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Abstract

An interesting statistical result, established in a 1993 paper by
Shapiro and Hamilton in considering a certain type of theoret-
ical tournament, is re-visited and leads to a new representation
of the general Catalan number as a binomial coefficient sum.
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Introduction

Two teams compete in a first-to-n games, World Series type, tournament
(of maximum game duration 2n − 1) with, for each independent game, a
respective constant win probability of p and q = 1− p, where 0 < p, q < 1;
it is assumed that no game is drawn. In 1993 Shapiro and Hamilton [1]
considered such a situation and, in particular, for prescribed n > 0 the
expected number of games to be played before either team wins. Denoting
this quantity as En, and the (k + 1)th Catalan number as

ck =
1

k + 1

(
2k
k

)
, k = 0, 1, 2, . . . , (1)

the following result was stated and proven.

Theorem (Shapiro & Hamilton) For n ≥ 1,

En
n

=
n−1∑
k=0

ck(pq)k.

This is an appealing and surprising form for En/n, since as a polynomial
in pq it acts as an ordinary generating function for finite n-subsequences
of the (infinite) Catalan sequence {c0, c1, c2, c3, c4, . . .} = {1, 1, 2, 5, 14, . . .}.
Accordingly, in this paper the result is used to produce a new formulation
of the general Catalan number. Our starting point is a different version of
En, namely,

En = n
n∑
k=1

(
2n− k
n− k

)
(pq)n−k(pk + qk), n ≥ 1, (2)

which is accessible via undergraduate probability theory and requires, there-
fore, no supporting analysis (in fact it is proven formally in [1], in a mecha-
nistic manner, en route to the above Theorem, but written with an incorrect
lower limit k = 0). Equation (2) suggests that pk + qk is expressible as a
series in pq, a question that was the motivation for the work presented here.
Writing x = pq ∈ (0, 1

4 ], and introducing the function

Fn(x) = pn + qn, n ≥ 0, (3)

scrutiny of a few low order cases confirms the answer as a positive one for
these:

F0(x) = p0 + q0 = 2,



F1(x) = p1 + q1 = 1,

F2(x) = p2 + q2 = (p+ q)2 − 2pq = 1− 2x,

F3(x) = p3 + q3 = (p+ q)3 − 3pq(p+ q) = 1− 3x,

F4(x) = p4 + q4 = (p+ q)4 − 4pq(p2 + q2)− 6p2q2

= 1− 4xF2(x)− 6x2

= 1− 4x+ 2x2,

F5(x) = p5 + q5 = (p+ q)5 − 5pq(p3 + q3)− 10p2q2(p+ q)

= 1− 5xF3(x)− 10x2

= 1− 5x+ 5x2,

F6(x) = p6 + q6 = (p+ q)6 − 6pq(p4 + q4)− 15p2q2(p2 + q2)− 20p3q3

= 1− 6xF4(x)− 15x2F2(x)− 20x3

= 1− 6x+ 9x2 − 2x3, (4)

and so on. We find an appropriate polynomial form for Fn(x), and from
it establish a novel binomial coefficient sum representation of the Catalan
number defined in (1). This is given in a later section, before which prop-
erties of the function—relevant to the formulation or considered to be of
mathematical interest in their own right—are detailed.

Properties of Fn(x)

First, we observe that Fn(x) satisfies a simple linear second order recur-
rence equation (with starting values F0(x) = 2, F1(x) = 1).

Lemma 1 For n ≥ 0,

Fn+2(x)− Fn+1(x) + xFn(x) = 0.

Proof Consider

Fn+2(x) = pn+2 + qn+2

= pn+1p+ qn+1q

= pn+1(1− q) + qn+1(1− p)
= pn+1 + qn+1 − pq(pn + qn)

= Fn+1(x)− xFn(x).2

Remark 1 The sequence {F0(−1), F1(−1), F2(−1), . . .} is Fibonacci-like, the
well known Fibonacci numbers F ∗0 = 0, F ∗1 = 1, F ∗2 = 1, F ∗3 = 2, F ∗4 = 3,
F ∗5 = 5, F ∗6 = 8, . . . , say, being generated (given F ∗0 , F

∗
1 ) from the re-

cursion F ∗n+2 − F ∗n+1 − F ∗n = 0 which corresponds in form to that above



for x = −1 (probabilistically impossible, of course, in our tournament
context).1 The Fibonacci polynomials F ∗0 (x), F ∗1 (x), F ∗2 (x), etc., satisfy
F ∗n+2(x) = xF ∗n+1(x) + F ∗n(x) (with F ∗0 (x), F ∗1 (x) suitably defined), but
cannot be related to our polynomials in a direct fashion; we shall, though,
mention Fibonacci polynomials again (see just before Lemma 5).

Lemma 2 The (ordinary) generating function for the sequence of poly-
nomials {F0(x), F1(x), F2(x), . . .} is

O(y;x) =
∞∑
n=0

Fn(x)yn =
2− y

xy2 − y + 1
.

Proof Consider the assumed generating function

O(y;x) = F0(x) + F1(x)y + F2(x)y2 + F3(x)y3 + · · · ,

and define

S1(y;x) = F1(x) + F2(x)y + F3(x)y2 + F4(x)y3 + · · · ,
S2(y;x) = F2(x) + F3(x)y + F4(x)y2 + F5(x)y3 + · · · ,

which, using the known values for F0(x) and F1(x), can be written in terms
of O(y;x) as

S1(y;x) =
1
y

[O(y;x)− F0(x)] =
1
y

[O(y;x)− 2],

S2(y;x) =
1
y2

[O(y;x)− F0(x)− F1(x)y] =
1
y2

[O(y;x)− 2− y].

Substituting these into the functional equation

S2(y;x)− S1(y;x) + xO(y;x) = 0

consistent with the Lemma 1 recursion gives the result when solved for
O(y;x).2

Corollary 1 By construction (this is a straightforward matter to check),
O(y;x) satisfies the P.D.E.

(2− y)(xy2 − y + 1)
∂O(y;x)
∂y

− (xy2 − 4xy + 1)O(y;x) = 0.

1In fact the sequence {F0(−1), F1(−1), F2(−1), . . .} describes the sequence of Lucas
numbers because of the initial values F0(−1) = 2, F1(−1) = 1. Moreover, the (n+ 1)th
Lucas polynomial Ln(x), say, is expressible as Ln(x) = xnFn(−x−2), and its (known)
generating function readily recovers Lemma 2 (reader exercise); Ln(x) is defined in (A11)
of the Appendix.



Lemma 3 Fn(x) has the closed form

Fn(x) =
1
2n
[
(1 +

√
1− 4x)n + (1−

√
1− 4x)n

]
, n ≥ 0.

Proof A The characteristic equation for the recursion of Lemma 1 is 0 =
λ2 − λ+ x, with roots λ1,2(x) = 1

2 (1±
√

1− 4x). For λ1 6= λ2, the general
solution

Fn(x) = A(λ1)n +B(λ2)n

for n ≥ 0 yields the given form Fn(x) = (λ1)n + (λ2)n as a particular solu-
tion upon applying the initial values for F0(x), F1(x) (⇒ A = B = 1).2

Proof B By definition, x = pq = p(1 − p) ⇒ p(x) = 1
2 (1 ±

√
1− 4x),

q(x) = 1− p(x) = 1
2 (1∓

√
1− 4x), from which Lemma 3 follows by (3).2

Lemma 3 Example: n = 4

24F4(x) = (1 +
√

1− 4x)4 + (1−
√

1− 4x)4

=
[
1 + 4

√
1− 4x+ 6(1− 4x) + 4(

√
1− 4x)3 + (1− 4x)2

]
+
[
1− 4

√
1− 4x+ 6(1− 4x)− 4(

√
1− 4x)3 + (1− 4x)2

]
= 2[1 + 6(1− 4x) + (1− 4x)2]

= 16(1− 4x+ 2x2)

⇒ F4(x) = 1− 4x+ 2x2. (5)

Remark 2 The excluded case λ1 = λ2 in Proof A corresponds to x taking
(maximum) value 1

4 . It gives a general solution Fn( 1
4 ) = (Cn+D)( 1

2 )n, and
in turn a particular one Fn( 1

4 ) = 21−n (n ≥ 0) in agreement with Lemma 3.

The following result has been obtained using the Maple package “FPS.mpl”
(see [2,3] for more information) in combination with “hsum6.mpl” of the
author W.A.K.2 To find the assumed hypergeometric power series repre-
sentation Fn(x) =

∑
k Ak(n, x)xk, FPS.mpl first finds a linear differential

equation for Fn(x) which is converted into a linear recurrence equation for
the coefficients Ak(n, x); this is found to be of first order and hence Fn(x)
is a hypergeometric function. Each of Lemmas 1-3 given so far can also be
generated by algebraic computation without difficulty.

Lemma 4 For n ≥ 1, Fn(x) can be written as the explicit polynomial

Fn(x) = n

[ 1
2n]∑
k=0

1
n− k

(
n− k
k

)
(−x)k,

2Available at http://www.mathematik.uni-kassel.de/∼koepf/Publikationen.



the upper limit [1
2n] denoting the greatest integer not exceeding 1

2n.

Lemma 4 Example: n = 6

F6(x) = 6
3∑
k=0

1
6− k

(
6− k
k

)
(−x)k

=
(

6
0

)
(−x)0 +

6
5

(
5
1

)
(−x)1

+
3
2

(
4
2

)
(−x)2 + 2

(
3
3

)
(−x)3

= 1− 6x+ 9x2 − 2x3. (6)

Corollary 2 Associated with the Lemma 4 form of Fn(x) is the hyperge-
ometric representation (in standard notation)

Fn(x) = lim
ε→0

{
2F1

(
− 1

2n,−
1
2 (n− 1)

−(n− 1) + ε

∣∣∣∣ 4x
)}

, n ≥ 1.

Remark 3 Without the Corollary 2 interpretation of Fn(x) as a limit, the
hypergeometric series therein would otherwise be undefined strictly speak-
ing because of terms of indeterminate form 0

0 .

Remark 4 Equating Fn(x) as stated in Lemmas 3,4 gives an identity which
holds for n ≥ 1 and is a special case of Identity No. 1.64 in Gould’s well
known listing [4, p.8] with z = −4x. On a historical point, note that Iden-
tity No. 1.64 is itself a special case of equation (1) in Gould’s 1999 paper
“The Girard-Waring Power Sum Formulas for Symmetric Functions and
Fibonacci Sequences” (Fib. Quart., 37(2), pp.135-140). The latter is but
one of three identities (termed the Girard-Waring formulas) which, accord-
ing to Gould, are particular instances of an even more general formula first
found by Albert Girard in the 17th century and given later, in the 18th
century, by Edward Waring for sums of powers of roots of a polynomial.

With reference to Remark 1, an interesting result we prove by induction
is an analogue of the recurrence F ∗n+1(x)F ∗n−1(x)− F ∗2n (x) = (−1)n which
exists for the aforementioned Fibonacci polynomials.

Lemma 5 For n ≥ 1,

Fn+1(x)Fn−1(x)− F 2
n(x) = (1− 4x)xn−1.

Proof A The result holds for n = 1, with each side of the equation 1− 4x.
Suppose it is true for n = k ≥ 1, and consider the case when n = k + 1.



Then

Fk+2(x)Fk(x) = [Fk+1(x)− xFk(x)]Fk(x)

= Fk+1(x)[Fk+1(x) + xFk−1(x)]− xF 2
k (x)

using Lemma 1 twice (i.e., for n = k, k − 1 respectively). Continuing,

= F 2
k+1(x) + [Fk+1(x)Fk−1(x)− F 2

k (x)]x

= F 2
k+1(x) + (1− 4x)xk

by assumption, and so the inductive step is upheld.2

Proof B For x 6= 1
4 then, from Proof A of Lemma 3, Fn(x) = (λ1)n + (λ2)n

with λ1 + λ2 = 1 and λ1λ2 = x (λ1 6= λ2), whence

Fn+2(x)Fn(x)− F 2
n+1(x)

= [(λ1)n+2 + (λ2)n+2][(λ1)n + (λ2)n]− [(λ1)n+1 + (λ2)n+1]2

= (λ1)n(λ2)n[(λ1)2 + (λ2)2 − 2λ1λ2]

= (λ1λ2)n[(λ1 + λ2)2 − 4λ1λ2]

= xn(1− 4x).2

Lemma 5 Example: n = 4

l.h.s. = F5(x)F3(x)− F 2
4 (x)

= (1− 5x+ 5x2)(1− 3x)− (1− 4x+ 2x2)2

= 1− 8x+ 20x2 − 15x3 − (1− 8x+ 20x2 − 16x3 + 4x4)

= x3(1− 4x)

= r.h.s. (7)

Particular Sequences

Here we examine—purely from a mathematical point of interest—three se-
quences {F0(x), F1(x), F2(x), . . .} arising from particular values of x.

I: x = 1
4

The sequence {F0( 1
4 ), F1( 1

4 ), F2( 1
4 ), . . .}, with general term Fn( 1

4 ) = 21−n

for n ≥ 0 (see Remark 2), satisfies the non-linear Lemma 5 recursion triv-
ially, as it does that of Lemma 1. We also note that

lim
n→∞

{
Fn( 1

4 )
Fn−1( 1

4 )

}
=

1
2
, (8)



the ratio Fn( 1
4 )/Fn−1( 1

4 ) itself taking this constant value for n ≥ 1.

II: x = 1

The sequence {F0(1), F1(1), F2(1), . . .} has, by Lemma 3, general term

Fn(1) =
1
2n
[
(1 +

√
3i)n + (1−

√
3i)n

]
=

{
2(−1)n 3 | n
(−1)n−1 otherwise (9)

for n ≥ 0 (see also, in the light of Lemma 4, Identity No. 1.68 of [4]).
The closed form here is easy to establish once it is realised that 1

2 (1±
√

3i)
are the two complex cube roots of −1, since it is then immediate that
Fn+3(1) = −Fn(1). Using this for values of n ≥ 0 in conjunction with
starting values F0(1) = 2, F1(1) = 1 and F2(1) = −1, the result follows
easily by inspection. In this case the ratio of terms Fn(1)/Fn−1(1) has no
limit for large n, for it takes the self-repeating values 1

2 ,−1, 2, 1
2 ,−1, 2, . . . ,

as n = 1, 2, 3, . . .

Remark 5 Since we have a closed form, as a further check for this case we
show that the general term (9) indeed satisfies the linear recursion derived at
the start of the section. Suppose, firstly, 3 | n, so that Fn(1) = 2(−1)n with
(3 thus being a factor of neither n+ 1 nor n+ 2) Fn+1(1) = (−1)(n+1)−1 =
(−1)n and Fn+2(1) = (−1)(n+2)−1 = (−1)n+1, whence Lemma 1 holds. If,
on the other hand, 3 does not divide n then Fn(1) = (−1)n−1 and there
are two further cases to consider: (i) 3 | n+ 2 but not n+ 1 (in which case
Fn+1(1) = (−1)n and Fn+2(1) = 2(−1)n), or (ii) 3 | n + 1 but not n + 2
(giving Fn+1(1) = 2(−1)n+1, Fn+2(1) = (−1)n+1); both render Lemma 1
true. Lemma 5 can be validated by a similar type of argument which we
leave as an exercise for the keen reader.

III: x = −1

We state the following merely for completeness. Lemma 3 gives

Fn(−1) =
1
2n
[
(1 +

√
5)n + (1−

√
5)n
]
, n ≥ 0, (10)

as the general term of the sequence {F0(−1), F1(−1), F2(−1), . . .} of Lucas
numbers. Writing φ = 1

2 (1 +
√

5), φ̂ = 1
2 (1−

√
5), then Fn(−1) = φn + φ̂n

and, noting that |φ̂/φ| < 1,

lim
n→∞

{
Fn(−1)
Fn−1(−1)

}
= lim

n→∞

{
φn + φ̂n

φn−1 + φ̂n−1

}



= φ lim
n→∞

{
1 + (φ̂/φ)n

1 + (φ̂/φ)n−1

}
= φ, (11)

the celebrated “golden ratio” associated with the Fibonacci and Lucas num-
bers; this is to be expected in view of Remark 1.

Rather than extend this section any further, we direct the reader to the
Appendix where other characteristics of the function Fn(x) are given. It
should be noted that such a function is actually a particular case of one of
the so called Dickson polynomials of considerable historical standing.

A New Catalan Number Representation

We finish with a short section which details our main result of the paper,
as indicated in the Introduction. Employing (3) we write En (2) as

En = n
n−1∑
k=0

(
2n− k − 1
n− k − 1

)
xn−k−1Fk+1(x), n ≥ 1, (12)

after a simple shift in the summing index. Lemma 4 allows us to identify
the coefficient of xα in En which, when compared to that of the Theorem
of Shapiro and Hamilton, yields the following representation of the general
Catalan number (it can also be read, of course, as a binomial coefficient
identity in the sense that the l.h.s. is evaluated). For n ≥ 1, 0 ≤ α ≤ n− 1,

(−1)α+1−n

n− α

n−1∑
k=n−α−1

(−1)k(k + 1)
(

n− α
k + α+ 1− n

)(
2n− k − 1
n− k − 1

)
= cα; (13)

the lower limit on the sum manifests itself naturally as k = 0, but has
been modified to that shown so as to eliminate non-contributing terms in
the sum arising from the first binomial coefficient. This result is unusual at
first sight, and it is appropriate to provide an example by way of illustration:

Example: n = 7, α = 3

l.h.s. =
(−1)−3

4

6∑
k=3

(−1)k(k + 1)
(

4
k − 3

)(
13− k
6− k

)
= −1

4

[
− 4

(
4
0

)(
10
3

)
+ 5

(
4
1

)(
9
2

)



− 6
(

4
2

)(
8
1

)
+ 7

(
4
3

)(
7
0

)]
= −1

4
[− 4 · 1 · 120 + 5 · 4 · 36− 6 · 6 · 8 + 7 · 4 · 1]

= −1
4

[− 480 + 720− 288 + 28]

= 5

= c3

= r.h.s. (14)

The identity lends itself readily to simplification to a final form. It is non-
standard in so far as what looks to be a function of two variables is actually
univariate, although it is by no means unique in kind—such results do crop
up from time to time in combinatorics.

Theorem For n ≥ 1, 0 ≤ α ≤ n− 1,

cα =
1

n− α

α∑
k=0

(−1)k(k + n− α)
(
n− α
k

)(
n+ α− k

n

)
.

Remark 6 An independent analytic proof of the Theorem is unnecessary,
but we have validated it by computation in fully symbolic form. The pack-
age hsum6.mpl returns a hypergeometric representation(

n+ α
n

)
3F2

(
n− α+ 1,−α,−(n− α)

n− α,−(n+ α)

∣∣∣∣ 1
)

(15)

for its complete r.h.s., and duly reduces it to the required l.h.s. using Zeil-
berger’s algorithm (see [5]).

Remark 7 If n = 1 then α = 0 and the r.h.s. of the Theorem contracts
trivially to the single term

(
1
0

)(
1
1

)
= 1 = c0, which is correct. For n ≥ 2,

the special case when α assumes its highest value n − 1 (⇒ α ≥ 1) gives
an interesting form of the Catalan number cα as a difference in binomial
coefficients; we have that

cα =
α∑
k=0

(−1)k(k + 1)
(

1
k

)(
2α+ 1− k
α+ 1

)
=

(
2α+ 1
α+ 1

)
− 2

(
2α
α+ 1

)
, (16)

which is not often seen (and actually holds for α ≥ 0).



Summary

A previous result established elsewhere in the context of a theoretical World
Series type event has led to a new representation of the general Catalan
number;3 note that an algebraic proof of our Theorem, together with an
inverse formula (and also generalisations of these to accommodate so called
“ballot numbers” anm = n+1−m

n+1

(
n+m
m

)
of which cn = ann is a special case),

are offered by Gould in this volume of Congressus Numerantium—see the
accompanying article “Proof and Generalization of a Catalan Number For-
mula of Larcombe”. On a wider point, it remains to be seen whether or
not an enhanced version of the sort of competition described here gives any
further results involving Catalan numbers. Certainly, in terms of (as con-
sidered here) the expected number of trials before declaration of a winner,
the two special cases of Theorem 4 in Siegrist’s treatment of an n-point,
win-by-k game (see (8),(9) on p.812 of [9]) suggests this as a potential topic
for future study.

Appendix

Here we detail additional properties of the function Fn(x) which is also
linked, for completeness, to a Dickson polynomial of which it describes a
special case.

Consider the definition of Fn(x) (3). Writing instead (since x = pq, p+ q =
1)

Fn(p− p2) = pn + (1− p)n (A1)

and differentiating twice w.r.t. p gives

(1− 4x)F ′′n (x)− 2F ′n(x) = n(n− 1)Fn−2(x), n ≥ 2. (A2)

Differentiating twice more, then twice more again, leads to the further
relations

(1− 4x)2F ′′′′n (x)− 12(1− 4x)F ′′′n (x) + 12F ′′n (x)

= n(n− 1)(n− 2)(n− 3)Fn−4(x) (A3)
3It is perhaps worth mentioning that the Theorem of Shapiro and Hamilton was

formulated, in fact, in a paper by Maisel as early as 1966 (see (3.4) on p.330 of [6]);
this may well be its first appearance in the literature. Note also that their expression

En(x) = n
∑n−1

k=0
ckx

k is given a closed form in Lengyel [7, Theorem 1, p.295] for x = 1
4

(it would seem, from computer experimentation, that no other values of x ∈ (0, 1
4

] admit
the sum to be evaluated in such a way). We remark too that Draim and Bicknell, in an
article [8] also of 1966, considered roots of a “primitive” equation which is slightly more
general than that associated with the Lemma 1 recurrence λ2 − λ+ x = 0.



and

(1− 4x)3F ′′′′′′n (x)− 30(1− 4x)2F ′′′′′n (x)

+ 180(1− 4x)F ′′′′n (x)− 120F ′′′n (x)

= n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)Fn−6(x). (A4)

After taking the (2r)th derivative of (A1) (r ≥ 1) the resulting differential
equation will, for n ≥ 2r, assume a form

2r∑
i=r

α
(r)
i (1− 4x)i−rF [i]

n (x) =

[
2r−1∏
i=0

(n− i)

]
Fn−2r(x), (A5)

where F [i]
n (x) denotes the ith derivative of Fn(x) w.r.t. x and α(r)

i is a con-
stant. Note that α(r)

2r = 1 (by inspection when (A2)-(A4) have been worked
through).

A different type of result may be formulated by instead integrating (A1)
w.r.t. p twice, yielding (for β constant)

Fn+2(x) = (n+ 1)(n+ 2)
∫

g(x)√
1− 4x

dx− β
[
1−
√

1− 4x
]
, (A6)

where

g(x) =
∫

Fn(x)√
1− 4x

dx. (A7)

As an example, n = 0 produces eventually from this scheme the polynomial
F2(x) = C1−2x+C2

√
1− 4x which is correct for constants C1 = 1, C2 = 0.

Other identities can be obtained routinely by taking powers of (3), the
first few examples of which are, for n ≥ 0,

F 2
n(x) = F2n(x) + 2xn,

F 3
n(x) = F3n(x) + 3xnFn(x),

F 4
n(x) = F4n(x) + 4xnF2n(x) + 6x2n,

F 5
n(x) = F5n(x) + 5xnF3n(x) + 10x2nFn(x), (A8)

etc; a general representation of F sn(x) is readily available for s ≥ 2 (left as
a routine reader exercise).

To end, we remark that the polynomial Fn(x) is a particular instance of
what is known as a Dickson polynomial of the first kind (of degree n in x,



with real parameter a) defined as

Dn(x, a) = n

[ 1
2n]∑
k=0

1
n− k

(
n− k
k

)
(−a)kxn−2k; (A9)

clearly
Fn(x) = Dn(1, x), n ≥ 0, (A10)

with the (standard) initial values D0(x, a) = 2, D1(x, a) = x corresponding
to F0(x) = 2, F1(x) = 1. As a point of interest, it is easily shown that, for
indeterminates u1, u2, Dn(u1 + u2, u1u2) = (u1)n + (u2)n which reads as
(A10) for u1 = p, u2 = q. Note also that setting a = −1 in (A9) gives

Dn(x,−1) = n

[ 1
2n]∑
k=0

1
n− k

(
n− k
k

)
xn−2k = Ln(x), (A11)

which is the general Lucas polynomial mentioned briefly in Footnote 1 and
from which we may write Dn(x,−1) = xnFn(−x−2)—in other words, as an
alternative to (A10),

Fn(x) = (−x)
1
2nDn((−x)−

1
2 ,−1), n ≥ 0, (A12)

equality at n = 0, 1 guaranteed by the definition of D0(x, a), D1(x, a).

Dickson polynomials date from the Ph.D. study of L.E. Dickson at the
close of the 19th century. Algebraic, arithmetic and analytic properties of
Dickson polynomials of the first and second kind (and their generalisations
to several indeterminates), along with applications, have been drawn to-
gether in an authoritative monograph by Lidl et al. [10] to which we refer
now having noted (A10)—in particular, (i) the closed form for Dn(x, a) [10,
p.9] contracts immediately to ours for Fn(x) in Lemma 3, (ii) Lemma 1 is
likewise available from the recurrence for Dn(x, a) [10, Lemma 2.3, p.10],
and (iii) the ordinary generating function for Dn(x, a) [10, Lemma 2.4, p.10]
recovers that for Fn(x) stated here as Lemma 2; it should be pointed out
that the methods we have used to establish Lemmas 1-3 differ sufficiently
to those presented by Lidl et al. in relation to Dn(x, a), and so justify their
inclusion.

References

[1] Shapiro, L. and Hamilton, W. (1993). The Catalan numbers visit the
world series, Math. Mag., 66, pp.20-22.



[2] Koepf, W. (1992). Power series in computer algebra, J. Sym. Comp.,
13, pp.581-603.

[3] Gruntz, D. and Koepf, W. (1995). Maple package on formal power
series, Maple Tech. News., 2(2), pp.22-28.

[4] Gould, H.W. (1972). Combinatorial identities, Rev. Ed., University of
West Virginia, U.S.A.

[5] Koepf, W. (1998). Hypergeometric summation: an algorithmic ap-
proach to summation and special function identities, Vieweg, Wies-
baden, Germany.

[6] Maisel, H. (1966). Best k of 2k − 1 comparisons, J. Amer. Stat. Ass.,
61, pp.329-344.

[7] Lengyel, T. (1993). A combinatorial identity and the world series,
S.I.A.M. Rev., 35, pp.294-297.

[8] Draim, N.A. and Bicknell, M. (1966). Sums of n-th powers of roots of
a given quadratic equation, Fib. Quart., 4(2), pp.170-178.

[9] Siegrist, K. (1989). n-point, win-by-k games, J. Appl. Prob., 27,
pp.807-814.

[10] Lidl, R., Mullen, G.L. and Turnwald, G. (1993). Dickson polynomials
(Pitman Monographs and Surveys in Pure and Applied Mathematics,
No. 65), Longman, London, U.K.


