Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions

Prof. Dr. Wolfram Koepf
Department of Mathematics
University of Kassel

koepf@mathematik.uni-kassel.de
http://www.mathematik.uni-kassel.de/~koepf

Online Demonstrations with Computer Algebra

- I will use the computer algebra system Maple to demonstrate and program the algorithms presented.
- Of course, we could also easily use any other system like Mathematica or MuPAD.
- We first give a short introduction about the capabilities of Maple.

Computation of Power Series

- Assume, given an expression f depending of the variable x, we would like to compute a formula for the coefficient a_{k} of the power series

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

representing $f(x)$.

Algorithm

- Input: expression $f(x)$
- Determine a holonomic differential equation DE (homogeneous and linear with polynomial coefficients) by computing the derivatives of $f(x)$ iteratively.
- Convert DE to a holonomic recurrence equation RE for a_{k}.
- Solve RE for a_{k}.
- Output: a_{k} resp. $\Sigma a_{k} x^{k}$

Computation of Holonomic Differential Equations

- Input: expression $f(x)$
- Compute $c_{0} f(x)+c_{1} f^{\prime}(x)+\cdots+c_{f} f^{f(J)}(x)$ with still undetermined coefficients c_{j}.
- Sort this w. r. t. linearly independent functions $\in \mathbb{Q}(\mathrm{x})$ and determine their coefficients.
- Set these zero, and solve the corresponding linear system for the unknowns $c_{0}, c_{1}, \ldots, c_{J}$.
- Output: $\mathrm{DE}:=c_{0} f(x)+c_{1} f^{\prime}(x)+\cdots+c_{f} f^{f(J)}(x)=0$.

Algebra of Holonomic Functions

- We call a function that satisfies a holonomic differential equation a holonomic function.
- Sum and product of holonomic functions turn out to be holonomic.
- We call a sequence that satisfies a holonomic recurrence equation a holonomic sequence.
- Sum and product of holonomic sequences are holonomic.
- A function is holonomic iff it is the generating function of a holonomic sequence.

Hypergeometric Functions

- The power series

$$
{ }_{p} F_{q}\binom{a_{1}, \cdots, a_{p}}{b_{1}, \cdots, b_{q}}=\sum_{k=0}^{\infty} A_{k} x^{k},
$$

whose coefficients A_{k} have rational term ratio

$$
\frac{A_{k+1} x^{k+1}}{A_{k} x^{k}}=\frac{\left(k+a_{1}\right) \cdots\left(k+a_{p}\right)}{\left(k+b_{1}\right) \cdots\left(k+b_{q}\right)} \cdot \frac{x}{k+1}
$$

is called the generalized hypergeometric function.

Coefficients of

Hypergeometric Functions

- For the coefficients of the hypergeometric function we get the formula

$$
{ }_{p} F_{q}\left(\left.\begin{array}{l}
a_{1}, \cdots, a_{p} \\
b_{1}, \cdots, b_{q}
\end{array} \right\rvert\, x\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{q}\right)_{k}} \frac{x^{k}}{k!},
$$

where $(a)_{k}=a(a+1) \cdots(a+k-1)$ is called the Pochhammer symbol (or shifted factorial).

Examples of

Hypergeometric Functions

$$
\begin{gathered}
e^{x}={ }_{0} F_{0}(x) \\
\sin x=x \cdot{ }_{0} F_{1}\left(\begin{array}{c|c}
- & \left.-\frac{x^{2}}{4}\right)
\end{array}{ }^{3 / 2}\right)
\end{gathered}
$$

Further examples: $\cos (x), \arcsin (x)$, $\arctan (x), \ln (1+x), \operatorname{erf}(x), \mathrm{L}_{n}{ }^{(\alpha)}(x), \ldots$, but for example not $\tan (x), \ldots$

Identification of
 Hypergeometric Functions

- Assume we have

$$
s=\sum_{k=0}^{\infty} a_{k}
$$

- How do we find out which ${ }_{p} F_{q}(x)$ this is?

Identification Algorithm

- Input: a_{k}
- Compute

$$
r_{k}:=\frac{a_{k+1}}{a_{k}}
$$

and check whether the term ratio r_{k} is rational.

- Factorize r_{k}.
- Output: read off the upper and lower parameters and an initial value.

Recurrence Equations for Hypergeometric Functions

- Given a sequence s_{n}, as hypergeometric sum

$$
s_{n}=\sum_{k=-\infty}^{\infty} F(n, k)
$$

how do we find a recurrence equation for s_{n} ?

Celine Fasenmyer's Algorithm

- Input: summand $F(n, k)$
- Compute

$$
\begin{aligned}
& \text { mpute } \\
& \text { ansatz }
\end{aligned}=\sum_{\substack{i=0, \ldots, I \\
j=0, \ldots, J}} \frac{F(n+j, k+i)}{F(n, k)} \in \mathbb{Q}(n, k)
$$

- Bring this into rational normal form, and set the numerator coefficient list w.r.t. k zero.
- Output: Sum the resulting recurrence equation for $F(n, k)$ w.r.t. k.

Drawbacks of
 Fasenmyer's Algorithm

- In easy cases this algorithm succeeds, but:
- In many cases the algorithm generates a recurrence equation of too high order.
- The algorithm is slow. If, e.g., $I=2$ and $J=2$, then already 9 linear equations have to be solved.
- Therefore the algorithm might fail.

Indefinite Summation

- Given a sequence a_{k}, find a sequence s_{k} which satisfies

$$
a_{k}=s_{k+1}-s_{k}=\Delta s_{k} .
$$

- Having found s_{k} makes definite summation easy since by telescoping for arbitrary m, n

$$
\sum_{k=m}^{n} a_{k}=s_{n+1}-s_{m} .
$$

- Indefinite summation is the inverse of Δ.

Gosper's Algorithm

- Input: a_{k}, a hypergeometric term.
- Compute $p_{k}, q_{k}, r_{k} \in \mathbb{Q}[k]$ with

$$
\frac{a_{k+1}}{a_{k}}=\frac{p_{k+1}}{p_{k}} \frac{q_{k+1}}{r_{k+1}} \text { and } \operatorname{gcd}\left(q_{k}, r_{k+j}\right)=1 \text { for all } j \geq 0 .
$$

- Find a polynomial solution f_{k} of the recurrence equation $q_{k+1} f_{k}-r_{k+1} f_{k-1}=p_{k}$.
- Output: the hyperg. term

$$
s_{k}=\frac{r_{k}}{p_{k}} f_{k-1} a_{k}
$$

Definite Summation: Zeilberger's Algorithm

- Zeilberger had the brilliant idea to use a modified version of Gosper's algorithm to compute definite hypergeometric sums

$$
s_{n}=\sum_{k=-\infty}^{\infty} F(n, k) .
$$

- Note however that, whenever s_{n} is itself a hypergeometric term, then Gosper's algorithm, applied to $F(n, k)$, fails!

Zeilberger's Algorithm

- Input: summand $F(n, k)$
- For suitable $J \in \mathbb{N}$ set

$$
a_{k}:=F(n, k)+\sigma_{1} F(n+1, k)+\cdots+\sigma_{J} F(n+J, k) .
$$

- Apply the following modified version of Gosper's algorithm to a_{k} :
- In the last step, solve at the same time for the coefficients of f_{k} and the unknowns $\sigma_{j} \in \mathbb{Q}(n)$.
- Output by summation: The recurrence equation

$$
\mathrm{RE}:=s_{n}+\sigma_{1} s_{n+1}+\cdots+\sigma_{J} s_{n+J}=0 .
$$

The output of

Zeilberger's Algorithm

- We apply Zeilberger's algorithm iteratively for $J=1,2, \ldots$ until it succeeds.
- If $J=1$ is successful, then the resulting recurrence equation for s_{n} is of first order, hence s_{n} is a hypergeometric term.
- If $J>1$, then the result is a holonomic recurrence equation for s_{n}.
- One can prove that Zeilberger's algorithm terminates for suitable input.
- Zeilberger's algorithm is much faster than Fasenmyer's.

Representations of Legendre Polynomials

$$
\left.\begin{array}{c}
P_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}\binom{-n-1}{k}\left(\frac{1-x}{2}\right)^{k}={ }_{2} F_{1}\binom{-n, n+1 \left\lvert\, \frac{1-x}{2}\right.}{1} \\
=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k}^{2}(x-1)^{n-k}(x+1)^{k}=\left(\frac{x-1}{2}\right)^{n}{ }_{2} F_{1}\binom{-n,-n \left\lvert\, \frac{x+1}{x-1}\right.}{1} \\
=\frac{1}{2^{n}} \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n}{k}\binom{2 n-2 k}{n} x^{n-2 k}=\left(\frac{x}{2}\right)^{n}\binom{2 n}{n}{ }_{2} F_{1}\left(\left.\begin{array}{c}
-n / 2,(-n+1) / 2 \\
-n+1 / 2
\end{array} \right\rvert\, \frac{1}{x^{2}}\right.
\end{array}\right), ~=x_{2}^{n} F_{1}\binom{-n / 2,(1-n) / 2 \left\lvert\, 1-\frac{1}{x^{2}}\right.}{1}
$$

Dougall’s Identity

- Dougall (1907) found the following identity

$$
\begin{gathered}
{ }_{7} F_{6}\left(\left.\begin{array}{c}
a, 1+\frac{a}{2}, b, c, d, 1+2 a-b-c-d+n,-n \\
\frac{a}{2}, 1+a-b, 1+a-c, 1+a-d, b+c+d-a-n, 1+a+n
\end{array} \right\rvert\, 1\right) \\
=\frac{(1+a)_{n}(a+1-b-c)_{n}(a+1-b-d)_{n}(a+1-c-d)_{n}}{(1+a-b)_{n}(1+a-c)_{n}(1+a-d)_{n}(1+a-b-c-d)_{n}} .
\end{gathered}
$$

Clausen's Formula

- Clausen's formula gives the cases when a Clausen ${ }_{3} F_{2}$ function is the square of a Gauss ${ }_{2} F_{1}$ function:

$$
\left.{ }_{2} F_{1}\binom{a, b}{\left.a+b+\frac{1}{2} \right\rvert\,}\right)^{2}={ }_{3} F_{2}\binom{2 a, 2 b, a+b}{2 a+2 b, \left.a+b+\frac{1}{2} \right\rvert\, x} .
$$

- The right hand side can be detected from the left hand side by Zeilberger's algorithm.

A Generating Function Problem

- Recently Folkmar Bornemann showed me a newly developed generating function of the Legendre polynomials and asked me to generate it automatically.
- Here is the question:

Write

$$
G(x, z, \alpha):=\sum_{n=0}^{\infty}\binom{\alpha+n-1}{n} P_{n}(x) z^{n}
$$

as a hypergeometric function!

Generating Function as a Double Sum

- We can take any of the four given hypergeometric representations of the Legendre polynomials to write $G(x, z, \alpha)$ as double sum.
- Then the trick is to change the order of summation

$$
\sum_{n=0}^{\infty}\binom{\alpha+n-1}{n} \sum_{k=0}^{\infty} p_{k}(n, x) z^{n}=\sum_{k=0}^{\infty} \sum_{n=0}^{\infty}\binom{\alpha+n-1}{n} p_{k}(n, x) z^{n} .
$$

Automatic Computation of Infinite Sums

- Whereas Zeilberger's algorithm finds ChuVandermonde's formula for $n \in \mathbb{N}_{\geq 0}$

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
-n, b \\
c
\end{array} \right\rvert\, 1\right)=\frac{(c-b)_{n}}{(c)_{n}}
$$

the question arises to detect Gauss' identity

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
a, b \\
c
\end{array} \right\rvert\, 1\right)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}
$$

for $a, b, c \in \mathbb{C}$ in case of convergence.

Solution

- The idea is to detect automatically

$$
\left.{ }_{2} F_{1}\binom{a, b}{c+m} 1\right)=\frac{(c-a)_{m}(c-b)_{m}}{(c)_{m}(c-a-b)_{m}}{ }_{2} F_{1}\left(\left.\begin{array}{c}
a, b \\
c
\end{array} \right\rvert\,\right)
$$

and then to consider the limit as $m \rightarrow \infty$.

- Using appropriate limits for the Γ function, this and similar questions can be handled automatically by a Maple package of Vidunas and Koornwinder.

The WZ Method

- Assume we want to prove an identity

$$
\sum_{k=-\infty}^{\infty} f(n, k)=\tilde{s}_{n}
$$

with hypergeometric terms $f(n, k)$ and \widetilde{s}_{n}.

- Dividing by \widetilde{s}_{n}, we may put the identity into the form

$$
s_{n}:=\sum_{k=-\infty}^{\infty} F(n, k)=1
$$

Rational Certificate

- If Gosper's algorithm, applied to $F(n+1, k)-F(n, k)$, is successful, then it generates a rational multiple $G(n, k)$ of $F(n, k)$, i.e. $G(n, k)=R(n, k) F(n, k)$, such that

$$
F(n+1, k)-F(n, k)=G(n, k+1)-G(n, k)
$$

- By telescoping, this proves $s_{n+1}-s_{n}=0$, hence the identity.
- Second proof: Dividing by $F(n, k)$, we may prove

$$
\frac{F(n+1, k)}{F(n, k)}-1=R(n, k+1) \frac{F(n, k+1)}{F(n, k)}-R(n, k),
$$

a purely rational identity.

Differential Equations

- Zeilberger's algorithm can easily be adapted to generate holonomic differential equations for hyperexponential sums

$$
s(x)=\sum_{k=-\infty}^{\infty} F(x, k)
$$

- For this purpose, the summand $F(x, k)$ must be a hyperexponential term, i.e.

$$
\frac{F^{\prime}(x, k)}{F(x, k)} \in \mathbb{Q}(x, k)
$$

Petkovsek's Algorithm

- Petkovsek's algorithm is an adaption of Gosper's.
- Given a holonomic recurrence equation, it determines all hypergeometric term solutions.
- Petkovsek's algorithm is slow, especially if the leading and trailing terms have many factors. Maple 9 will contain a much more efficient algorithm due to Mark van Hoeij.

Combining Zeilberger's and Petkovsek's Algorithm

- Zeilberger's algorithm may not give a recurrence of first order, even if the sum is a hypergeometric term. This rarely happens, though.
- Therefore the combination of Zeilberger's algorithm with Petkovsek's guarantees to find out whether a given sum can be written as a hypergeometric term.
- Exercise 9.3 of my book gives 9 examples for this situation, all from p. 556 of
- Prudnikov, Brychkov, Marichev: Integrals and Series, Vol. 3: More Special Functions. Gordon Breach, 1990.

31. $\left.\quad=\frac{(a-2 b-1)_{n}}{(-2 b-1)_{n} F_{2}(-n,(a+1) / 2, a-2 b+n-1 ; 1} 1\right)=$

$$
\text { 32. }{ }_{4} F_{3}\left(\begin{array}{c}
(1+a-b)_{n}(-2 b-1)_{n}(a-2 b-1) \\
2 a,(b-n+1 / a+1 / 2, b ; \\
2 a-(b-n) / 2+1
\end{array}\right)=\frac{(2 a-b)_{n}(b-n)}{(1-b)_{n}(b+n)} .
$$

$$
\left.\begin{array}{l}
\text { 32. }{ }_{4} F_{3}\binom{-n, a, a+1 / 2, b ;}{2 a,(b-n+1) / 2,(b-n) / 2+1}=\frac{(2 a-b)_{n}(b-n)}{(1-b)_{n}(b+n)} . \\
\text { 33. }{ }_{4} F_{3}\left(\begin{array}{cc}
-n, a, a+1 / 2, b ; & 1 \\
2 a+1,(b-n) / 2,(b-n+1) / 2
\end{array}\right)=\frac{(1+2 a-b)_{n}}{(1-b)_{n}} . \\
\text { 34. }{ }_{4} F_{3}(-n, a, a+1 / 2, b ; \\
2 a+1,(b-n+1) / 2,(b-n) / 2+1
\end{array}\right)=\frac{(1+2 a-b)_{n}(2 a-b-n)(b-n)}{(1-b)} .
$$

$$
\begin{aligned}
& \text { 34. }{ }_{4} F_{3}(2 a+1,(b-n+1) / 2,(b-n) / 2+1)=\frac{(1-1)-1}{(1-b)_{n}(2 a-b+n)(b+n)} . \\
& \text { 35. }{ }_{4} F_{3}(-n, a, b,-1 / 2-a-b-n ; 1)=\frac{(2 a+1)_{n}(2 b+1)_{n}(a+b+1)_{n}}{(a+1)_{n}(b+1)_{n}(2 a+2 b+1)_{n}} .
\end{aligned}
$$

$$
\text { 34. }{ }_{2} F_{3}\left(\begin{array}{cc}
n, a, a+1 / 2, b ; & 1 \\
2 a+1, & (b-n+1) / 2,(b-n) / 2+1
\end{array}\right)=\frac{(1+2 a-b)_{n}(2 a-b-n)(b-n)}{(1-b)_{n}(2 a-b+n)(b+n)} \text {. }
$$

$$
\left.\begin{array}{l}
\text { 35. }{ }_{4} F_{3}\binom{-n, a, b,-1 / 2-a-b-n ; 1}{-a-n,-b-n, a+b+1 / 2}=\frac{(2 a+1)_{n}(2 b+1)_{n}(a+b+1)_{n}}{(a+1)_{n}(b+1)_{n}(2 a+2 b+1)_{n}} . \\
\text { 36. }{ }_{4} F_{3}(-n, a, b, 1 / 2-a-b-n ; 1 \\
-a-n, 1-b-n, a+b+1 / 2
\end{array}\right)=\frac{(2 a+1)_{n}(2 b)_{n}(a+b)_{n} .}{(a+1)_{n}(b)_{n}(2 a+2 b)_{n} .} .
$$

$$
\begin{aligned}
& \text { 36. }{ }_{4} F_{3}\binom{-n, a, b, 1 / 2-a-b-n ;}{-a-n, 1-b-n, a+b+1 / 2}=\frac{(2 a+1)_{n}(2 b)_{n}(a+b)_{n}}{(a+1)_{n}(b)_{n}(2 a+2 b)_{n}} . \\
& \text { 37. }{ }_{4} F_{3}\binom{-n, a, b, 1 / 2-a-b-n ;}{1-a-n, 1}=\frac{(2 a-b-n, ~}{1-2 b)_{n}}(a+b)
\end{aligned}
$$

$$
\text { 37. }{ }_{4} F_{3}\binom{-n, a, b, 1 / 2-a-b-n ;}{1-a-n, 1-b-n, a+b \pm 1 / 2}=\frac{(2 a)_{n}(2 b)_{n}(a+b)_{n}}{(a)_{n}(b)_{n}(2 a+2 b-(1 \mp 1) / 2)_{n}} \text {. }
$$

$$
\text { 38. }{ }_{4} F_{3}\binom{-n, a, b, 3 / 2-a-b-n ;}{1-a-n, 1-b-n, a+b+1 / 2}=\frac{(2 a)_{n}(2 b)_{n}(a+b)_{n}(2 a+2 b-1)}{(a)_{n}(b)_{n}(2 a+2 b-1)_{n}(2 a+2 b+2 n-1)} \text {. }
$$

$$
\text { 39. }{ }_{4} F_{3}\binom{-n, a, b, 3 / 2-a-b-n ;}{1-a-n, 2-b-n, a+b-1 / 2}=\frac{(2 a)_{n}(2 b-1)_{n}(a+b-1)_{n}}{(a)_{n}(b-1)_{n}(2 a+2 b-2)_{n}} .
$$ ATMECRALS

SERES VOLUME 3: MORE SPECIAL FUNCTIONS
A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev

Translated from the Russian by G.G. Gould
Gordon and Breach Science Publishers

Examples

- As an example, we take

$$
\sum_{k=0}^{n}(-1)^{k}\left(\begin{array}{l}
n \\
k
\end{array}\binom{c k}{n}=(-c)^{n}, \quad(c=2,3, \ldots)\right.
$$

- and Exercise 9.3 (a), resp. PBM (7.5.3.32):

$$
{ }_{4} F_{3}\left(\left.\begin{array}{c}
-n, a, a+\frac{1}{2}, b \\
2 a, \frac{b-n+1}{2}, \frac{b-n}{2}+1
\end{array} \right\rvert\, 1\right)=\frac{(2 a-b)_{n}(b-n)}{(1-b)_{n}(b+n)} .
$$

Indefinite Integration

- To find recurrence and differential equations for hypergeometric and hyperexponential integrals, one needs a continuous version of Gosper's algorithm.
- Almkvist and Zeilberger gave such an algorithm. It finds hyperexponential antiderivatives if those exist.

Recurrence and Differential Equations for Integrals

- Applying the continuous Gosper algorithm, one can easily adapt the discrete versions of Zeilberger's algorithm to the continuous case.
- The resulting algorithms find holonomic recurrence and differential equations for hypergeometric and hyperexponential integrals.

Example 1

- As example, we would like to find holonomic equations for

$$
S(x, y):=\int_{0}^{1} t^{x}(1-t)^{y} d t
$$

Resulting recurrence equations:

$$
\begin{aligned}
& -(x+y+2) S(x+1, y)+(x+1) S(x)=0 \\
& -(x+y+2) S(x, y+1)+(y+1) S(y)=0
\end{aligned}
$$

Example ctd.

- Solving both recurrence equations shows that $S(x, y)$ must be a multiple of

$$
S(x, y) \sim \frac{\Gamma(x+1) \Gamma(y+1)}{\Gamma(x+y+2)}
$$

- Computing the initial value

$$
S(0,0):=\int_{0}^{1} d t=1
$$

proves that the above is an identity.

Example 2

- The integral

$$
I(x)=\int_{0}^{\infty} \frac{x^{2}}{\left(x^{4}+t^{2}\right)\left(1+t^{2}\right)} d t
$$

satisfies the differential equation

$$
\begin{aligned}
& x(x-1)(x+1)\left(x^{2}+1\right) I^{\prime \prime}(x)+ \\
& \left(1+7 x^{4}\right) I^{\prime}(x)+8 x^{3} I(x)=0
\end{aligned}
$$

from which it can be derived that

$$
I(x)=\frac{\pi}{2\left(x^{2}+1\right)}
$$

Rodrigues Formulas

- Using Cauchy's integral formula

$$
h^{(n)}(x)=\frac{n!}{2 \pi i} \int_{\gamma} \frac{h(t)}{(t-x)^{n+1}} d t
$$

for the nth derivative makes the integration algorithm accessible for Rodrigues type expressions

$$
f_{n}(x)=g_{n}(x) \frac{d^{n}}{d x^{n}} h_{n}(x)
$$

Orthogonal Polynomials

- Hence we can easily show that the functions

$$
P_{n}(x)=\frac{(-1)^{n}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(1-x^{2}\right)^{n}
$$

are the Legendre polynomials, and

$$
L_{n}^{(\alpha)}(x)=\frac{e^{x}}{n!x^{\alpha}} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{\alpha+n}\right)
$$

are the generalized Laguerre polynomials.

Generating Functions

- If $F(z)$ is the generating function of the sequence $a_{n} f_{n}(x)$

$$
F(z)=\sum_{n=0}^{\infty} a_{n} f_{n}(x) z^{n},
$$

then by Cauchy's formula and Taylor's theorem

$$
f_{n}(x)=\frac{1}{a_{n}} \frac{F^{(n)}(0)}{n!}=\frac{1}{a_{n}} \frac{1}{2 \pi i} \int_{\gamma} \frac{F(t)}{t^{n+1}} d t .
$$

Laguerre Polynomials

- Hence we can easily prove the following generating function identity

$$
(1-z)^{-\alpha-1} e^{\frac{x z}{z-1}}=\sum_{n=0}^{\infty} L_{n}^{(\alpha)}(x) z^{n}
$$

for the generalized Laguerre polynomials.

Basic Hypergeometric Series

- Instead of considering series whose coefficients A_{k} have rational term ratio $A_{k+1} / A_{k} \in$ $\mathbb{Q}(k)$, we can also consider such series whose coefficients A_{k} have term ratio $A_{k+1} / A_{k} \in \mathbb{Q}\left(q^{k}\right)$.
- This leads to the q-hypergeometric series

$$
\varphi_{r}\left(\left.\begin{array}{l}
a_{1}, \cdots, a_{r} \\
b_{1}, \cdots, b_{s}
\end{array} \right\rvert\, q ; x\right)=\sum_{k=0}^{\infty} A_{k} x^{k} .
$$

Coefficients of the Basic Hypergeometric Series

- Here the coefficients are given by

$$
\begin{aligned}
& A_{k}=\frac{\left(a_{1} ; q\right)_{k} \cdots\left(a_{r} ; q\right)_{k}}{\left(b_{1} ; q\right)_{k} \cdots\left(b_{s} ; q\right)_{k}} \frac{x^{k}}{(q ; q)_{k}}\left((-1)^{k} q^{\binom{k}{2}}\right)^{1+s-r}, \\
& \text { where }
\end{aligned}
$$

$$
(a ; q)_{k}=\prod_{j=0}^{k-1}\left(1-a q^{j}\right)
$$

denotes the q-Pochhammer symbol.

Further q-Expressions

- q-Pochhammer symbol: $(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}$
- q-factorial: $\left[k l_{l}!=\frac{(q ; q)_{k}}{(1-q)^{k}}\right.$
- q-Gamma function: $\Gamma_{q}(z)=\frac{(q ; q)_{\infty}}{\left(q^{z} ; q\right)_{\infty}}(1-q)^{1-z}$
- q-binomial coefficient: $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}$
- q-brackets:

$$
[k]_{l}=\frac{1-q^{k}}{1-q}=1+q+\cdots+q^{k-1} .
$$

q-Chu-Vandermonde Theorem

- For all classical hypergeometric theorems corresponding q-versions exist.
- For example, the q-Chu-Vandermonde theorem states that

$$
{ }_{2} \varphi_{1}\left(\left.\begin{array}{c}
q^{-n}, b \\
c
\end{array} \right\rvert\, q ; \frac{c q^{n}}{b}\right)=\frac{(c / b ; q)_{n}}{(c ; q)_{n}}
$$

and can be proved by a q-version of Zeilberger's algorithm.

q-Hypergeometric Orthogonal Polynomials

- All classical orthogonal systems have (several) q-hypergeometric equivalents.
- The Little and the $\operatorname{Big} q$-Legendre Polynomials, respectively, are given by

$$
\begin{gathered}
p_{n}(x \mid q)={ }_{2} \varphi_{1}\left(\left.\begin{array}{c}
q^{-n}, q^{n+1} \\
q
\end{array} \right\rvert\, q ; q x\right. \\
P_{n}(x ; c ; q)={ }_{3} \varphi_{2}\binom{q^{-n}, q^{n+1}, x}{q, c q}, \\
q ; q) .
\end{gathered}
$$

Operator Equations

- q-orthogonal polynomials satisfy q holonomic recurrence equations with respect to n and - in the classical Hahn case - holonomic q-difference equations.
- For the latter one uses Hahn's q-difference operator

$$
D_{q} f(x)=\frac{f(x)-f(q x)}{(1-q) x} .
$$

Scalar Products

- Given: a scalar product

$$
\langle f, g\rangle:=\int_{a}^{b} f(x) g(x) d \mu(x)
$$

with non-negative measure μ supported in the interval $[a, b]$.

- Particular cases:
- absolutely continuous measure $\mathrm{d} \mu(\mathrm{x})=\rho(x) \mathrm{d} x$,
- discrete measure $\rho(x)$ supported by \mathbb{Z},
- discrete measure $\rho(x)$ supported by $q^{\mathbb{Z}}$.

Orthogonal Polynomials

- A family $P_{n}(x)$ of polynomials

$$
P_{n}(x)=k_{n} x^{n}+k_{n}^{\prime} x^{n-1}+\cdots, \quad k_{n} \neq 0
$$

is orthogonal w. r. t. the measure $\mu(x)$ if

$$
\left\langle P_{n}, P_{m}\right\rangle=\left\{\begin{array}{ll}
0 & \text { if } m \neq n \\
d_{n}^{2} \neq 0 & \text { if } m=n
\end{array} .\right.
$$

Classical Families

- The classical orthogonal polynomials can be alternatively defined as the polynomial solutions of the differential equation

$$
\sigma(x) P_{n}(x)+\tau(x) P_{n}(x)+\lambda_{n} P_{n}(x)=0 .
$$

- Conclusions:
- $n=1$
implies $\tau(x)=d x+e, d \neq 0$
- $n=2$
implies $\sigma(x)=a x^{2}+b x+c$
- coefficient of x^{n} implies $\lambda_{n}=-n(a(n-1)+d)$

Classification

- The classical systems can be classified according to the scheme
- $\sigma(x)=0 \quad$ powers x^{n}
- $\sigma(x)=1 \quad$ Hermite polynomials
- $\sigma(x)=x \quad$ Laguerre polynomials
- $\sigma(x)=x^{2} \quad$ Bessel polynomials
- $\sigma(x)=x^{2}-1 \quad$ Jacobi polynomials

Weight function

- The weight function $\rho(x)$ corresponding to the differential equation satisfies Pearson's differential equation

$$
\frac{d}{d x}(\sigma(x) \rho(x))=\tau(x) \rho(x)
$$

- Hence it is given as

$$
\rho(x)=\frac{C}{\sigma(x)} e^{\int \frac{\tau(x)}{\sigma(x)} d x}
$$

Classical Discrete Families

- The classical discrete orthogonal polynomials can be defined as the polynomial solutions of the difference equation

$$
\sigma(x) \Delta \nabla P_{n}(x)+\tau(x) \Delta P_{n}(x)+\lambda_{n} P_{n}(x)=0 .
$$

- Conclusions:
- $n=1$
- $n=2$
- coefficient of x^{n}
implies $\tau(x)=d x+e, d \neq 0$
implies $\sigma(x)=a x^{2}+b x+c$
implies $\lambda_{n}=-n(a(n-1)+d)$

Classification

- The classical discrete systems can be classified according to the scheme
- $\sigma(x)=1$
- $\sigma(x)=x$
- $\sigma(x)=x$
- $\sigma(x)=x(N+\alpha-x)$ Hahn polynomials

Weight function

- The weight function $\rho(x)$ corresponding to the difference equation satisfies Pearson's difference equation

$$
\Delta(\sigma(x) \rho(x))=\tau(x) \rho(x)
$$

- Hence it is given as

$$
\frac{\rho(x+1)}{\rho(x)}=\frac{\sigma(x)+\tau(x)}{\sigma(x+1)} .
$$

Classical q-Families

- The q-orthogonal polynomials of the Hahn class can be defined as the polynomial solutions of the q-difference equation

$$
\sigma(x) D_{q} D_{1 / q} P_{n}(x)+\tau(x) D_{q} P_{n}(x)+\lambda_{n} P_{n}(x)=0 .
$$

- Conclusions:
- $n=1$
implies $\tau(x)=d x+e, d \neq 0$
- $n=2$
- coefficient of x^{n}
implies $\sigma(x)=a x^{2}+b x+c$
implies $\lambda_{n}=-a[n]_{/ q}[n-1]_{l}-d[n]_{l}$

Classification

- The classical q-systems can be classified according to the scheme
- $\sigma(x)=0 \quad$ powers and q-Pochhammers
- $\sigma(x)=1 \quad$ discrete q-Hermite polynomials II
- $\sigma(x)=x \quad q$-Charlier, q-Laguerre pols.
- $\sigma(x)=(x-a q)(x-b q) \quad \operatorname{Big} q$ - Jacobi pols.

Weight function

- The weight function $\rho(x)$ corresponding to the q-difference equation satisfies the q Pearson differential equation

$$
D_{q}(\sigma(x) \rho(x))=\tau(x) \rho(x)
$$

- Hence it is given as

$$
\frac{\rho(q x)}{\rho(x)}=\frac{\sigma(x)+(q-1) x \tau(x)}{\sigma(q x)} .
$$

Computing Differential Equation from a Recurrence Equation

- From the differential or (q)-difference equation one can determine the three-term recurrence equation for $P_{n}(x)$ in terms of the coefficients of $\sigma(x)$ and $\tau(x)$.
- Using this information in the opposite direction, one can find the corresponding differential or (q)-difference equation from a given three-term recurrence equation.

Example 1

- Given the recurrence equation

$$
P_{n+2}(x)-(x-n-1) P_{n+1}(x)+\alpha(n+1)^{2} P_{n}(x)=0
$$

one finds that for $\alpha=1 / 4$ translated Laguerre polynomials, and for $\alpha<1 / 4$, Meixner and Krawtchouk polynomials are solutions.

Example 2

- Given the recurrence equation

$$
P_{n+2}(x)-x P_{n+1}(x)+\alpha q^{n}\left(q^{n+1}-1\right) P_{n}(x)=0
$$

one finds that for every α there are q orthogonal polynomial solutions.

Epilogue

- Software development is a time consuming activity!
- Software developers love when their software is used.
- But they need your support.
- Hence my suggestion: If you use one of the packages mentioned for your research, please cite ist use!

