Introduction to Computer Algebra

Prof. Dr. Wolfram Koepf
Department of Mathematics
University of Kassel
koepf@mathematik.uni-kassel.de
http://www.mathematik.uni-kassel.de/~koepf
Yaounde, Cameroon
March 22, 2005

History of Computer Algebra

- Some years after the first programming languages like Fortran or Algol 60 were designed, the first computer algebra systems were developed.
- Physicists were the first ones who were interested in symbolic computations done by a computer to save lengthy hand computations and to avoid mistakes.
- In the 1960s the programming language LISP was especially well suited for this purpose.

History of Computer Algebra

- 1968: Reduce, Anthony Hearn, physicist, LISP-based. Oldest system, still on the market!
- 1970/1992: Scratchpad, Axiom, IBM, LISP. Strongly typed system based on mathematical structures. Now free version available.
- 1971: Macsyma, MIT, LISP.

Now as free system Maxima still on the market.

- 1978: mumath, David Stoutemyer, LISP.

First system designed for mini-computers. System was later replaced by Derive.

History of Computer Algebra

- 1980: Maple, University of Waterloo, C. First C-based system. Small kernel, mainly programmed in Maple language.
- 1988: Mathematica, Stephen Wolfram, physicist, C. Best-selling system. First system which combined symbolics, numerics, graphics and a nice user interface.
- 1989: Derive, David Stoutemyer, LISP. mumath-successor. PC-system, mainly used in education.
- 1993: MuPAD, Benno Fuchssteiner, C.

Object oriented computer algebra system.

On-line Demonstration of Maple

- In this talk I will use the computer algebra system Maple to show you the capabilities of such systems.
- If you have any question, please don't hesitate to interrupt me and ask! It is much easier to answer your questions directly when they evolve.
- Let us start with the Maple demonstration.

Euclidean Algorithm

To compute the greatest common divisor of a and b, we can use the following recursive algorithm:

- $\operatorname{gcd}(a, b):=\operatorname{gcd}(|a|,|b|) \quad$ if $a<0$ or $b<0$
- $\operatorname{gcd}(a, b):=\operatorname{gcd}(b, a) \quad$ if $a<b$
- $\operatorname{gcd}(a, 0):=a$
(stop condition)
- $\operatorname{gcd}(a, b):=\operatorname{gcd}(b, a \bmod b)$

Modular Powers

As further example, we consider the fast computation of modular powers. To compute the modular power
$a^{n}(\bmod p)$ efficiently, one tries to replace the exponent n by $n / 2$ (divide and conquer algorithm):

- $a^{0}(\bmod p):=1$
- $a^{n}(\bmod p):=\left(a^{n / 2}(\bmod p)\right)^{2}(\bmod p)$
if n is even
- $a^{n}(\bmod p):=\left(a^{n-1}(\bmod p) \cdot a\right)(\bmod p) \quad$ if n is odd

Fermat's Little Theorem

- For every $p \in \mathbb{P}$ and $a \in \mathbb{Z}$ one has

$$
a^{p} \equiv a \quad(\bmod p) .
$$

- Using modular powers, one can efficiently check Fermat's Little Theorem.
- Fermat Test: If this relation is not fulfilled for some $a \in \mathbb{Z}$, then p cannot be a prime!
- Modular powers are also used in modern cryptosystems like RSA.

Cryptography

- Assume A wants to send a secret message M securely to B.
- Then A and B agree upon a known encryption function E with decryption function D.
- A must have an encryption key e.
- $E_{e}(M)$ is called the cryptogram of message M.
- B must have a decryption key d.
- Of course $D_{d}\left(E_{e}(M)\right)=M$.

Asymmetric Cryptography

- In 1976 Diffie and Hellman invented asymmetric cryptography, also called public key cryptography.
- Here A and B have different keys, they both make their encryption keys e public, but keep their decryption keys d private.
- The security of such a system depends on the difficulty to find d from e or D_{d} from E_{e}.
- For this purpose one uses that some mathematical problems are much more difficult than their inverses. Such functions are called one way functions.

RSA Cryptosystem

- In the RSA cryptosystem (Rivest, Shamir, Adleman 1978) the message M is supposed to be a large integer.
- B chooses two 100-digit primes p and q.
- B sets $n:=p \cdot q$ and $\varphi:=(p-1)(q-1)$.
- B chooses her public key e relatively prime to φ.
- Public Key: Both e and n are public.

RSA Cryptosystem

- Private Key: Next B can compute her private key d such that $e \cdot d \equiv 1 \quad(\bmod \varphi)$.
- For security reasons p, q and φ are deleted.
- The RSA encryption and decryption functions are given by

$$
E_{e}(M)=M^{e} \quad(\bmod n) \quad \text { and } \quad D_{d}(C)=C^{d} \quad(\bmod n) .
$$

- The cryptographic equation $D_{d}\left(E_{e}(M)\right)=M$ follows from Fermat's Little Theorem.

