Computer Algebra Methods for Orthogonal Polynomials

Prof. Dr. Wolfram Koepf
University of Kassel

koepf@mathematik.uni-kassel.de
http://www.mathematik.uni-kassel.de/~koepf
International Conference on Difference Equations,
Special Functions and Applications
Munich, July 25-30, 2005

Online Demonstrations with Computer Algebra

- I will use the computer algebra system Maple to demonstrate and program the algorithms presented.
- Of course, we could also easily use any other general purpose system like Mathematica, MuPAD or Reduce.
- The following algorithms are most prominently used (internally): linear algebra techniques, multivariate polynomial factorization and the solution of nonlinear equations, e. g. by Gröbner basis techniques.

An Appetizer

- As an appetizer we consider the conversion between a recurrence equation and a difference equation.
- In this talk a difference equation is an equation involving the forward difference operator

$$
\Delta f(x)=f(x+1)-f(x) .
$$

- Question: How can one convert a recurrence equation

$$
a_{p} f(x+p)+\cdots+a_{1} f(x+1)+a_{0} f(x)=0
$$

(involving the shift operator) to a difference equation (involving the forward difference operator)?

Maple

Scalar Products

- Given: a scalar product

$$
\langle f, g\rangle:=\int_{a}^{b} f(x) g(x) d \mu(x)
$$

with non-negative Borel measure $\mu(x)$ supported in an interval $[a, b]$.

- Particular cases:
- absolutely continuous measure $d \mu(x)=\rho(x) d x$ with weight function $\rho(x)$,
- discrete measure $\mu(x)=\rho(x)$ with support in \mathbb{Z}.

Orthogonal Polynomials

- A family $P_{n}(x)$ of polynomials

$$
P_{n}(x)=k_{n} x^{n}+k_{n}^{\prime} x^{n-1}+k_{n}^{\prime \prime} x^{n-2}+\cdots, \quad k_{n} \neq 0
$$

is called orthogonal w. r. t. the positive definite measure $\mu(x)$, if

$$
\left\langle P_{m}, P_{n}\right\rangle=\left\{\begin{array}{cc}
0 & \text { if } m \neq n \\
h_{n}>0 & \text { if } m=n
\end{array}\right.
$$

Classical Families

- The classical orthogonal polynomials can be defined as the polynomial solutions of the differential equation:

$$
\sigma(x) P_{n}^{\prime \prime}(x)+\tau(x) P_{n}^{\prime}(x)+\lambda_{n} P_{n}(x)=0 .
$$

- Conclusions:
$-n=1$
$-n=2$
- coefficient of x^{n}
implies $\tau(x)=d x+e, d \neq 0$
implies $\sigma(x)=a x^{2}+b x+c$
implies $\lambda_{n}=-n(a(n-1)+d)$

Classification

- The classical systems can be classified according to the following scheme (Bochner 1929):
- $\sigma(x)=0$
- $\sigma(x)=1$
- $\sigma(x)=x$
- $\sigma(x)=x^{2}$
- $\sigma(x)=x^{2}-1$
powers x^{n}
Hermite polynomials
Laguerre polynomials
powers, Bessel polynomials
Jacobi polynomials

Hermite, Laguerre, Jacobi and Bessel

$$
\begin{array}{lllllllll}
\mathbf{U} & \mathbf{N} & I & K & A & S & S & E & L \\
\mathbf{V} & \mathbf{E} & \mathbf{R} & \mathbf{S} & \boldsymbol{I} & \mathbf{T} & A^{\prime \prime} & \mathbf{T}
\end{array}
$$

Weight function

- The weight function $\rho(x)$ corresponding to the differential equation satisfies Pearson's differential equation

$$
\frac{d}{d x}(\sigma(x) \rho(x))=\tau(x) \rho(x)
$$

- Hence it is given as

$$
\rho(x)=\frac{C}{\sigma(x)} e^{\int \frac{\tau(x)}{\sigma(x)} d x} .
$$

Classical Discrete Families

- The classical "discrete" orthogonal polynomials can be defined as the polynomial solutions of the difference equation: $(\nabla f(x)=f(x)-f(x-1))$

$$
\sigma(x) \Delta \nabla P_{n}(x)+\tau(x) \Delta P_{n}(x)+\lambda_{n} P_{n}(x)=0
$$

- Conclusions:
- $n=1$
$-n=2$
- coefficient of x^{n}
implies $\tau(x)=d x+e, d \neq 0$
implies $\sigma(x)=a x^{2}+b x+c$ implies $\lambda_{n}=-n(a(n-1)+d)$

Classification

- The classical discrete systems can be classified according to the scheme (Nikiforov, Suslov, Uvarov 1991):
- $\sigma(x)=0$
falling factorials

$$
x^{\underline{n}}=x(x-1) \cdots(x-n+1)
$$

- $\sigma(x)=1$
- $\sigma(x)=x$
translated Charlier polynomials falling factorials, Charlier, Meixner, Krawtchouk polynomials
- $\operatorname{deg}(\sigma(x), x)=2 \quad$ Hahn polynomials

Sergei Suslov

Weight function

- The weight function $\rho(x)$ corresponding to the difference equation satisfies Pearson's difference equation

$$
\Delta(\sigma(x) \rho(x))=\tau(x) \rho(x)
$$

- Hence it is given by

$$
\frac{\rho(x+1)}{\rho(x)}=\frac{\sigma(x)+\tau(x)}{\sigma(x+1)} .
$$

Hypergeometric Functions

- The power series

$$
{ }_{p} F_{q}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, z\right)=\sum_{k=0}^{\infty} A_{k} z^{k},
$$

whose summands $\alpha_{k}=A_{k} z^{k}$ have rational term ratio

$$
\frac{\alpha_{k+1}}{\alpha_{k}}=\frac{A_{k+1} z^{k+1}}{A_{k} z^{k}}=\frac{\left(k+a_{1}\right) \cdots\left(k+a_{p}\right)}{\left(k+b_{1}\right) \cdots\left(k+b_{q}\right)} \frac{z}{(k+1)}
$$

is called the generalized hypergeometric function.

Hypergeometric Terms

- The summand $\alpha_{k}=A_{k} z^{k}$ of a hypergeometric series is called a hypergeometric term w. r. t. k.
- The relation

$$
\frac{\rho(x+1)}{\rho(x)}=\frac{\sigma(x)+\tau(x)}{\sigma(x+1)}
$$

therefore states that the weight functions $\rho(x)$ of classical discrete orthogonal polynomials are hypergeometric terms w. r. t. the variable x.

Formula for Hypergeometric Terms

- For the coefficients of the hypergeometric function one gets the formula

$$
{ }_{p} F_{q}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{q}\right)_{k}} \frac{z^{k}}{k!},
$$

in terms of the Pochhammer symbol (or shifted factorial)

$$
(a)_{k}=a(a+1) \cdots(a+k-1)=\frac{\Gamma(a+k)}{\Gamma(a)} .
$$

Classical Orthogonal Polynomials of Hahn Class as Hypergeometric Functions

- From the differential or difference equation, one can determine a hypergeometric representation.
- One gets, for example, for the Laguerre polynomials

$$
L_{n}^{\alpha}(x)=\binom{n+\alpha}{n}{ }_{1} F_{1}\left(\left.\begin{array}{c}
-n \\
\alpha+1
\end{array} \right\rvert\, x\right)=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\binom{n+\alpha}{n-k} x^{n}
$$

and the Hahn polynomials are given by

$$
Q_{n}^{(\alpha, \beta)}(x, N)={ }_{3} F_{2}\left(\begin{array}{c|c}
-n,-x, n+1+\alpha+\beta & 1 \\
\alpha+1,-N
\end{array}\right) .
$$

$$
\begin{aligned}
& \text { U N I K A S S E L } \\
& \text { V E R S I T } A^{*} \text { T }
\end{aligned}
$$

Properties of Classical Discrete Orthogonal Polynomials

- Moreover, by linear algebra one can determine the coefficients of the following identities
(RE)

$$
x P_{n}(x)=a_{n} P_{n+1}(x)+b_{n} P_{n}(x)+c_{n} P_{n-1}(x)
$$

$(\mathrm{DR}) \quad \sigma(x) \Delta P_{n}(x)=\alpha_{n} P_{n+1}(x)+\beta_{n} P_{n}(x)+\gamma_{n} P_{n-1}(x)$
(SR)

$$
P_{n}(x)=\widehat{a}_{n} \Delta P_{n+1}(x)+\widehat{b}_{n} \Delta P_{n}(x)+\widehat{c}_{n} \Delta P_{n-1}(x)
$$

in terms of the given numbers a, b, c, d and e. Maple

Zeilberger's Algorithm

- Doron Zeilberger (1990) developed an algorithm to detect a holonomic recurrence equation for hypergeometric sums

$$
s_{n}=\sum_{k=-\infty}^{\infty} F(n, k)
$$

- A recurrence equation is called holonomic, if it is homogeneous, linear and has polynomial coefficients.

Zeilberger's Algorithm

- A similar algorithm detects a holonomic differential equation for sums of the form

$$
s(x)=\sum_{k=-\infty}^{\infty} F(x, k)
$$

- Holonomic functions form an algebra, i.e. sum and product of holonomic functions are holonomic, and there are linear algebra algorithms to compute the corresponding differential / recurrence equations.

Application to Orthogonal Polynomials

- As an example, we apply Zeilberger's algorithm to the Laguerre polynomials

$$
L_{n}^{\alpha}(x)=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\binom{n+\alpha}{n-k} x^{n}
$$

- Using the holonomic algebra, it is also easy to find recurrence and differential equations for the square $L_{n}^{\alpha}(x)^{2}$ and for the product $L_{n}^{\alpha}(x) L_{m}^{\beta}(x)$.

The software used was developed for my book

Wolfram Koepf

Hypergeometric Summation

Hypergeometric Summation, Vieweg, 1998, Braunschweig/Wiesbaden

and can be downloaded from my home page:

An Algorithmic Approach to Summation and
Special Function Identities
http://www.mathematik.uni-kassel.de/~koepf

Petkovsek-van Hoeij Algorithm

- Marko Petkovsek (1992) developed an algorithm to find all hypergeometric term solutions of a holonomic recurrence equation.
- This algorithm is not very efficient, but finishes the problem to find hypergeometric term representations of hypergeometric sums $s_{n}=\sum_{k=-\infty}^{\infty} F(n, k)$ like $\sum_{k=0}^{n}\binom{n}{k}^{2}$ algorithmically.
- Mark van Hoeij (1999) gave a very efficient version of such an algorithm, and implemented it in Maple.

Recurrence Operators

- Assume we consider the holonomic recurrence equation

$$
R f(x):=f(x+2)-(x+1) f(x+1)+x^{2} f(x)=0 .
$$

- In the general setting the coefficients could be rational functions w.r.t. x.
- Let τ denote the shift operator $\tau f(x)=f(x+1)$.

Then the above recurrence equation can be rewritten as $R f(x)=0$ with the operator polynomial

$$
R:=\tau^{2}-(x+1) \tau+x^{2} .
$$

Recurrence Operators

- Such operators form a non-commutative algebra.
- The product rule for the shift operator

$$
\tau(x f(x))=(x+1) f(x+1)=(x+1) \tau f(x)
$$

is equivalent to the commutator rule

$$
\tau x-x \tau=\tau
$$

in this algebra.

Some Facts

- An operator polynomial has a first order right factor iff the recurrence has a hypergeometric term solution.
- Hence Petkovsek's algorithm finds first order right factors of operator polynomials.
- Multiplying an operator polynomial from the left by a rational function in x is equivalent to multiply the recurrence equation by this rational function.
- Multiplying an operator polynomial from the left by τ is equivalent to substitute x by $x+1$ in the recurrence equation.

Construction of Fourth Order Recurrence

- Let us construct a fourth-order recurrence equation.
- To construct the equation $S f(x)=0$ with operator

$$
S:=\left(x(x+1) \tau^{2}+x^{3} \tau+\left(x^{2}+x-1\right)\right) \cdot R
$$

we just add the equations
$\left(x^{2}+x-1\right)\left(f(x+2)-(x+1) f(x+1)+x^{2} f(x)\right)=0$
$x^{3}\left(f(x+3)-(x+2) f(x+2)+(x+1)^{2} f(x+1)\right)=0$
$x(x+1)\left(f(x+4)-(x+3) f(x+3)+(x+2)^{2} f(x+2)\right)=0$.

Factorization of Recurrence Equations

- This leads to

$$
\begin{aligned}
S:= & x(x+1) \tau^{4} \\
& -x(4 x+3) \tau^{3} \\
& +(x+1)\left(3 x^{2}+6 x-1\right) \tau^{2} \\
& +(x+1)\left(x^{4}+x^{3}-x^{2}-x+1\right) \tau \\
& +\left(x^{2}+x-1\right) x^{2} .
\end{aligned}
$$

- Given S, a factorization procedure by Mark van Hoeij can compute the factorization $S=L R$, again.

Classical Orthogonal Polynomial Solutions of Recurrence Equations

- Previously we had shown how the recurrence equation can be explicitly expressed in terms of the coefficients of the differential / difference equation.
- If one uses this information in the opposite direction, then the corresponding differential / difference equation can be obtained from a given three-term recurrence.

Example

- Let the recurrence

$$
P_{n+2}(x)-(x-n-1) P_{n+1}(x)+\alpha(n+1)^{2} P_{n}(x)=0
$$

be given.

- We can compute that for $\alpha=1 / 4$ this corresponds to translated Laguerre polynomials, and for $\alpha<1 / 4$ Meixner and Krawtchouk polynomial solutions occur.

The End

Thank you very much for your attention!

