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Online Demonstrations with
Computer Algebra

• I will use the computer algebra system Maple to

demonstrate and program the algorithms presented.

• Of course, we could also easily use any other system

like Mathematica, MuPAD or Reduce.

• The following algorithms are most prominently used:

linear algebra techniques, multivariate polynomial

factorization and the solution of nonlinear equations,

e. g. by Gröbner basis techniques.



Scalar Products

• Given: a scalar product

〈f, g〉 :=
∫ b

a

f(x)g(x) dµ(x)

with non-negative measure µ(x) supported in an

interval [a, b].

• Particular cases:

– absolutely continuous measure dµ(x) = ρ(x) dx with weight

function ρ(x),
– discrete measure µ(x) = ρ(x) with support in Z,

– discrete measure µ(x) = ρ(x) with support in qZ.



Orthogonal Polynomials

• A family Pn(x) of polynomials

Pn(x) = knx
n + k′nx

n−1 + k′′nx
n−2 + · · · , kn 6= 0

is called orthogonal w. r. t. the positive definite

measure µ(x), if

〈Pm, Pn〉 =
{

0 if m 6= n

d2
n 6= 0 if m = n



Classical Families

• The classical orthogonal polynomials can be defined as

the polynomial solutions of the differential equation:

σ(x)P ′′
n (x) + τ(x)P ′

n(x) + λnPn(x) = 0 .

• Conclusions:

– n = 1 implies τ(x) = dx + e, d 6= 0
– n = 2 implies σ(x) = ax2 + bx + c

– coefficient of xn implies λn = −n(a(n − 1) + d)



Classification

• The classical systems can be classified according to the

scheme (Bochner 1929):

• σ(x) = 0 powers xn

• σ(x) = 1 Hermite polynomials

• σ(x) = x Laguerre polynomials

• σ(x) = x2 powers, Bessel polynomials

• σ(x) = x2 − 1 Jacobi polynomials



Hermite, Laguerre, Jacobi and Bessel



Weight function

• The weight function ρ(x) corresponding to the

differential equation satisfies Pearson’s differential

equation

d

dx

(
σ(x)ρ(x)

)
= τ(x)ρ(x) .

• Hence it is given as

ρ(x) =
C

σ(x)
e
∫ τ(x)

σ(x)
dx

.



Classical Discrete Families

• The classical discrete orthogonal polynomials can be

defined as the polynomial solutions of the difference

equation: (∆f(x) = f(x+1)− f(x),∇f(x) = f(x)− f(x− 1))

σ(x)∆∇Pn(x) + τ(x)∆Pn(x) + λnPn(x) = 0 .

• Conclusions:

– n = 1 implies τ(x) = dx + e, d 6= 0
– n = 2 implies σ(x) = ax2 + bx + c

– coefficient of xn implies λn = −n(a(n − 1) + d)



Classification

• The classical discrete systems can be classified accor-

ding to the scheme (Nikiforov, Suslov, Uvarov 1991):

• σ(x) = 0 falling factorials

xn = x(x− 1) · · · (x− n + 1)

• σ(x) = 1 translated Charlier polynomials

• σ(x) = x falling factorials, Charlier,

Meixner, Krawtchouk polynomials

• deg(σ(x), x) = 2 Hahn polynomials



Weight function

• The weight function ρ(x) corresponding to the

difference equation satisfies Pearson’s difference

equation

∆
(
σ(x)ρ(x)

)
= τ(x)ρ(x) .

• Hence it is given as

ρ(x + 1)
ρ(x)

=
σ(x) + τ(x)

σ(x + 1)
.



Hypergeometric Functions

• The power series

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

=
∞∑

k=0

Ak zk ,

whose coefficients αk = Akz
k have rational term ratio

αk+1

αk
=

Ak+1 zk+1

Ak zk
=

(k + a1) · · · (k + ap)
(k + b1) · · · (k + bq)

z

(k + 1)

is called the generalized hypergeometric function.



Hypergeometric Terms

• The summand αk = Akz
k of a hypergeometric series is

called a hypergeometric term w. r. t. k.

• The relation

ρ(x + 1)
ρ(x)

=
σ(x) + τ(x)

σ(x + 1)

therefore states that the weight functions ρ(x) of

classical discrete orthogonal polynomials are

hypergeometric terms w. r. t. the variable x.



Coefficients of Hypergeometric Functions

• For the coefficients of the hypergeometric function we

get the formula

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

=
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
,

where (a)k = a(a + 1) · · · (a + k − 1) is called the

Pochhammer symbol (or shifted factorial).



Examples of Hypergeometric Functions

ez = 0F0(z)

sin z = z · 0F1

(
−

3/2

∣∣∣∣∣−z2

4

)

• Further examples: cos(z), arcsin(z), arctan(z),
ln(1 + z), erf(z), L(α)

n (z), . . . , but for example not

tan(z).



Classical Discrete Orthogonal Polynomials
of Hahn Class as Hypergeometric Functions

• From the differential or difference equation, one can

determine a hypergeometric representation.

• To get this representation, one determines by linear

algebra the coefficients of the following identities

(RE) xPn(x) = an Pn+1(x) + bn Pn(x) + cn Pn−1(x)

(DR) σ(x) P ′
n(x) = αn Pn+1(x) + βn Pn(x) + γn Pn−1(x)

(SR) Pn(x) = ân P ′
n+1(x) + b̂n P ′

n(x) + ĉn P ′
n−1(x)

in terms of the given numbers a, b, c, d and e.



Classical Discrete Orthogonal Polynomials
of Hahn Class as Hypergeometric Functions

• Combining these equations one obtains for the

coefficients Ck(n) of the power series for the monic

polynomials
P̃n(x) =

n∑
k=0

Ck(n) xn

(again by linear algebra) the recurrence equation

(k − n)(an + d − a + ak)Ck(n)

+(k + 1)(bk + e)Ck+1(n)

+c(k + 1)(k + 2)Ck+2(n) = 0 .



Classical Discrete Orthogonal Polynomials
of Hahn Class as Hypergeometric Functions

• From these general results, we get, for example, for the

Laguerre polynomials

Lα
n(x) =

(α + 1)n

n! 1F1

(
−n

α + 1

∣∣∣∣∣x
)

,

and the Hahn polynomials are given by h
(α,β)
n (x,N) =

(−1)n(N − n)n(β + 1)n

n! 3F2

(
−n,−x, α + β + n + 1

β + 1, 1 −N

∣∣∣∣∣ 1
)

.



Zeilberger’s Algorithm

• In 1990 Zeilberger developed an algorithm to detect a

holonomic recurrence equation for hypergeometric

sums

sn =
∞∑

k=−∞

F (n, k) .

• A recurrence equation is called holonomic, if it is

homogeneous, linear and has polynomial coefficients.

• The holonomic recurrence equation constitutes a

normal form for holonomic sequences.



Zeilberger’s Algorithm

• A similar algorithm detects a holonomic differential

equation for sums of the form

s(x) =
∞∑

k=−∞

F (x, k) .

• The holonomic differential equation constitutes a

normal form for holonomic functions.

• Holonomic functions form an algebra, i.e. sum and

product of holonomic functions are holonomic, and

there are linear algebra algorithms to compute the

corresponding differential / recurrence equations.



Application to Orthogonal Polynomials

• As examples, we apply Zeilberger’s algorithm to the

Laguerre polynomials

Lα
n(x) =

(α + 1)n

n! 1F1

(
−n

α + 1

∣∣∣∣∣x
)

and to the Hahn polynomials h
(α,β)
n (x,N) =

(−1)n(N − n)n(β + 1)n

n! 3F2

(
−n,−x, α + β + n + 1

β + 1, 1 −N

∣∣∣∣∣ 1
)

.



The software used was

developed for my book

Hypergeometric Sum-

mation, Vieweg, 1998,

Braunschweig/Wiesbaden

and can be downloaded

from my home page:

http://www.mathematik.uni-kassel.de/˜koepf



Computation of the Differential Equation
from the Recurrence Equation

• We have shown how the recurrence equation can be

explicitly expressed in terms of the coefficients of the

differential / difference equation.

• If one uses this information in the opposite direction,

then the corresponding differential / difference

equation can be obtained from a given three-term

recurrence.



Example

• Let the recurrence

Pn+2(x) − (x− n − 1) Pn+1(x) + α(n + 1)2Pn(x) = 0

be given.

• We can compute that for α = 1/4 this corresponds to

translated Laguerre polynomials, and for α < 1/4
Meixner and Krawtchouk polynomial solutions occur.



The End

Thank you very much for your attention!


