-Bessel polynomials are also important in certain problems of mathematical physics; for example, they appear in the study of electrical networks and when the wave equation is considered in spherical coordinates, see e.g. [20, 21].

2. Two finite sequences of symmetric q-orthogonal polynomials

In this section, we introduce two finite classes of symmetric orthogonal q-polynomials which are particular solutions of q-difference equation (9) and have not been considered in [4]. It is straightforward to check [4, 12] that if $\varphi(x)$ is a polynomial of degree at most four, $\tau(x)$ an odd polynomial of degree at most three, $\theta(x)$ a symmetric quadratic polynomial and $\pi(x)$ and $\eta(x)$ are two constants, one can find symmetric polynomial solutions for equation (9). By noting these comments, recently in [4], a q-difference equation of type (9) has been introduced as

$$
\begin{align*}
x^{2}\left(a x^{2}+b\right) D_{q} D_{q^{-1}} \phi_{n}(x ; q)+x & \left(c x^{2}+d\right) D_{q} \phi_{n}(x ; q) \\
& -\left([n]_{q}\left(c-[1-n]_{q} a\right) x^{2}+\sigma_{n} d\right) \phi_{n}(x ; q)=0 \tag{15}
\end{align*}
$$

whose explicit q-polynomial solution is

$$
\phi_{n}(x ; q)=\sum_{k=0}^{\left[\frac{n}{2}\right]} q^{(k-1) k} x^{n-2 k}\left[\begin{array}{c}
{\left[\frac{n}{2}\right]} \tag{16}\\
k
\end{array}\right]_{q^{2}} \prod_{j=0}^{\left[\frac{n}{2}\right]-k-1} \frac{a\left[2 j+\sigma_{n}+n-1\right]_{q}+c q^{2 j+\sigma_{n}+n-1}}{b\left[\left(2 j+(-1)^{n+1}+2\right)\right]_{q}+d q^{2 j+(-1)^{n+1}+2}}
$$

where

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{m}(q ; q)_{n-m}}
$$

denotes the q-binomial coefficient and $[z]_{q}$ is the q-number defined in (12).
Also, it is shown in [4] that the monic form of these polynomials satisfies a three term recurrence relation as

$$
\begin{equation*}
\bar{\phi}_{n+1}(x ; q)=x \bar{\phi}_{n}(x ; q)-C_{n, q} \bar{\phi}_{n-1}(x ; q), \quad \text { with } \quad \bar{\phi}_{0}(x ; q)=1, \quad \bar{\phi}_{1}(x ; q)=x \tag{17}
\end{equation*}
$$

where

$$
\begin{align*}
& C_{n, q}=\left[q ^ { n + 1 } \left(q^{2 n}(a+c(q-1))\left((d-d q) \sigma_{n}-b\right)+q^{n}\left(a b\left(q^{2}+1\right)+a d(q-1) q^{2}+b c(q-1)\right)\right.\right. \\
& \left.\left.\quad-a q^{2}\left(b+d(q-1) \sigma_{n-1}\right)\right)\right] /\left[a^{2} q^{4}+q^{4 n}(a+c(q-1))^{2}-a\left(q^{3}+q\right) q^{2 n}(a+c(q-1))\right] . \tag{18}
\end{align*}
$$

There are two special cases of equation (15) whose polynomial solutions are finitely orthogonal on $(-\infty, \infty)$.

2.1. First sequence

For $u, v \in \mathbb{R}$, consider the equation

$$
\begin{align*}
x^{2}\left(x^{2}+1\right) D_{q} D_{q^{-1}} \phi_{n}(& x ; q)-2 x\left((u+v-1) x^{2}+u\right) D_{q} \phi_{n}(x ; q) \\
& +\left([n]_{q}\left(2 u+2 v-2+[1-n]_{q}\right) x^{2}+2 u \sigma_{n}\right) \phi_{n}(x ; q)=0, \tag{19}
\end{align*}
$$

whose monic polynomial solution can be represented as

$$
\bar{\phi}_{n}(x ; q, u, v)=K_{1} x^{\sigma_{n}}{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n+\sigma_{n}},(1-2(q-1)(u+v-1)) q^{n+\sigma_{n}-1} \tag{20}\\
(1-2 u(q-1)) q^{2 \sigma_{n}+1}
\end{array} ; q^{2} ;-q^{2} x^{2}\right)
$$

where

$$
K_{1}=\frac{q^{[n / 2]([n / 2]-1)}\left(q^{n+\sigma_{n}-1}(1-2(u+v-1)(q-1)) ; q^{2}\right)_{[n / 2]}}{\left(q^{(-1)^{n}+2}(1-2 u(q-1)) ; q^{2}\right)_{[n / 2]}}
$$

It is not difficult to verify that these polynomials (20) are connected with the Little q-Jacobi polynomials (14) as follows

$$
\begin{align*}
& \phi_{n}(x ; q, u, v)= \\
& x^{\sigma_{n}} J_{\left[\frac{n}{2}\right]}\left(-x^{2} ;(1-2 u(q-1)) \frac{1+q^{2}+(-1)^{n}\left(1-q^{2}\right)}{2 q}, \frac{1-2(q-1)(u+v-1)}{q^{2}(1-2 u(q-1))} ; q^{2}\right) . \tag{21}
\end{align*}
$$

Moreover, as a special case of polynomials (21) for $u+v=1$, one can derive the Little q-Laguerre polynomials (13) as

$$
\phi_{n}(x ; q, u, 1-u)=x^{\sigma_{n}} p_{\left[\frac{n}{2}\right]}\left(-x^{2} ;(1-2 u(q-1))\left(\frac{1+q^{2}+(-1)^{n}\left(1-q^{2}\right)}{2 q}\right) ; q^{2}\right)
$$

In order to prove the orthogonality of the finite set $\left\{\bar{\phi}_{n}(x ; q, u, v)\right\}_{n=0}^{N}$ on $(-\infty, \infty)$, it is necessary to impose a specific condition, which indeed leads to a finite orthogonality $[22,19]$ as $N<\frac{1-\log _{q}(1-2(q-1)(u+v-1))}{2}$, because if equation (19) is written in a self-adjoint form, then

$$
\begin{equation*}
D_{q}\left(x^{2}\left(x^{2}+1\right) \varrho_{1}(x ; q, u, v) D_{q^{-1}} \phi_{n}(x ; q)\right)+\left(\lambda_{n, q} x^{2}+2 u \sigma_{n}\right) \varrho_{1}(x ; q, u, v) \phi_{n}(x ; q)=0 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{q}\left(x^{2}\left(x^{2}+1\right) \varrho_{1}(x ; q, u, v) D_{q^{-1}} \phi_{m}(x ; q)\right)+\left(\lambda_{m, q} x^{2}+2 u \sigma_{m}\right) \varrho_{1}(x ; q, u, v) \phi_{m}(x ; q)=0 \tag{23}
\end{equation*}
$$

where

$$
\varrho_{1}(x ; q, u, v)=x^{\log _{q}\left(\frac{1-2(q-1)(u+v-1)}{q^{4}}\right)} \frac{\left(-\frac{1}{q^{2} x^{2}} ; q^{2}\right)_{\infty}}{\left(-\frac{1-2 u(q-1)}{(1-2(q-1)(u+v-1)) x^{2}} ; q^{2}\right)_{\infty}}
$$

Now, by multiplying (22) by $\phi_{m}(x ; q)$ and (23) by $\phi_{n}(x ; q)$ and subtracting each other we get

$$
\begin{align*}
& \phi_{m}(x ; q) D_{q}\left(x^{2}\left(x^{2}+1\right) \varrho_{1}(x ; q, u, v) D_{q^{-1}} \phi_{n}(x ; q)\right) \\
& \quad-\phi_{n}(x ; q) D_{q}\left(x^{2}\left(x^{2}+1\right) \varrho_{1}(x ; q, u, v) D_{q^{-1}} \phi_{m}(x ; q)\right) \\
& \quad+\left(\lambda_{n, q}-\lambda_{m, q}\right) x^{2} \varrho_{1}(x ; q, u, v) \phi_{n}(x ; q) \phi_{m}(x ; q) \\
& \quad+\left((-1)^{m}-(-1)^{n}\right) u \varrho_{1}(x ; q, u, v) \phi_{n}(x ; q) \phi_{m}(x ; q)=0 . \tag{24}
\end{align*}
$$

Since the q-integration of any odd integrand over a symmetric interval is equal to zero and $\varrho_{1}(x ; q, u, v)$ is an even function, q-integrating on both sides of (24) over \mathbb{R} yields

$$
\begin{align*}
& \int_{-\infty}^{\infty} \phi_{m}(x ; q) D_{q}\left(x^{2}\left(x^{2}+1\right) \varrho_{1}(x ; q, u, v) D_{q^{-1}} \phi_{n}(x ; q)\right) d_{q} x \\
& - \\
& \quad \int_{-\infty}^{\infty} \phi_{n}(x ; q) D_{q}\left(x^{2}\left(x^{2}+1\right) \varrho_{1}(x ; q, u, v) D_{q^{-1}} \phi_{m}(x ; q)\right) d_{q} x \\
& \tag{25}\\
& \quad+\left(\lambda_{n, q}-\lambda_{m, q}\right) \int_{-\infty}^{\infty} x^{2} \varrho_{1}(x ; q, u, v) \phi_{n}(x ; q) \phi_{m}(x ; q) d_{q} x \\
& \\
& \quad+u\left((-1)^{m}-(-1)^{n}\right) \int_{-\infty}^{\infty} \varrho_{1}(x ; q, u, v) \phi_{n}(x ; q) \phi_{m}(x ; q) d_{q} x=0
\end{align*}
$$

which can be transformed, by using the rule of q-integration by parts, to

$$
\begin{align*}
& {\left[x^{2}\left(x^{2}+1\right) \varrho_{1}(x ; q, u, v) \phi_{m}(x ; q) D_{q^{-1}} \phi_{n}(x ; q)\right]_{-\infty}^{\infty}} \\
& \quad-\left[x^{2}\left(x^{2}+1\right) \varrho_{1}(x ; q, u, v) \phi_{n}(x ; q) D_{q^{-1}} \phi_{m}(x ; q)\right]_{-\infty}^{\infty} \\
& \quad+\left(\lambda_{n, q}-\lambda_{m, q}\right) \int_{-\infty}^{\infty} x^{2} \varrho_{1}(x ; q, u, v) \phi_{n}(x ; q) \phi_{m}(x ; q) d_{q} x \\
& \tag{26}\\
& \quad+u\left((-1)^{m}-(-1)^{n}\right) \int_{-\infty}^{\infty} \varrho_{1}(x ; q, u, v) \phi_{n}(x ; q) \phi_{m}(x ; q) d_{q} x=0 .
\end{align*}
$$

In other words, (26) is simplified as

$$
\begin{align*}
& {\left[\left(x^{2}+1\right) \varrho_{1}^{*}(x ; q, u, v)\left(\phi_{m}(x ; q) D_{q^{-1}} \phi_{n}(x ; q)-\phi_{n}(x ; q) D_{q^{-1}} \phi_{m}(x ; q)\right)\right]_{-\infty}^{\infty}} \\
& \quad=\left(\lambda_{m, q}-\lambda_{n, q}\right) \int_{-\infty}^{\infty} \varrho_{1}^{*}(x ; q, u, v) \phi_{n}(x ; q) \phi_{m}(x ; q) d_{q} x \tag{27}
\end{align*}
$$

in which

$$
\varrho_{1}^{*}(x ; q, u, v)=x^{2} \varrho_{1}(x ; q, u, v)=\varrho_{1}^{*}(-x ; q, u, v)
$$

provided that $(-1)^{\log _{q}\left(\frac{1-2(q-1)(u+v-1)}{q^{4}}\right)}=1$.
Now since

$$
\operatorname{deg}\left(\phi_{m}(x ; q) D_{q^{-1}} \phi_{n}(x ; q)-\phi_{n}(x ; q) D_{q^{-1}} \phi_{m}(x ; q)\right)=m+n-1
$$

the left hand side of (27) is zero if

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} x^{m+n+1} \varrho_{1}^{*}(x ; q, u, v)=0 \tag{28}
\end{equation*}
$$

By taking $\max \{m, n\}=N$, relation (28) would be equivalent to

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} x^{2 N+1+\log _{q}\left(\frac{1-2(q-1)(u+v-1)}{q^{2}}\right)} \frac{\left(-\frac{1}{q^{2} x^{2}} ; q^{2}\right)_{\infty}}{\left(-\frac{1-2 u(q-1)}{(1-2(q-1)(u+v-1)) x^{2}} ; q^{2}\right)_{\infty}}=0 \tag{29}
\end{equation*}
$$

And (29) is valid if and only if
$2 N-1+\log _{q}(1-2(q-1)(u+v-1))<0 \quad$ or $\quad N<\frac{1-\log _{q}(1-2(q-1)(u+v-1))}{2}$.
Now, by noting Favard's theorem [5], the orthogonality relation of q-polynomials (20) can be represented as

$$
\begin{equation*}
\int_{-\infty}^{\infty} \varrho_{1}^{*}(x ; q, u, v) \bar{\phi}_{n}(x ; q, u, v) \bar{\phi}_{m}(x ; q, u, v) d_{q} x=\left(\prod_{j=1}^{n} C_{j, q}^{(u, v)} \int_{-\infty}^{\infty} \varrho_{1}^{*}(x ; q, u, v) d_{q} x\right) \delta_{n, m} \tag{30}
\end{equation*}
$$

where $\left\{C_{j, q}^{(u, v)}\right\}$ are directly derived from (18) as

$$
\begin{aligned}
& \quad C_{j, q}^{(u, v)}= \\
& {\left[q ^ { j + 1 } \left(q^{2 j}(1-2(u+v-1)(q-1))\left(2 u(q-1) \sigma_{j}-1\right)+q^{j}\left(\left(q^{2}+1\right)-2 u(q-1) q^{2}-2(u+v-1)(q-1)\right)\right.\right.} \\
& \left.\left.-q^{2}\left(1-2 u(q-1) \sigma_{j-1}\right)\right)\right] /\left[q^{4}+q^{4 j}(1-2(u+v-1)(q-1))^{2}-\left(q^{3}+q\right) q^{2 j}(1-2(u+v-1)(q-1))\right] .
\end{aligned}
$$

Hence, in order to obtain the norm square value, it just remains to compute the q-integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \varrho_{1}^{*}(x ; q, u, v) d_{q} x=\int_{-\infty}^{\infty} x^{\log _{q}\left(\frac{1-2(q-1)(u+v-1)}{q^{2}}\right)} \frac{\left(-\frac{1}{q^{2} x^{2}} ; q^{2}\right)_{\infty}}{\left(-\frac{1-2 u(q-1)}{(1-2(q-1)(u+v-1)) x^{2}} ; q^{2}\right)_{\infty}} d_{q} x \tag{31}
\end{equation*}
$$

For this purpose, we can directly use the Ramanujan identity (1) for computing the q-integral (31) as follows

$$
\begin{align*}
& \int_{-\infty}^{\infty} \varrho_{1}^{*}(x ; q, u, v) d_{q} x=2(1-q) \sum_{n=-\infty}^{\infty} q^{n\left(\log _{q}\left(\frac{1-2(q-1)(u+v-1)}{q^{2}}\right)+1\right)} \frac{\left(-q^{-2} q^{-2 n} ; q^{2}\right)_{\infty}}{\left(-\frac{1-2 u(q-1)}{1-2(q-1)(u+v-1)} q^{-2 n} ; q^{2}\right)_{\infty}} \\
& =2(1-q) \sum_{n=-\infty}^{\infty} q^{n\left(\log _{q}\left(\frac{1-2(q-1)(u+v-1)}{q^{2}}\right)+1\right)} \frac{\left(-\frac{1-2 u(q-1)}{1-2(q-1)(u+v-1)} ; q^{2}\right)_{-n}\left(-q^{-2} ; q^{2}\right)_{\infty}}{\left(-\frac{1-2 u(q-1)}{1-2(q-1)(u+v-1)} ; q^{2}\right)_{\infty}\left(-q^{-2} ; q^{2}\right)_{-n}} \\
& =h_{1} \sum_{n=-\infty}^{\infty} q^{n\left(\log _{q}\left(\frac{1-2(q-1)(u+v-1)}{q^{2}}\right)+1\right)} \frac{\left(-\frac{1-2 u(q-1)}{1-2(q-1)(u+v-1)} ; q^{2}\right)_{-n}}{\left(-q^{-2} ; q^{2}\right)_{-n}} \\
& =h_{1} \sum_{n=-\infty}^{\infty} q^{n\left(-\log _{q}\left(\frac{1-2(q-1)(u+v-1)}{q^{2}}\right)-1\right)} \quad \frac{\left(-\frac{1-2 u(q-1)}{1-2(q-1)(u+v-1)} ; q^{2}\right)_{n}}{\left(-q^{-2} ; q^{2}\right)_{n}} \\
& =h_{1} \Psi\left(-\frac{1-2 u(q-1)}{1-2(q-1)(u+v-1)},-q^{-2} ; q^{2} ; q^{\left.\left(-\log _{q}\left(\frac{1-2(q-1)(u+v-1)}{q^{2}}\right)-1\right)\right),}\right. \tag{32}
\end{align*}
$$

where

$$
h_{1}=\frac{2(1-q)\left(-q^{-2} ; q^{2}\right)_{\infty}}{\left(-\frac{1-2 u(q-1)}{1-2(q-1)(u+v-1)} ; q^{2}\right)_{\infty}}
$$

For instance, the polynomial set $\left\{\bar{\phi}_{k}(x ; 0.5,128,896)\right\}_{k=0}^{N=5}$ is finitely orthogonal with respect to the weight function $\frac{x^{8}\left(-4 x^{-2} ; \frac{1}{4}\right)_{\infty}}{\left(-\frac{129}{1024} x^{-2} ; \frac{1}{4}\right)_{\infty}}$ on $(-\infty, \infty)$.

2.2. Second sequence

For $u \in \mathbb{R}$, consider the equation

$$
\begin{align*}
x^{4} D_{q} D_{q^{-1}} \phi_{n}(x ; q)+2 x((1-u) & \left.x^{2}+1\right) D_{q} \phi_{n}(x ; q) \\
& +\left([n]_{q}\left(2 u-2+[1-n]_{q}\right) x^{2}+2 \sigma_{n}\right) \phi_{n}(x ; q)=0 \tag{33}
\end{align*}
$$

whose monic polynomial solution can be represented as

$$
\begin{align*}
\bar{\phi}_{n}(x ; q, u) & =K_{2} x^{\sigma_{n}}{ }_{2} \phi_{0}\left(q^{-n+\sigma_{n}},(1+(2-2 u)(q-1)) q^{n+\sigma_{n}-1} ; q^{2} ; \frac{q^{1-2 \sigma_{n}} x^{2}}{2(1-q)}\right) \tag{34}\\
& =x^{n}{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n+\sigma_{n}}, 0 \\
q^{3-2 n}(1+(2-2 u)(q-1))^{-1}
\end{array} ; q^{2} ; \frac{2 q^{2}(1-q)}{(1+(2-2 u)(q-1)) x^{2}}\right) \tag{35}
\end{align*}
$$

where

$$
K_{2}=\frac{\left(q^{n+\sigma_{n}-1}(1-2(u-1)(q-1)) ; q^{2}\right)_{[n / 2]}}{(2-2 q)^{[n / 2]} q^{[n / 2]\left(2+(-1)^{n+1}\right)}}
$$

Once again, it is necessary for orthogonality of the finite set $\left\{\bar{\phi}_{n}(x ; q, u)\right\}_{n=0}^{N}$ to impose a specific condition as $N<\frac{1-\log _{q}(1+2(q-1)(1-u))}{2}$, because if we write equation (33) in a self-adjoint form, then

$$
\begin{equation*}
D_{q}\left(x^{4} \varrho_{2}(x ; q, u) D_{q^{-1}} \phi_{n}(x ; q)\right)+\left(\lambda_{n, q} x^{2}+2 \sigma_{n}\right) \varrho_{2}(x ; q, u) \phi_{n}(x ; q)=0 \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{q}\left(x^{4} \varrho_{2}(x ; q, u) D_{q^{-1}} \phi_{m}(x ; q)\right)+\left(\lambda_{m, q} x^{2}+2 \sigma_{m}\right) \varrho_{2}(x ; q, u) \phi_{m}(x ; q)=0 \tag{37}
\end{equation*}
$$

where

$$
\varrho_{2}(x ; q, u)=\frac{x^{\log _{q}\left(\frac{1+2(q-1)(1-u)}{q^{4}}\right)}}{\left(-\frac{2(q-1)}{(1+2(q-1)(1-u)) x^{2}} ; q^{2}\right)_{\infty}} .
$$

By multiplying (36) by $\phi_{m}(x ; q)$ and (37) by $\phi_{n}(x ; q)$ and subtracting each other we get

$$
\begin{align*}
& \phi_{m}(x ; q) D_{q}\left(x^{4} \varrho_{2}(x ; q, u) D_{q^{-1}} \phi_{n}(x ; q)\right) \\
& \quad-\phi_{n}(x ; q) D_{q}\left(x^{4} \varrho_{2}(x ; q, u) D_{q^{-1}} \phi_{m}(x ; q)\right) \\
& +\left(\lambda_{n, q}-\lambda_{m, q}\right) x^{2} \varrho_{2}(x ; q, u) \phi_{n}(x ; q) \phi_{m}(x ; q) \\
& \quad+\left((-1)^{m}-(-1)^{n}\right) \varrho_{2}(x ; q, u) \phi_{n}(x ; q) \phi_{m}(x ; q)=0 . \tag{38}
\end{align*}
$$

Since $\varrho_{2}(x ; q, u)$ is an even function, q-integrating on both sides of (38) over \mathbb{R} yields

$$
\begin{align*}
\int_{-\infty}^{\infty} \phi_{m}(x ; q) D_{q} & \left(x^{4} \varrho_{2}(x ; q, u) D_{q^{-1}} \phi_{n}(x ; q)\right) d_{q} x \\
& \quad-\int_{-\infty}^{\infty} \phi_{n}(x ; q) D_{q}\left(x^{4} \varrho_{2}(x ; q, u) D_{q^{-1}} \phi_{m}(x ; q)\right) d_{q} x \\
+ & \left(\lambda_{n, q}-\lambda_{m, q}\right) \int_{-\infty}^{\infty} x^{2} \varrho_{2}(x ; q, u) \phi_{n}(x ; q) \phi_{m}(x ; q) d_{q} x \\
& \quad+\left((-1)^{m}-(-1)^{n}\right) \int_{-\infty}^{\infty} \varrho_{2}(x ; q, u) \phi_{n}(x ; q) \phi_{m}(x ; q) d_{q} x=0 \tag{39}
\end{align*}
$$

which is transformed to

$$
\begin{align*}
& {\left[x^{4} \varrho_{2}(x ; q, u) \phi_{m}(x ; q) D_{q^{-1}} \phi_{n}(x ; q)\right]_{-\infty}^{\infty}} \\
& \quad-\left[x^{4} \varrho_{2}(x ; q, u) \phi_{n}(x ; q) D_{q^{-1}} \phi_{m}(x ; q)\right]_{-\infty}^{\infty} \\
& \quad+\left(\lambda_{n, q}-\lambda_{m, q}\right) \int_{-\infty}^{\infty} x^{2} \varrho_{2}(x ; q, u) \phi_{n}(x ; q) \phi_{m}(x ; q) d_{q} x \\
& \tag{40}\\
& \quad+\left((-1)^{m}-(-1)^{n}\right) \int_{-\infty}^{\infty} \varrho_{2}(x ; q, u) \phi_{n}(x ; q) \phi_{m}(x ; q) d_{q} x=0
\end{align*}
$$

On the other hand, (40) can be simplified as

$$
\begin{align*}
& {\left[x^{2} \varrho_{2}^{*}(x ; q, u)\left(\phi_{m}(x ; q) D_{q^{-1}} \phi_{n}(x ; q)-\phi_{n}(x ; q) D_{q^{-1}} \phi_{m}(x ; q)\right)\right]_{-\infty}^{\infty}} \\
& \quad=\left(\lambda_{m, q}-\lambda_{n, q}\right) \int_{-\infty}^{\infty} \varrho_{2}^{*}(x ; q, u) \phi_{n}(x ; q) \phi_{m}(x ; q) d_{q} x \tag{41}
\end{align*}
$$

in which

$$
\varrho_{2}^{*}(x ; q, u)=x^{2} \varrho_{2}(x ; q, u)=\varrho_{2}^{*}(-x ; q, u)
$$

provided that $(-1)^{\log _{q}\left(\frac{1+2(q-1)(1-u)}{q^{4}}\right)}=1$. Now, since

$$
\operatorname{deg}\left(\phi_{m}(x ; q) D_{q^{-1}} \phi_{n}(x ; q)-\phi_{n}(x ; q) D_{q^{-1}} \phi_{m}(x ; q)\right)=m+n-1
$$

the left hand side of (41) is equal to zero if and only if

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} x^{m+n+1} \varrho_{2}^{*}(x ; q, u)=0 \tag{42}
\end{equation*}
$$

Again if $\max \{m, n\}=N$, relation (42) is equivalent to

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} \frac{x^{2 N+1+\log _{q}\left(\frac{1+2(q-1)(1-u)}{q^{2}}\right)}}{\left(-\frac{2(q-1)}{(1+2(q-1)(1-u)) x^{2}} ; q^{2}\right)_{\infty}}=0 \tag{43}
\end{equation*}
$$

and in the sequal (43) is valid if and only if

$$
2 N-1+\log _{q}(1+2(q-1)(1-u))<0 \quad \text { or } \quad N<\frac{1-\log _{q}(1+2(q-1)(1-u))}{2}
$$

Now, by noting Favard's theorem [5], the orthogonality relation of q-polynomials (34) can be represented as

$$
\begin{equation*}
\int_{-\infty}^{\infty} \varrho_{2}^{*}(x ; q, u) \bar{\phi}_{n}(x ; q, u) \bar{\phi}_{m}(x ; q, u) d_{q} x=\left(\prod_{j=1}^{n} C_{j, q}^{(u)} \int_{-\infty}^{\infty} \varrho_{2}^{*}(x ; q, u) d_{q} x\right) \delta_{n, m} \tag{44}
\end{equation*}
$$

where $\left\{C_{j, q}^{(u)}\right\}$ are derived from (18) as

$$
\begin{array}{r}
\left.C_{j, q}^{(u)}=\left[q^{j+1}\left(q^{2 j}(1+2(1-u)(q-1))(2-2 q) \sigma_{j}+2 q^{j+2}(q-1)-2 q^{2}(q-1) \sigma_{j-1}\right)\right)\right] \\
/\left[q^{4}+q^{4 j}(1+2(1-u)(q-1))^{2}-\left(q^{3}+q\right) q^{2 j}(1+2(1-u)(q-1))\right] .
\end{array}
$$

Therefore, to obtain the norm square value, it just remains to compute the q-integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \varrho_{2}^{*}(x ; q, u) d_{q} x=\int_{-\infty}^{\infty} \frac{x^{\log _{q}\left(\frac{1+2(q-1)(1-u)}{q^{2}}\right)}}{\left(-\frac{2(q-1)}{(1+2(q-1)(1-u)) x^{2}} ; q^{2}\right)_{\infty}} d_{q} x \tag{45}
\end{equation*}
$$

Here we can again use the Ramanujan identity for computing (45) to directly obtain

$$
\begin{aligned}
\int_{-\infty}^{\infty} \varrho_{2}^{*}(x ; q, u) d_{q} x & =2(1-q) \sum_{n=-\infty}^{\infty} \frac{q^{n\left(\log _{q}\left(\frac{1+2(q-1)(1-u)}{q^{2}}\right)+1\right)}}{\left(-\frac{2(q-1)}{1+2(q-1)(1-u)} q^{-2 n} ; q^{2}\right)_{\infty}} \\
& =2(1-q) \sum_{n=-\infty}^{\infty} q^{n\left(\log _{q}\left(\frac{1+2(q-1)(1-u)}{q^{2}}\right)+1\right)} \frac{\left(-\frac{2(q-1)}{1+2(q-1)(1-u)} ; q^{2}\right)_{-n}}{\left(-\frac{2(q-1)}{1+2(q-1)(1-u)} ; q^{2}\right)_{\infty}} \\
& =h_{2} \sum_{n=-\infty}^{\infty} q^{n\left(\log _{q}\left(\frac{1+2(q-1)(1-u)}{q^{2}}\right)+1\right)}\left(-\frac{2(q-1)}{1+2(q-1)(1-u)} ; q^{2}\right)_{-n} \\
& =h_{2} \sum_{n=-\infty}^{\infty} q^{n\left(-\log _{q}\left(\frac{1+2(q-1)(1-u)}{q^{2}}\right)-1\right)}\left(-\frac{2(q-1)}{1+2(q-1)(1-u)} ; q^{2}\right)_{n} \\
& =h_{2} \Psi\left(-\frac{2(q-1)}{1+2(q-1)(1-u)}, 0 ; q^{2} ; q^{\left(-\log _{q}\left(\frac{1+2(q-1)(1-u)}{q^{2}}\right)-1\right)}\right)
\end{aligned}
$$

where

$$
h_{2}=\frac{2(1-q)}{\left(-\frac{2(q-1)}{1+2(q-1)(1-u)} ; q^{2}\right)_{\infty}}
$$

For instance, the polynomial set $\left\{\bar{\phi}_{k}(x ; 0.5,256)\right\}_{k=0}^{N=4}$ is finitely orthogonal with respect to the weight function $\frac{x^{6}}{\left(\frac{x-2}{256} ; \frac{1}{4}\right)_{\infty}}$ on $(-\infty, \infty)$.

Acknowledgements

The work of the first author has been supported by the Alexander von Humboldt Foundation under the grant number: Ref 3.4 - IRN - 1128637 - GF-E.

REFERENCES

[1] R. Álvarez-Nodarse: On characterizations of classical polynomials, J. Comput. Appl. Math. 196(1), 320-337 (2006).
[2] R. Álvarez-Nodarse and J. C. Medem: q-classical polynomials and the q-askey and Nikiforov-Uvarov tableaus, J. Comput. Appl. Math. 135(2), 197-223 (2001).
[3] G. E. Andrews and R. Askey: Classical orthogonal polynomials, Springer, 1985.
[4] I. Area and M. Masjed-Jamei: A class of symmetric q-orthogonal polynomials with four free parameters, Bull. Sci. math. 141, 785-801 (2017).
[5] T. S. Chihara: An introduction to orthogonal polynomials, Gordon and Breach Science Publishers, New York, 1978.
[6] G. Gasper and M. Rahman: Basic hypergeometric series, volume 96 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, second edition, 2004.
[7] M. E. H. Ismail: Classical and Quantum Orthogonal Polynomials in One Variable, volume 98 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2005.
[8] F.H. Jackson: On q-definite integrals, Q. J. Pure Appl. Math. 41, 193-203 (1910).
[9] A. Jirari: Second-order Sturm-Liouville difference equations and orthogonal polynomials, Mem. Am. Math. Soc. 542, 138 p. (1995).
[10] V. Kac and P. Cheung: Quantum calculus, Universitext. Springer-Verlag, New York, 2002.
[11] R. Koekoek, P. A. Lesky, and R. F. Swarttouw: Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010.
[12] M. Masjed-Jamei: A basic class of symmetric orthogonal polynomials using the extended Sturm-Liouville theorem for symmetric functions, J. Math. Anal. Appl. 325(2), 753-775 (2007).
[13] M. Masjed-Jamei: A generalization of classical symmetric orthogonal functions using a symmetric generalization of Sturm-Liouville problems, Integral Transforms Spec. Funct. 18(11-12), 871-883 (2007).
[14] M. Masjed-Jamei: A basic class of symmetric orthogonal functions using the extended Sturm-Liouville theorem for symmetric functions, J. Comput. Appl. Math. 216(1), 128-143 (2008).
[15] M. Masjed-Jamei and I. Area: A basic class of symmetric orthogonal polynomials of a discrete variable, J. Math. Anal. Appl. 399(1), 291-305 (2013).
[16] M. Masjed-Jamei and I. Area: A symmetric generalization of Sturm-Liouville problems in discrete spaces, J. Difference Equ. Appl. 19(9), 1544-1562 (2013).
[17] M. Masjed-Jamei and M. Dehghan: A generalization of Fourier trigonometric series, Comput. Math. Appl. 56(11), 2941-2947 (2008).
[18] M. Masjed-Jamei and W. Koepf: On incomplete symmetric orthogonal polynomials of Jacobi type, Integral Transforms Spec. Funct. 21(9-10), 655-662 (2010).
[19] M. Masjed-Jamei, F. Soleyman, I. Area, and J. J. Nieto: Two finite q-Sturm-Liouville problems and their orthogonal polynomial solutions, Filomat 32(1), 231-244 (2018).
[20] M. Riyasat, S. Khan and T. Nahid: Quantum algebra $\varepsilon_{q}(2)$ and 2D q-Bessel functions, Reports on Mathematical Physics, 83, 191-206 (2019).
[21] M. Riyasat and S. Khan: A determinant approach to q-Bessel polynomials and applications, Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemticas 113, 1571-1583 (2019).
[22] F. Soleyman, M. Masjed-Jamei, and I. Area: A finite class of q-orthogonal polynomials corresponding to inverse gamma distribution, Anal. Math. Phys. 7, 479-492 (2017).

