Computer Algebra Methods for Orthogonal Polynomials

Prof. Dr. Wolfram Koepf
Department of Mathematics
University of Kassel

koepf@mathematik.uni-kassel.de
http://www.mathematik.uni-kassel.de/~koepf
CASC 2004, St. Petersburg July 12-19, 2004

Online Demonstrations with Computer Algebra

- I will use the computer algebra system Maple to demonstrate and program the algorithms presented.
- Of course, we could also easily use any other system like Mathematica, MuPAD or Reduce.
- The following algorithms are most prominently used: linear algebra techniques, multivariate polynomial factorization and the solution of nonlinear equations, e. g. by Gröbner basis techniques.

Scalar Products

- Given: a scalar product

$$
\langle f, g\rangle:=\int_{a}^{b} f(x) g(x) d \mu(x)
$$

with non-negative measure $\mu(x)$ supported in an interval $[a, b]$.

- Particular cases:
- absolutely continuous measure $d \mu(x)=\rho(x) d x$ with weight function $\rho(x)$,
- discrete measure $\mu(x)=\rho(x)$ with support in \mathbb{Z},
- discrete measure $\mu(x)=\rho(x)$ with support in $q^{\mathbb{Z}}$.

Orthogonal Polynomials

- A family $P_{n}(x)$ of polynomials

$$
P_{n}(x)=k_{n} x^{n}+k_{n}^{\prime} x^{n-1}+k_{n}^{\prime \prime} x^{n-2}+\cdots, \quad k_{n} \neq 0
$$

is called orthogonal w. r. t. the positive definite measure $\mu(x)$, if

$$
\left\langle P_{m}, P_{n}\right\rangle=\left\{\begin{array}{cc}
0 & \text { if } m \neq n \\
d_{n}^{2} \neq 0 & \text { if } m=n
\end{array}\right.
$$

Classical Families

- The classical orthogonal polynomials can be defined as the polynomial solutions of the differential equation:

$$
\sigma(x) P_{n}^{\prime \prime}(x)+\tau(x) P_{n}^{\prime}(x)+\lambda_{n} P_{n}(x)=0 .
$$

- Conclusions:
$-n=1$
$-n=2$
- coefficient of x^{n}
implies $\tau(x)=d x+e, d \neq 0$
implies $\sigma(x)=a x^{2}+b x+c$
implies $\lambda_{n}=-n(a(n-1)+d)$

Classification

- The classical systems can be classified according to the scheme (Bochner 1929):
- $\sigma(x)=0$
- $\sigma(x)=1$
- $\sigma(x)=x$
- $\sigma(x)=x^{2}$
- $\sigma(x)=x^{2}-1$
powers x^{n}
Hermite polynomials
Laguerre polynomials
powers, Bessel polynomials
Jacobi polynomials

Hermite, Laguerre, Jacobi and Bessel

Weight function

- The weight function $\rho(x)$ corresponding to the differential equation satisfies Pearson's differential equation

$$
\frac{d}{d x}(\sigma(x) \rho(x))=\tau(x) \rho(x)
$$

- Hence it is given as

$$
\rho(x)=\frac{C}{\sigma(x)} e^{\int \frac{\tau(x)}{\sigma(x)} d x} .
$$

Classical Discrete Families

- The classical discrete orthogonal polynomials can be defined as the polynomial solutions of the difference equation: $(\Delta f(x)=f(x+1)-f(x), \nabla f(x)=f(x)-f(x-1))$

$$
\sigma(x) \Delta \nabla P_{n}(x)+\tau(x) \Delta P_{n}(x)+\lambda_{n} P_{n}(x)=0 .
$$

- Conclusions:
- $n=1$
$-n=2$
- coefficient of x^{n}

$$
\begin{aligned}
& \text { implies } \tau(x)=d x+e, d \neq 0 \\
& \text { implies } \sigma(x)=a x^{2}+b x+c \\
& \text { implies } \lambda_{n}=-n(a(n-1)+d)
\end{aligned}
$$

Classification

- The classical discrete systems can be classified according to the scheme (Nikiforov, Suslov, Uvarov 1991):
- $\sigma(x)=0$ falling factorials

$$
x^{\underline{n}}=x(x-1) \cdots(x-n+1)
$$

- $\sigma(x)=1$
- $\sigma(x)=x$
translated Charlier polynomials falling factorials, Charlier, Meixner, Krawtchouk polynomials
- $\operatorname{deg}(\sigma(x), x)=2 \quad$ Hahn polynomials

Weight function

- The weight function $\rho(x)$ corresponding to the difference equation satisfies Pearson's difference equation

$$
\Delta(\sigma(x) \rho(x))=\tau(x) \rho(x)
$$

- Hence it is given as

$$
\frac{\rho(x+1)}{\rho(x)}=\frac{\sigma(x)+\tau(x)}{\sigma(x+1)} .
$$

Hypergeometric Functions

- The power series

$$
{ }_{p} F_{q}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, z\right)=\sum_{k=0}^{\infty} A_{k} z^{k},
$$

whose coefficients $\alpha_{k}=A_{k} z^{k}$ have rational term ratio

$$
\frac{\alpha_{k+1}}{\alpha_{k}}=\frac{A_{k+1} z^{k+1}}{A_{k} z^{k}}=\frac{\left(k+a_{1}\right) \cdots\left(k+a_{p}\right)}{\left(k+b_{1}\right) \cdots\left(k+b_{q}\right)} \frac{z}{(k+1)}
$$

is called the generalized hypergeometric function.

Hypergeometric Terms

- The summand $\alpha_{k}=A_{k} z^{k}$ of a hypergeometric series is called a hypergeometric term w. r. t. k.
- The relation

$$
\frac{\rho(x+1)}{\rho(x)}=\frac{\sigma(x)+\tau(x)}{\sigma(x+1)}
$$

therefore states that the weight functions $\rho(x)$ of classical discrete orthogonal polynomials are hypergeometric terms w. r. t. the variable x.

Coefficients of Hypergeometric Functions

- For the coefficients of the hypergeometric function we get the formula

$$
{ }_{p} F_{q}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{q}\right)_{k}} \frac{z^{k}}{k!},
$$

where $(a)_{k}=a(a+1) \cdots(a+k-1)$ is called the Pochhammer symbol (or shifted factorial).

Examples of Hypergeometric Functions

$$
\begin{gathered}
e^{z}={ }_{0} F_{0}(z) \\
\sin z=z \cdot{ }_{0} F_{1}\left(\left.\begin{array}{c}
- \\
3 / 2
\end{array} \right\rvert\,-\frac{z^{2}}{4}\right)
\end{gathered}
$$

- Further examples: $\cos (z), \arcsin (z), \arctan (z)$, $\ln (1+z), \operatorname{erf}(z), L_{n}^{(\alpha)}(z), \ldots$, but for example not $\tan (z)$.

Classical Discrete Orthogonal Polynomials of Hahn Class as Hypergeometric Functions

- From the differential or difference equation, one can determine a hypergeometric representation.
- To get this representation, one determines by linear algebra the coefficients of the following identities
$(\mathbf{R E}) \quad x P_{n}(x)=a_{n} P_{n+1}(x)+b_{n} P_{n}(x)+c_{n} P_{n-1}(x)$
(DR) $\quad \sigma(x) P_{n}^{\prime}(x)=\alpha_{n} P_{n+1}(x)+\beta_{n} P_{n}(x)+\gamma_{n} P_{n-1}(x)$
(SR)

$$
P_{n}(x)=\widehat{a}_{n} P_{n+1}^{\prime}(x)+\widehat{b}_{n} P_{n}^{\prime}(x)+\widehat{c}_{n} P_{n-1}^{\prime}(x)
$$

in terms of the given numbers a, b, c, d and e.

Classical Discrete Orthogonal Polynomials of Hahn Class as Hypergeometric Functions

- Combining these equations one obtains for the coefficients $C_{k}(n)$ of the power series for the monic polynomials

$$
\widetilde{P}_{n}(x)=\sum_{k=0}^{n} C_{k}(n) x^{n}
$$

(again by linear algebra) the recurrence equation

$$
\begin{aligned}
& (k-n)(a n+d-a+a k) C_{k}(n) \\
& +(k+1)(b k+e) C_{k+1}(n) \\
& +c(k+1)(k+2) C_{k+2}(n)=0
\end{aligned}
$$

Classical Discrete Orthogonal Polynomials of Hahn Class as Hypergeometric Functions

- From these general results, we get, for example, for the Laguerre polynomials

$$
L_{n}^{\alpha}(x)=\frac{(\alpha+1)_{n}}{n!}{ }_{1} F_{1}\left(\left.\begin{array}{c|c}
-n \\
\alpha+1
\end{array} \right\rvert\, x\right)
$$

and the Hahn polynomials are given by $h_{n}^{(\alpha, \beta)}(x, N)=$
$\frac{(-1)^{n}(N-n)_{n}(\beta+1)_{n}}{n!}{ }_{3} F_{2}\left(\left.\begin{array}{c|c}-n,-x, \alpha+\beta+n+1 & \\ \beta+1,1-N\end{array} \right\rvert\,\right)$.

Zeilberger's Algorithm

- In 1990 Zeilberger developed an algorithm to detect a holonomic recurrence equation for hypergeometric sums

$$
s_{n}=\sum_{k=-\infty}^{\infty} F(n, k)
$$

- A recurrence equation is called holonomic, if it is homogeneous, linear and has polynomial coefficients.
- The holonomic recurrence equation constitutes a normal form for holonomic sequences.

Zeilberger's Algorithm

- A similar algorithm detects a holonomic differential equation for sums of the form

$$
s(x)=\sum_{k=-\infty}^{\infty} F(x, k)
$$

- The holonomic differential equation constitutes a normal form for holonomic functions.
- Holonomic functions form an algebra, i.e. sum and product of holonomic functions are holonomic, and there are linear algebra algorithms to compute the corresponding differential / recurrence equations.

Application to Orthogonal Polynomials

- As examples, we apply Zeilberger's algorithm to the Laguerre polynomials

$$
L_{n}^{\alpha}(x)=\frac{(\alpha+1)_{n}}{n!}{ }_{1} F_{1}\left(\begin{array}{c|c}
-n \\
\alpha+1 & x
\end{array}\right)
$$

and to the Hahn polynomials $h_{n}^{(\alpha, \beta)}(x, N)=$

$$
\frac{(-1)^{n}(N-n)_{n}(\beta+1)_{n}}{n!}{ }_{3} F_{2}\left(\left.\begin{array}{c|c}
-n,-x, \alpha+\beta+n+1 & 1 \\
\beta+1,1-N
\end{array} \right\rvert\,\right) .
$$

The software used was developed for my book

Wolfram Koepf

Hypergeometric Summetion

Hypergeometric Summation, Vieweg, 1998, Braunschweig/Wiesbaden

and can be downloaded from my home page:

An Algorithmic Approach to Summation and
Special Function Identities

http://www.mathematik.uni-kassel.de/~koepf

Computation of the Differential Equation from the Recurrence Equation

- We have shown how the recurrence equation can be explicitly expressed in terms of the coefficients of the differential / difference equation.
- If one uses this information in the opposite direction, then the corresponding differential / difference equation can be obtained from a given three-term recurrence.

Example

- Let the recurrence

$$
P_{n+2}(x)-(x-n-1) P_{n+1}(x)+\alpha(n+1)^{2} P_{n}(x)=0
$$

be given.

- We can compute that for $\alpha=1 / 4$ this corresponds to translated Laguerre polynomials, and for $\alpha<1 / 4$ Meixner and Krawtchouk polynomial solutions occur.

The End

Thank you very much for your attention!

