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1. Introduction

Let us start with the following identity discovered by Ramanujan [10]. For 0 < q < 1,
|a| > q, |b| < 1 and | ba | < |x| < 1, we have

Ψ(a, b; q;x) =

∞∑
n=−∞

(a; q)n
(b; q)n

xn (1)

=

∞∏
n=0

(1− bqn

a )(1− qn+1)(1− qn+1

ax )(1− axqn)

(1− bqn)(1− qn+1

a )(1− bqn

ax )(1− xqn)
,

where

(a; q)n =

n−1∏
j=0

(1− aqj).

We apply this identity (1) for explicitly computing the norm square values of two new
finite classes of symmetric q-orthogonal polynomials. In general, classical q-orthogonal
polynomials are solutions of a q-Sturm-Liouville problem of the form [9, 10]

Ly(x; q) + λq%(x; q)y(x; q) = 0, (2)

where
Ly(x; q) = (Dq(r Dq−1y))(x; q) (r(x; q) > 0, %(x; q) > 0), (3)

with the boundary conditions

α1y(a; q) + β1Dqy(a; q) = 0, α2y(b; q) + β2Dqy(b; q) = 0, (4)

and Dq is the q-difference operator defined by [1, 2, 6]

Dqf(x) =
f(qx)− f(x)

(q − 1)x
(x 6= 0, q 6= 1),

with Dqf(0) := f ′(0), provided that f ′(0) exists. In the q-Sturm-Liouville problem (2)-
(4), there is an orthogonality property for eigenfunctions of equation (3) on (a, b) with
respect to the weight function %(x; q). In other words, if ym(x; q) and yn(x; q) are two
solutions of the problem (2)-(4), then by referring to the boundary conditions (4) at
x = a we have

α1ym(a; q) + β1Dqym(a; q) = 0, and α2yn(a; q) + β2Dqyn(a; q) = 0,

which is also valid for x = b. In the sequel, if the q-analogue of integration by parts
[22, 10] is applied for ym(x; q) and yn(x; q) we find∫ b

a

(ymLyn − ynLym)(x; q)dqx = 0.
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This means that if yn(x; q) and ym(x; q) are two eigenfunctions of the q-difference equa-
tion (2), they are orthogonal with respect to the weight function %(x; q) and∫ b

a

ym(x; q) yn(x; q) %(x; q)dqx = 0, (λm 6= λn), (5)

in which the q-integral operator [8] is defined by∫ x

0

f(t)dqt = (1− q)x
∞∑
j=0

qjf(qjx), (x ∈ A), (6)

where A is a µ-geometric set for fixed µ ∈ C [4] and the right hand series is convergent.
Note that for any arbitrary interval [a, b] we have from (6) that∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx (a, b ∈ A). (7)

Also, from (6) and (7) one can conclude that∫ b

−b
f(t)dqt = b(1− q)

∞∑
n=0

qn (f(bqn) + f(−bqn)) , (b ∈ A). (8)

Finally, if b→∞, (8) changes to [10]∫ ∞
−∞

f(t)dqt = (1− q)
∞∑

n=−∞
qn (f(qn) + f(−qn)) .

Recently many symmetric special functions of continuous type have been generalized
in [12, 13, 14, 17, 18] and a discrete analogue of the main theorem 1 given in this
paper on the linear lattice x(s) = s has been proved in [16]. Also, a basic class of
symmetric orthogonal polynomials of a discrete variable with four free parameters has
been introduced in [15]. In [4], the authors have presented a theorem by which one can
generalize q-Sturm-Liouville problems with symmetric solutions.

Theorem 1. Let φn(x; q) = (−1)nφn(−x; q) be a sequence of symmetric functions
that satisfies the q-difference equation

ϕ(x)DqDq−1φn(x; q) + τ(x)Dqφn(x; q) + (λn,qθ(x) + π(x) + σnη(x))φn(x; q) = 0, (9)

where ϕ(x), τ(x), θ(x), π(x) and η(x) are real functions, σn is defined as

σn =
1− (−1)n

2
=

{
0 n even,

1 n odd,
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and λn,q is a sequence of constants. If ϕ(x), (θ(x) > 0), π(x) and η(x) are even functions
and τ(x) is odd, then∫ b

−b
%∗(x; q)φn(x; q)φm(x; q)dqx =

(∫ b

−b
%∗(x; q)φ2n(x; q)dqx

)
δn,m, δn,m =

{
0 (n 6= m),
1 (n = m),

where
%∗(x; q) = θ(x)%(x; q), (10)

and %(x; q) is a solution of the Pearson q-difference equation

Dq (ϕ(x)%(x; q)) = τ(x)%(x; q),

which is equivalent to
%(qx; q)

%(x; q)
=

(q − 1)xτ(x) + ϕ(x)

ϕ(qx)
.

Of course, the weight function defined in (10) must be positive and even, and the function
ϕ(x)%(x; q) must vanish at x = b see [4].

Using the above theorem, we can introduce two finite sequences of symmetric q-
orthogonal polynomials and obtain their general properties in detail. For this purpose,
we should first refer to basic hypergeometric series

rφs

(
a1, a2, ..., ar
b1, b2, ..., bs

; q; z

)
=

∞∑
k=0

(a1; q)k . . . (ar; q)k
(q; q)k(b1; q)k . . . (bs; q)k

(
(−1)kq(

k
2)
)1+s−r

zk, (11)

where r, s ∈ Z+ and a1, a2, ..., ar, b1, b2, ..., bs, z ∈ C. Note in (11) that

(a; q)∞ =

∞∏
j=0

(1− aqj), for 0 < |q| < 1,

and in order to have a well–defined series in (11), the condition b1, b2, ..., bs 6= q−k for
k = 0, 1, . . . is necessary. The base of definition of such q-hypergeometric series, from
historical point of view, is q-numbers defined by

[z]q =
qz − 1

q − 1
, z ∈ C. (12)

The classical orthogonal q-polynomials are known in the literature as Askey-Schem of
hypergeometric q-orthogonal polynomials [11], see also [3, 7]. Since we need some of
them in order to compare with two polynomials introduced in this paper, here we recall
some of them whose orders are respectively (1, 1), (2, 1) and (2, 0). For instance

Pn(x; a, b; q) =
1

(b−1q−n; q)n
2ϕ1

(
q−n, aqx−1

aq
; q,

x

b

)
,
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are Big q-Laguerre polynomials that satisfy the orthogonality property

∫ aq

bq

(a−1x, b−1x; q)∞
(x; q)∞

Pm(x; a, b; q)Pn(x; a, b; q)dqx

= aq(1− q) (q, a−1b, ab−1q; q)∞
(aq, bq; q)∞

(q; q)n
(aq, bq; q)n

(−abq2)nq(
n
2)δn,m,

where 0 < aq < 1 and b < 0. Also

pn(x; a; q) = 2ϕ1

(
q−n, 0
aq

; q, qx

)
, (13)

are known as the Little q-Laguerre polynomials with the orthogonality property

∞∑
k=0

(aq)k

(q; q)k
pm(qk; a; q)pn(qk; a; q) =

(aq)n

(aq; q)∞

(q; q)n
(aq; q)n

δn,m, (0 < aq < 1),

and

L(α)
n (x; q) =

(qα+1; q)n
(q; q)n

1ϕ1

(
q−n

qα+1 ; q,−qn+α+1x

)
=

1

(q; q)n
2ϕ1

(
q−n,−x

0
; q,−qn+α+1

)
,

are q-Laguerre polynomials with two orthogonality properties

∫ ∞
0

xα

(x−; q)∞
L(α)
m (x; q)L(α)

n (x; q)dx

=
(q−α; q)∞

(q; q)∞

(qα+1; q)n
(q; q)nqn

Γ(−α)Γ(α+ 1)δn,m, (α > −1),

and

∞∑
−∞

qkα+k

(−cqk; q)∞
L(α)
m (cqk; q)L(α)

n (cqk; q)

=
(q,−cqα+1,−c−1q−α; q)∞

(qα+1,−c,−c−1q; q)∞
(qα+1; q)n
(q; q)nqn

δn,m (α > −1, c > 0).

The Little q-Jacobi polynomials are defined by

Jn(x; a, b; q) = 2ϕ1

(
q−n, abqn+1

aq
; q, qx

)
, (14)
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which satisfy the orthogonality property

∞∑
k=0

(bq; q)k
(q; q)k

(aq)kJm(qk; a, b; q)Jn(qk; a, b; q)

=
(abq2; q)∞
(aq; q)∞

(1− abq)(aq)n

(1− abq2n+1)

(q, bq; q)n
(aq, abq; q)n

δn,m,

where 0 < aq < 1 and bq < 1 and

Mn(q−x; b, c; q) = 2ϕ1

(
q−n, q−x

bq
; q,−q

n+1

c

)
,

are known as q-Meixner polynomials with the orthogonality property

∞∑
x=0

(bq; q)x
(q,−bcq; q)x

cxq(
x
2)Mm(q−x; b, c; q)Mn(q−x; b, c; q)

=
(−c; q)∞

(−bcq; q)∞
(q,−c−1q; q)n

(bq; q)n
q−nδn,m (0 ≤ bq < 1, c > 0).

Finally

hn(x; q) = q(
n
2)2ϕ1

(
q−n, x−1

0
; q,−qx

)
= xn2ϕ0

(
q−n, q−n+1

− ; q2,
q2n−1

x2

)
,

are Discrete q-Hermite polynomials with the orthogonality property

∫ 1

−1
(qx,−qx; q)∞hm(x; q)hn(x; q)dqx

= (1− q)(q; q)n(q,−1,−q; q)∞q(
n
2)δn,m,

and

V (a)
n (x; q) = (−a)nq−(n

2)2ϕ0

(
q−n, x
− ; q,

qn

a

)
,

are Al-Salam-Carlitz II polynomials that satisfy the orthogonality property

∫ 1

a

(qx, a−1qx; q)∞V
(a)
m (x; q)V (a)

n (x; q)dqx

= (−a)n(1− q)(q; q)n(q, a, a−1q; q)∞q
(n
2)δn,m (a < 0).

Here Let us add that the q-Bessel polynomials are also important in certain problems of
mathematical physics; for example, they appear in the study of electrical networks and
when the wave equation is considered in spherical coordinates, see e.g. [20, 21].
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2. Two finite sequences of symmetric q-orthogonal polynomials

In this section, we introduce two finite classes of symmetric orthogonal q-polynomials
which are particular solutions of q-difference equation (9) and have not been considered
in [4]. It is straightforward to check [4, 12] that if ϕ(x) is a polynomial of degree at
most four, τ(x) an odd polynomial of degree at most three, θ(x) a symmetric quadratic
polynomial and π(x) and η(x) are two constants, one can find symmetric polynomial
solutions for equation (9). By noting these comments, recently in [4], a q-difference
equation of type (9) has been introduced as

x2
(
ax2 + b

)
DqDq−1φn(x; q) + x

(
cx2 + d

)
Dqφn(x; q)

−
(
[n]q (c− [1− n]qa)x2 + σnd

)
φn(x; q) = 0, (15)

whose explicit q-polynomial solution is

φn(x; q) =

[n
2 ]∑

k=0

q(k−1)kxn−2k
[[n

2

]
k

]
q2

[n
2 ]−k−1∏
j=0

a[2j + σn + n− 1]q + cq2j+σn+n−1

b[
(
2j + (−1)n+1 + 2

)
]q + dq2j+(−1)n+1+2

,

(16)

where [
n

m

]
q

=
(q; q)n

(q; q)m(q; q)n−m
,

denotes the q-binomial coefficient and [z]q is the q-number defined in (12).

Also, it is shown in [4] that the monic form of these polynomials satisfies a three term
recurrence relation as

φ̄n+1(x; q) = xφ̄n(x; q)−Cn,qφ̄n−1(x; q), with φ̄0(x; q) = 1, φ̄1(x; q) = x, (17)

where

Cn,q = [qn+1(q2n(a+ c(q − 1))((d− dq)σn − b) + qn(ab(q2 + 1) + ad(q − 1)q2 + bc(q − 1))

− aq2(b+ d(q − 1)σn−1))]/[a2q4 + q4n(a+ c(q − 1))2 − a(q3 + q)q2n(a+ c(q − 1))]. (18)

There are two special cases of equation (15) whose polynomial solutions are finitely
orthogonal on (−∞,∞).

2.1. First sequence

For u, v ∈ R, consider the equation

x2
(
x2 + 1

)
DqDq−1φn(x; q)− 2x

(
(u+ v − 1)x2 + u

)
Dqφn(x; q)

+
(
[n]q (2u+ 2v − 2 + [1− n]q)x

2 + 2uσn
)
φn(x; q) = 0, (19)
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whose monic polynomial solution can be represented as

φ̄n(x; q, u, v) = K1x
σn

2φ1

(
q−n+σn , (1− 2(q − 1)(u+ v − 1))qn+σn−1

(1− 2u(q − 1))q2σn+1 ; q2;− q2x2
)
,

(20)

where

K1 =
q[n/2]([n/2]−1)(qn+σn−1(1− 2(u+ v − 1)(q − 1)); q2)[n/2]

(q(−1)
n+2(1− 2u(q − 1)); q2)[n/2]

.

It is not difficult to verify that these polynomials (20) are connected with the Little
q-Jacobi polynomials (14) as follows

φn(x; q, u, v) =

xσnJ[n2 ]

(
−x2; (1− 2u(q − 1))

1 + q2 + (−1)n(1− q2)

2q
,

1− 2(q − 1)(u+ v − 1)

q2(1− 2u(q − 1))
; q2
)
.

(21)

Moreover, as a special case of polynomials (21) for u + v = 1, one can derive the Little
q-Laguerre polynomials (13) as

φn(x; q, u, 1− u) = xσnp[n2 ](−x2; (1− 2u(q − 1))(
1 + q2 + (−1)n(1− q2)

2q
); q2).

In order to prove the orthogonality of the finite set {φ̄n(x; q, u, v)}Nn=0 on (−∞,∞),
it is necessary to impose a specific condition, which indeed leads to a finite orthogonality

[22, 19] asN <
1−logq(1−2(q−1)(u+v−1))

2 , because if equation (19) is written in a self-adjoint
form, then

Dq

(
x2(x2 + 1)%1(x; q, u, v)Dq−1φn(x; q)

)
+
(
λn,qx

2 + 2uσn
)
%1(x; q, u, v)φn(x; q) = 0,

(22)
and

Dq

(
x2(x2 + 1)%1(x; q, u, v)Dq−1φm(x; q)

)
+
(
λm,qx

2 + 2uσm
)
%1(x; q, u, v)φm(x; q) = 0,

(23)
where

%1(x; q, u, v) = x
logq

(
1−2(q−1)(u+v−1)

q4

) (
− 1
q2x2 ; q2

)
∞(

− 1−2u(q−1)
(1−2(q−1)(u+v−1))x2 ; q2

)
∞

.

Now, by multiplying (22) by φm(x; q) and (23) by φn(x; q) and subtracting each other
we get

φm(x; q)Dq

(
x2(x2 + 1)%1(x; q, u, v)Dq−1φn(x; q)

)
− φn(x; q)Dq

(
x2(x2 + 1)%1(x; q, u, v)Dq−1φm(x; q)

)
+ (λn,q − λm,q)x2%1(x; q, u, v)φn(x; q)φm(x; q)

+ ((−1)m − (−1)n)u%1(x; q, u, v)φn(x; q)φm(x; q) = 0. (24)
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Since the q-integration of any odd integrand over a symmetric interval is equal to zero
and %1(x; q, u, v) is an even function, q-integrating on both sides of (24) over R yields∫ ∞

−∞
φm(x; q)Dq

(
x2(x2 + 1)%1(x; q, u, v)Dq−1φn(x; q)

)
dqx

−
∫ ∞
−∞

φn(x; q)Dq

(
x2(x2 + 1)%1(x; q, u, v)Dq−1φm(x; q)

)
dqx

+ (λn,q − λm,q)
∫ ∞
−∞

x2%1(x; q, u, v)φn(x; q)φm(x; q) dqx

+ u((−1)m − (−1)n)

∫ ∞
−∞

%1(x; q, u, v)φn(x; q)φm(x; q) dqx = 0, (25)

which can be transformed, by using the rule of q-integration by parts, to[
x2(x2 + 1)%1(x; q, u, v)φm(x; q)Dq−1φn(x; q)

]∞
−∞

−
[
x2(x2 + 1)%1(x; q, u, v)φn(x; q)Dq−1φm(x; q)

]∞
−∞

+ (λn,q − λm,q)
∫ ∞
−∞

x2%1(x; q, u, v)φn(x; q)φm(x; q)dqx

+ u((−1)m − (−1)n)

∫ ∞
−∞

%1(x; q, u, v)φn(x; q)φm(x; q)dqx = 0. (26)

In other words, (26) is simplified as[
(x2 + 1)%∗1(x; q, u, v)

(
φm(x; q)Dq−1φn(x; q)− φn(x; q)Dq−1φm(x; q)

)]∞
−∞

= (λm,q − λn,q)
∫ ∞
−∞

%∗1(x; q, u, v)φn(x; q)φm(x; q)dqx, (27)

in which
%∗1(x; q, u, v) = x2 %1(x; q, u, v) = %∗1(−x; q, u, v),

provided that (−1)
logq

(
1−2(q−1)(u+v−1)

q4

)
= 1.

Now since

deg
(
φm(x; q)Dq−1φn(x; q)− φn(x; q)Dq−1φm(x; q)

)
= m+ n− 1,

the left hand side of (27) is zero if

lim
x→±∞

xm+n+1%∗1(x; q, u, v) = 0. (28)

By taking max{m,n} = N , relation (28) would be equivalent to

lim
x→±∞

x
2N+1+logq

(
1−2(q−1)(u+v−1)

q2

) (
− 1
q2x2 ; q2

)
∞(

− 1−2u(q−1)
(1−2(q−1)(u+v−1))x2 ; q2

)
∞

= 0. (29)



[Author and title] 10

And (29) is valid if and only if

2N−1+logq (1− 2(q − 1)(u+ v − 1)) < 0 or N <
1− logq(1− 2(q − 1)(u+ v − 1))

2
.

Now, by noting Favard’s theorem [5], the orthogonality relation of q-polynomials (20)
can be represented as

∫ ∞
−∞

%∗1(x; q, u, v)φ̄n(x; q, u, v)φ̄m(x; q, u, v)dqx =

 n∏
j=1

C
(u,v)
j,q

∫ ∞
−∞

%∗1(x; q, u, v)dqx

 δn,m,

(30)

where {C(u,v)
j,q } are directly derived from (18) as

C
(u,v)
j,q =

[qj+1(q2j(1−2(u+v−1)(q−1))(2u(q−1)σj−1)+qj((q2+1)−2u(q−1)q2−2(u+v−1)(q−1))

−q2(1−2u(q−1)σj−1))]/[q4+q4j(1−2(u+v−1)(q−1))2−(q3+q)q2j(1−2(u+v−1)(q−1))].

Hence, in order to obtain the norm square value, it just remains to compute the
q-integral

∫ ∞
−∞

%∗1(x; q, u, v)dqx =

∫ ∞
−∞

x
logq

(
1−2(q−1)(u+v−1)

q2

) (
− 1
q2x2 ; q2

)
∞(

− 1−2u(q−1)
(1−2(q−1)(u+v−1))x2 ; q2

)
∞

dqx.

(31)
For this purpose, we can directly use the Ramanujan identity (1) for computing the
q-integral (31) as follows∫ ∞

−∞
%∗1(x; q, u, v)dqx = 2(1−q)

∞∑
n=−∞

q
n
(
logq

(
1−2(q−1)(u+v−1)

q2

)
+1

) (
−q−2q−2n; q2

)
∞(

− 1−2u(q−1)
1−2(q−1)(u+v−1)q

−2n; q2
)
∞

= 2(1− q)
∞∑

n=−∞
q
n
(
logq

(
1−2(q−1)(u+v−1)

q2

)
+1

)(− 1−2u(q−1)
1−2(q−1)(u+v−1) ; q

2
)
−n

(
−q−2; q2

)
∞(

− 1−2u(q−1)
1−2(q−1)(u+v−1) ; q

2
)
∞

(−q−2; q2)−n

= h1

∞∑
n=−∞

q
n
(
logq

(
1−2(q−1)(u+v−1)

q2

)
+1

) (
− 1−2u(q−1)

1−2(q−1)(u+v−1) ; q
2
)
−n

(−q−2; q2)−n

= h1

∞∑
n=−∞

q
n
(
− logq

(
1−2(q−1)(u+v−1)

q2

)
−1

) (
− 1−2u(q−1)

1−2(q−1)(u+v−1) ; q
2
)
n

(−q−2; q2)n

= h1Ψ

(
− 1− 2u(q − 1)

1− 2(q − 1)(u+ v − 1)
,−q−2; q2; q

(
− logq

(
1−2(q−1)(u+v−1)

q2

)
−1

))
, (32)
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where

h1 =
2(1− q)

(
−q−2; q2

)
∞(

− 1−2u(q−1)
1−2(q−1)(u+v−1) ; q

2
)
∞

.

For instance, the polynomial set {φ̄k(x; 0.5, 128, 896)}N=5
k=0 is finitely orthogonal with

respect to the weight function
x8(−4x−2; 14 )∞
(− 129

1024x
−2; 14 )∞

on (−∞,∞).

2.2. Second sequence

For u ∈ R, consider the equation

x4DqDq−1φn(x; q) + 2x
(
(1− u)x2 + 1

)
Dqφn(x; q)

+
(
[n]q (2u− 2 + [1− n]q)x

2 + 2σn
)
φn(x; q) = 0, (33)

whose monic polynomial solution can be represented as

φ̄n(x; q, u) = K2x
σn

2φ0

(
q−n+σn , (1 + (2− 2u)(q − 1))qn+σn−1

− ; q2;
q1−2σnx2

2(1− q)

)
(34)

= xn 2φ1

(
q−n+σn , 0

q3−2n(1 + (2− 2u)(q − 1))−1
; q2;

2q2(1− q)
(1 + (2− 2u)(q − 1))x2

)
,

(35)

where

K2 =
(qn+σn−1(1− 2(u− 1)(q − 1)); q2)[n/2]

(2− 2q)[n/2] q[n/2](2+(−1)n+1)
.

Once again, it is necessary for orthogonality of the finite set {φ̄n(x; q, u)}Nn=0 to impose

a specific condition as N <
1−logq(1+2(q−1)(1−u))

2 , because if we write equation (33) in a
self-adjoint form, then

Dq

(
x4%2(x; q, u)Dq−1φn(x; q)

)
+
(
λn,qx

2 + 2σn
)
%2(x; q, u)φn(x; q) = 0, (36)

and

Dq

(
x4%2(x; q, u)Dq−1φm(x; q)

)
+
(
λm,qx

2 + 2σm
)
%2(x; q, u)φm(x; q) = 0, (37)

where

%2(x; q, u) =
x
logq

(
1+2(q−1)(1−u)

q4

)
(− 2(q−1)

(1+2(q−1)(1−u))x2 ; q2)∞
.

By multiplying (36) by φm(x; q) and (37) by φn(x; q) and subtracting each other we get

φm(x; q)Dq

(
x4%2(x; q, u)Dq−1φn(x; q)

)
− φn(x; q)Dq

(
x4%2(x; q, u)Dq−1φm(x; q)

)
+ (λn,q − λm,q)x2%2(x; q, u)φn(x; q)φm(x; q)

+ ((−1)m − (−1)n)%2(x; q, u)φn(x; q)φm(x; q) = 0. (38)
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Since %2(x; q, u) is an even function, q-integrating on both sides of (38) over R yields∫ ∞
−∞

φm(x; q)Dq

(
x4%2(x; q, u)Dq−1φn(x; q)

)
dqx

−
∫ ∞
−∞

φn(x; q)Dq

(
x4%2(x; q, u)Dq−1φm(x; q)

)
dqx

+ (λn,q − λm,q)
∫ ∞
−∞

x2%2(x; q, u)φn(x; q)φm(x; q) dqx

+ ((−1)m − (−1)n)

∫ ∞
−∞

%2(x; q, u)φn(x; q)φm(x; q) dqx = 0, (39)

which is transformed to[
x4%2(x; q, u)φm(x; q)Dq−1φn(x; q)

]∞
−∞

−
[
x4%2(x; q, u)φn(x; q)Dq−1φm(x; q)

]∞
−∞

+ (λn,q − λm,q)
∫ ∞
−∞

x2%2(x; q, u)φn(x; q)φm(x; q)dqx

+ ((−1)m − (−1)n)

∫ ∞
−∞

%2(x; q, u)φn(x; q)φm(x; q)dqx = 0. (40)

On the other hand, (40) can be simplified as[
x2%∗2(x; q, u)

(
φm(x; q)Dq−1φn(x; q)− φn(x; q)Dq−1φm(x; q)

)]∞
−∞

= (λm,q − λn,q)
∫ ∞
−∞

%∗2(x; q, u)φn(x; q)φm(x; q)dqx, (41)

in which
%∗2(x; q, u) = x2 %2(x; q, u) = %∗2(−x; q, u),

provided that (−1)
logq

(
1+2(q−1)(1−u)

q4

)
= 1. Now, since

deg
(
φm(x; q)Dq−1φn(x; q)− φn(x; q)Dq−1φm(x; q)

)
= m+ n− 1,

the left hand side of (41) is equal to zero if and only if

lim
x→±∞

xm+n+1%∗2(x; q, u) = 0. (42)

Again if max{m,n} = N , relation (42) is equivalent to

lim
x→±∞

x
2N+1+logq

(
1+2(q−1)(1−u)

q2

)
(− 2(q−1)

(1+2(q−1)(1−u))x2 ; q2)∞
= 0, (43)
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and in the sequal (43) is valid if and only if

2N − 1 + logq (1 + 2(q − 1)(1− u)) < 0 or N <
1− logq(1 + 2(q − 1)(1− u))

2
.

Now, by noting Favard’s theorem [5], the orthogonality relation of q-polynomials (34)
can be represented as∫ ∞

−∞
%∗2(x; q, u)φ̄n(x; q, u)φ̄m(x; q, u)dqx =

 n∏
j=1

C
(u)
j,q

∫ ∞
−∞

%∗2(x; q, u)dqx

 δn,m, (44)

where {C(u)
j,q } are derived from (18) as

C
(u)
j,q = [qj+1(q2j(1 + 2(1− u)(q − 1))(2− 2q)σj + 2qj+2(q − 1)− 2q2(q − 1)σj−1))]

/[q4 + q4j(1 + 2(1− u)(q − 1))2 − (q3 + q)q2j(1 + 2(1− u)(q − 1))].

Therefore, to obtain the norm square value, it just remains to compute the q-integral∫ ∞
−∞

%∗2(x; q, u)dqx =

∫ ∞
−∞

x
logq

(
1+2(q−1)(1−u)

q2

)
(− 2(q−1)

(1+2(q−1)(1−u))x2 ; q2)∞
dqx. (45)

Here we can again use the Ramanujan identity for computing (45) to directly obtain∫ ∞
−∞

%∗2(x; q, u)dqx = 2(1− q)
∞∑

n=−∞

q
n
(
logq

(
1+2(q−1)(1−u)

q2

)
+1

)
(
− 2(q−1)

1+2(q−1)(1−u)q
−2n; q2

)
∞

= 2(1− q)
∞∑

n=−∞
q
n
(
logq

(
1+2(q−1)(1−u)

q2

)
+1

)(− 2(q−1)
1+2(q−1)(1−u) ; q

2
)
−n(

− 2(q−1)
1+2(q−1)(1−u) ; q

2
)
∞

= h2

∞∑
n=−∞

q
n
(
logq

(
1+2(q−1)(1−u)

q2

)
+1

)(
− 2(q − 1)

1 + 2(q − 1)(1− u)
; q2
)
−n

= h2

∞∑
n=−∞

q
n
(
− logq

(
1+2(q−1)(1−u)

q2

)
−1

)(
− 2(q − 1)

1 + 2(q − 1)(1− u)
; q2
)
n

= h2Ψ

(
− 2(q − 1)

1 + 2(q − 1)(1− u)
, 0; q2; q

(
− logq

(
1+2(q−1)(1−u)

q2

)
−1

))
,

where

h2 =
2(1− q)(

− 2(q−1)
1+2(q−1)(1−u) ; q

2
)
∞

.

For instance, the polynomial set {φ̄k(x; 0.5, 256)}N=4
k=0 is finitely orthogonal with respect

to the weight function x6

( x−2

256 ; 14 )∞
on (−∞,∞).
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