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Online Demonstrations with
Computer Algebra

e | will use the computer algebra system Maple to
demonstrate and program the algorithms presented.

e Of course, we could also easily use any other system
like Mathematica, MuPAD or Reduce.

e The following algorithms are most prominently used:
linear algebra techniques, multivariate polynomial
factorization and the solution of nonlinear equations,
e. g. by Grobner basis techniques.



Scalar Products

e Given: a scalar product

/f

with non-negative measure u(x
interval |a, b].

e Particular cases:

— absolutely continuous measure dyu(x)
function p(x),

— discrete measure pu(x)

— discrete measure u(x)

dpi()

) supported in an

= p(x) dr with weight

p(x) with support in Z,
p(x) with support in ¢~.



Orthogonal Polynomials

e A family P,(x) of polynomials
P,(x) =k + k" P+ K" K, £0

Is called orthogonal w. r. t. the positive definite
measure u(x), if

B 0 ifm#n
<Pm’Pn>_{d,,%7éO ifm=n



Classical Families

e [he classical orthogonal polynomials can be defined as
the polynomial solutions of the differential equation:

o(x)P)(x) + 7(x)P.(x) + \yPu(z) =0 .

e Conclusions:

-n=1 implies 7(x) = dx +e,d # 0
- n =2 implies o(z) = az® + bx + ¢
— coefficient of " implies A, = —n(a(n — 1) + d)



Classification

The classical systems can be classified according to the
scheme (Bochner 1929):

o(x) =0 powers "

o(x) =1 Hermite polynomials

o(lx) == Laguerre polynomials

o(x) = x* powers, Bessel polynomials

o(x) =ax%—1 Jacobi polynomials
LT



Hermite, Laguerre, Jacobi and Bessel



Weight function

e The weight function p(x) corresponding to the
differential equation satisfies Pearson’s differential
equation

2 (o(@)p(a)) = r(x)p(a)

e Hence it Is given as




Classical Discrete Families

e [he classical discrete orthogonal polynomials can be
defined as the polynomial solutions of the difference

equation: (Af(z) = f(z+1)— f(2),V[f(z) = f(z) - f(z—1))
o(x)AVP,(z) + 7(x)AP,(x) + \,P,(x) = 0.

e Conclusions:

-n=1 implies 7(x) = dx +e,d # 0
- n =2 implies o(z) = az® + bx + ¢
— coefficient of " implies A, = —n(a(n — 1) + d)



Classification

e The classical discrete systems can be classified accor-
ding to the scheme (Nikiforov, Suslov, Uvarov 1991):

e o(x)=0 falling factorials
=x(z—1)---(zr—n+1)

1 translated Charlier polynomials

e o(x)

x falling factorials, Charlier,
Meixner, Krawtchouk polynomials

e o(x)

e deg(o(xz),x) =2  Hahn polynomials



Weight function

e The weight function p(x) corresponding to the
difference equation satisfies Pearson’s difference
equation

e Hence it is given as

plet+1) _o@)+7(z)




Hypergeometric Functions

e [he power series
a a =
qu(bi::::bfj z) :;Akzk7
=0
whose coefficients ;. = A;z" have rational term ratio

apy1 App 2" (k+ar)-(k+ay) 2

o Ay, 2" (k+by)--(k+by) (k+1)

is called the generalized hypergeometric function.




Hypergeometric Terms

e The summand a; = A;z" of a hypergeometric series is
called a hypergeometric term w. r. t. k.

e [he relation
pla+1) _ ola) +7(a)
p(z) o(x+1)

therefore states that the weight functions p(z) of
classical discrete orthogonal polynomials are
hypergeometric terms w. r. t. the variable .



Coefficients of Hypergeometric Functions

e For the coefficients of the hypergeometric function we
get the formula

A1y ...y Ay  (ay)p - (a,)r2F
F z | = :
g q(bla-"qu ) kZ_O (bl)k(bQ)k k!
where (a)y =a(a+1)---(a+ k — 1) is called the
Pochhammer symbol (or shifted factorial).




Examples of Hypergeometric Functions

62 — OF()(Z)

Sln 2 = Z'QFl 3/2 —Z

e Further examples: cos(z), arcsin(z), arctan(z),
In(1+ z),erf(z),Lq(@a)(z), ..., but for example not
tan(z).




Classical Discrete Orthogonal Polynomials
of Hahn Class as Hypergeometric Functions

e From the differential or difference equation, one can
determine a hypergeometric representation.

e [o get this representation, one determines by linear
algebra the coefficients of the following identities

(RE) rP,(x) = a,P,1(x)+b, Py(x)+ ¢, P, 1(x)
(DR) o(z) Py(r) = anPy(z) + P Po(x) + v Pr-a1(x)
(SR) Po(z) = @, Pyy(z) + b, Py(z) + ¢, Py ()

in terms of the given numbers a, b, c,d and e.
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Classical Discrete Orthogonal Polynomials
of Hahn Class as Hypergeometric Functions

e Combining these equations

one obtains for the

coefficients C'x(n) of the power series for the monic

polynomials

(again by linear algebra) th

(k —n)(an +
+(k + 1)(bk -

P,(z) = Z Cr(n) 2"

e recurrence equation

d— a+ ak)Ci(n)
-e)Cr11(n)

+c(k+1)(k

- 2)C’k+2(n) =0.



Classical Discrete Orthogonal Polynomials
of Hahn Class as Hypergeometric Functions

e From these general results, we get, for example, for the
Laguerre polynomials

L) = & D F( o x) ,

n! a+1

and the Hahn polynomials are given by h%a’m(x, N) =

(—1)™"(N —n)(B+ 1), 3F2<n, —z,aa+0+n+1 1).

n! 6+1,1—N




Zeilberger’'s Algorithm

e In 1990 Zeilberger developed an algorithm to detect a
holonomic recurrence equation for hypergeometric

sums .
Sp = Z F(n,k) .

k=—o00
e A recurrence equation is called holonomic, if it is
homogeneous, linear and has polynomial coefficients.

e [ he holonomic recurrence equation constitutes a
normal form for holonomic sequences.



Zeilberger’'s Algorithm

e A similar algorithm detects a holonomic differential
equation for sums of the form

O
s(x) = Z F(x, k).
k=—00
e The holonomic differential equation constitutes a
normal form for holonomic functions.

e Holonomic functions form an algebra, i.e. sum and
product of holonomic functions are holonomic, and
there are linear algebra algorithms to compute the
corresponding differential / recurrence equations.



Application to Orthogonal Polynomials

e As examples, we apply Zeilberger's algorithm to the
Laguerre polynomials

Lo(a) = L&t D F( o x)

n! a4+ 1

and to the Hahn polynomials h,,(f’ﬁ)(a:, N) =

(—1)™"(N —n)(B+ 1), 3F2<n, —z,a+0+n+1 1).

n! 6+1,1—N




The software used was
developed for my book

Hypergeometric ~ Sum-
mation, Vieweg, 1998,
Braunschweig/Wiesbaden

and can be downloaded
from my home page:

Wolfram Koepf

Hypergeometric
Summation

An Algorithmic Approach to
Summation and
Special Function Identities

Advanced lectures
in Mathematics




Computation of the Differential Equation
from the Recurrence Equation

e \We have shown how the recurrence equation can be
explicitly expressed in terms of the coefficients of the
differential / difference equation.

e If one uses this information in the opposite direction,
then the corresponding differential / difference
equation can be obtained from a given three-term
recurrence.



Example

e Let the recurrence
Poo(z) —(x—n—1)Pi(z) + a(n + 1)°P,(z) =0
be given.

e We can compute that for & = 1/4 this corresponds to
translated Laguerre polynomials, and for a < 1/4
Meixner and Krawtchouk polynomial solutions occur.



The End

Thank you very much for your attention!



