
Introduction to
Computer Algebra

Prof. Dr. Wolfram Koepf

Department of Mathematics

University of Kassel

koepf@mathematik.uni-kassel.de

http://www.mathematik.uni-kassel.de/˜koepf

Yaounde, Cameroon

March 22, 2005

file:///D:/KoepfInternet/index.html

History of Computer Algebra

• Some years after the first programming languages like

Fortran or Algol 60 were designed, the first computer

algebra systems were developed.

• Physicists were the first ones who were interested in

symbolic computations done by a computer to save

lengthy hand computations and to avoid mistakes.

• In the 1960s the programming language LISP was

especially well suited for this purpose.

History of Computer Algebra

• 1968: Reduce, Anthony Hearn, physicist, LISP-based.

Oldest system, still on the market!

• 1970/1992: Scratchpad, Axiom, IBM, LISP.

Strongly typed system based on mathematical

structures. Now free version available.

• 1971: Macsyma, MIT, LISP.

Now as free system Maxima still on the market.

• 1978: mumath, David Stoutemyer, LISP.

First system designed for mini-computers. System was

later replaced by Derive.

History of Computer Algebra

• 1980: Maple, University of Waterloo, C.

First C-based system. Small kernel, mainly

programmed in Maple language.

• 1988: Mathematica, Stephen Wolfram, physicist, C.

Best-selling system. First system which combined

symbolics, numerics, graphics and a nice user interface.

• 1989: Derive, David Stoutemyer, LISP.

mumath-successor. PC-system, mainly used in education.

• 1993: MuPAD, Benno Fuchssteiner, C.

Object oriented computer algebra system.

On-line Demonstration of Maple

• In this talk I will use the computer algebra system

Maple to show you the capabilities of such systems.

• If you have any question, please don’t hesitate to

interrupt me and ask! It is much easier to answer your

questions directly when they evolve.

• Let us start with the Maple demonstration.

Euclidean Algorithm

To compute the greatest common divisor of a and b, we

can use the following recursive algorithm:

• gcd(a, b) := gcd(|a|, |b|) if a < 0 or b < 0

• gcd(a, b) := gcd(b, a) if a < b

• gcd(a, 0) := a (stop condition)

• gcd(a, b) := gcd(b, a mod b)

Modular Powers

As further example, we consider the fast computation of

modular powers. To compute the modular power

an (mod p) efficiently, one tries to replace the exponent

n by n/2 (divide and conquer algorithm):

• a0 (mod p) := 1

• an (mod p) := (an/2 (mod p))2 (mod p) if n is even

• an (mod p) := (an−1 (mod p) · a) (mod p) if n is odd

Fermat’s Little Theorem

• For every p ∈ P and a ∈ Z one has

ap ≡ a (mod p) .

• Using modular powers, one can efficiently check

Fermat’s Little Theorem.

• Fermat Test: If this relation is not fulfilled for some

a ∈ Z, then p cannot be a prime!

• Modular powers are also used in modern cryptosystems

like RSA.

Cryptography

• Assume A wants to send a secret message M securely

to B.

• Then A and B agree upon a known encryption function

E with decryption function D.

• A must have an encryption key e.

• Ee(M) is called the cryptogram of message M .

• B must have a decryption key d.

• Of course Dd(Ee(M)) = M .

Asymmetric Cryptography

• In 1976 Diffie and Hellman invented asymmetric

cryptography, also called public key cryptography.

• Here A and B have different keys, they both make their

encryption keys e public, but keep their decryption keys

d private.

• The security of such a system depends on the difficulty

to find d from e or Dd from Ee.

• For this purpose one uses that some mathematical

problems are much more difficult than their inverses.

Such functions are called one way functions.

RSA Cryptosystem

• In the RSA cryptosystem (Rivest, Shamir, Adleman

1978) the message M is supposed to be a large integer.

• B chooses two 100-digit primes p and q.

• B sets n := p · q and ϕ := (p − 1)(q − 1).

• B chooses her public key e relatively prime to ϕ.

• Public Key: Both e and n are public.

RSA Cryptosystem

• Private Key: Next B can compute her private key d

such that e · d ≡ 1 (mod ϕ).

• For security reasons p, q and ϕ are deleted.

• The RSA encryption and decryption functions are given

by

Ee(M) = M e (mod n) and Dd(C) = Cd (mod n) .

• The cryptographic equation Dd(Ee(M)) = M follows

from Fermat’s Little Theorem.

