Computer Algebra Methods for Orthogonal Polynomials

Prof. Dr. Wolfram Koepf Department of Mathematics University of Kassel koepf@mathematik.uni-kassel.de http://www.mathematik.uni-kassel.de/~koepf

> CASC 2004, St. Petersburg July 12-19, 2004

Online Demonstrations with Computer Algebra

- I will use the computer algebra system *Maple* to demonstrate and program the algorithms presented.
- Of course, we could also easily use any other system like *Mathematica*, MuPAD or Reduce.
- The following algorithms are most prominently used: linear algebra techniques, multivariate polynomial factorization and the solution of nonlinear equations, e. g. by Gröbner basis techniques.

Scalar Products

• Given: a scalar product

$$\langle f,g \rangle := \int_{a}^{b} f(x)g(x) \, d\mu(x)$$

with non-negative measure $\mu(x)$ supported in an interval [a, b].

- Particular cases:
 - absolutely continuous measure $d\mu(x)=\rho(x)\,dx$ with weight function $\rho(x)$,
 - discrete measure $\mu(x) = \rho(x)$ with support in \mathbb{Z} ,
 - discrete measure $\mu(x) = \rho(x)$ with support in $q^{\mathbb{Z}}$.

UNIKASSEL VERSITÄT

Orthogonal Polynomials

• A family $P_n(x)$ of polynomials

$$P_n(x) = k_n x^n + k'_n x^{n-1} + k''_n x^{n-2} + \cdots, \quad k_n \neq 0$$

is called orthogonal w. r. t. the positive definite measure $\mu(x),$ if

$$\langle P_m, P_n \rangle = \begin{cases} 0 & \text{if } m \neq n \\ d_n^2 \neq 0 & \text{if } m = n \end{cases}$$

UNIKASSEL

Classical Families

• The classical orthogonal polynomials can be defined as the polynomial solutions of the differential equation:

 $\sigma(x)P_n''(x) + \tau(x)P_n'(x) + \lambda_n P_n(x) = 0.$

- Conclusions:
 - -n = 1
 - -n=2
 - coefficient of x^n

implies $\tau(x) = dx + e, d \neq 0$ implies $\sigma(x) = ax^2 + bx + c$ implies $\lambda_n = -n(a(n-1) + d)$

> UNIKASSEL VERSITÄT

Classification

- The classical systems can be classified according to the scheme (Bochner 1929):
- $\sigma(x) = 0$ powers x^n
- $\sigma(x) = 1$
- $\sigma(x) = x$
- $\sigma(x) = x^2$
- $\sigma(x) = x^2 1$

powers xⁿ
Hermite polynomials
Laguerre polynomials
powers, Bessel polynomials
Jacobi polynomials

Hermite, Laguerre, Jacobi and Bessel

Weight function

• The weight function $\rho(x)$ corresponding to the differential equation satisfies Pearson's differential equation

$$\frac{d}{dx}\Big(\sigma(x)\rho(x)\Big) = \tau(x)\rho(x) \; .$$

• Hence it is given as

$$\rho(x) = \frac{C}{\sigma(x)} e^{\int \frac{\tau(x)}{\sigma(x)} dx} .$$

Classical Discrete Families

 The classical discrete orthogonal polynomials can be defined as the polynomial solutions of the difference equation: (Δf(x) = f(x+1) - f(x), ∇f(x) = f(x) - f(x-1))

$$\sigma(x)\Delta\nabla P_n(x) + \tau(x)\Delta P_n(x) + \lambda_n P_n(x) = 0.$$

- Conclusions:
 - -n = 1
 - -n = 2
 - coefficient of x^n

implies $\tau(x) = dx + e, d \neq 0$ implies $\sigma(x) = ax^2 + bx + c$ implies $\lambda_n = -n(a(n-1) + d)$

Classification

• The classical discrete systems can be classified according to the scheme (Nikiforov, Suslov, Uvarov 1991):

• $\sigma(x) = 0$

- $\sigma(x) = 1$
- $\sigma(x) = x$

• $\deg(\sigma(x), x) = 2$

falling factorials $x^{\underline{n}} = x(x-1)\cdots(x-n+1)$

translated Charlier polynomials

falling factorials, Charlier, Meixner, Krawtchouk polynomials

Hahn polynomials

Weight function

• The weight function $\rho(x)$ corresponding to the difference equation satisfies Pearson's difference equation

$$\Delta\Big(\sigma(x)\rho(x)\Big) = \tau(x)\rho(x) \;.$$

• Hence it is given as

$$\frac{\rho(x+1)}{\rho(x)} = \frac{\sigma(x) + \tau(x)}{\sigma(x+1)} .$$

Hypergeometric Functions

• The power series

$$_pF_qegin{pmatrix} a_1,\ldots,a_p\ b_1,\ldots,b_q \end{bmatrix} z igg) = \sum_{k=0}^\infty A_k \, z^k \; ,$$

whose coefficients $\alpha_k = A_k z^k$ have rational term ratio $\frac{\alpha_{k+1}}{\alpha_k} = \frac{A_{k+1} z^{k+1}}{A_k z^k} = \frac{(k+a_1) \cdots (k+a_p)}{(k+b_1) \cdots (k+b_q)} \frac{z}{(k+1)}$ is called the generalized hypergeometric function.

Hypergeometric Terms

- The summand $\alpha_k = A_k z^k$ of a hypergeometric series is called a hypergeometric term w. r. t. k.
- The relation

$$\frac{\rho(x+1)}{\rho(x)} = \frac{\sigma(x) + \tau(x)}{\sigma(x+1)}$$

therefore states that the weight functions $\rho(x)$ of classical discrete orthogonal polynomials are hypergeometric terms w. r. t. the variable x.

Coefficients of Hypergeometric Functions

• For the coefficients of the hypergeometric function we get the formula

$$_{p}F_{q}\left(\begin{vmatrix} a_{1}, \dots, a_{p} \\ b_{1}, \dots, b_{q} \end{vmatrix} z \right) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k} \cdots (a_{p})_{k} z^{k}}{(b_{1})_{k} \cdots (b_{q})_{k} k!},$$

where $(a)_k = a(a+1)\cdots(a+k-1)$ is called the Pochhammer symbol (or shifted factorial).

Examples of Hypergeometric Functions

$$e^{z} = {}_{0}F_{0}(z)$$

 $\sin z = z \cdot {}_{0}F_{1} igg(rac{-}{3/2} igg| -rac{z^{2}}{4} igg)$

• Further examples: $\cos(z)$, $\arcsin(z)$, $\arctan(z)$, $\ln(1+z)$, $\operatorname{erf}(z)$, $L_n^{(\alpha)}(z)$, ..., but for example not $\tan(z)$.

> UNIKASSEL VERSITÄT

Classical Discrete Orthogonal Polynomials of Hahn Class as Hypergeometric Functions

- From the differential or difference equation, one can determine a hypergeometric representation.
- To get this representation, one determines by linear algebra the coefficients of the following identities

 $(\mathbf{RE}) x P_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + c_n P_{n-1}(x)$ $(\mathbf{DR}) \sigma(x) P'_n(x) = \alpha_n P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n-1}(x)$ $(\mathbf{SR}) P_n(x) = \hat{a}_n P'_{n+1}(x) + \hat{b}_n P'_n(x) + \hat{c}_n P'_{n-1}(x)$

in terms of the given numbers a, b, c, d and e.

UNIKASSEL VERSITAT

Classical Discrete Orthogonal Polynomials of Hahn Class as Hypergeometric Functions

• Combining these equations one obtains for the coefficients $C_k(n)$ of the power series for the monic polynomials $\widetilde{P}(n) = \sum_{k=1}^{n} C_k(n) e^{nk}$

$$\prod_{n(x)} - \sum_{k=0} C_k(n) x$$

(again by linear algebra) the recurrence equation

$$(k-n)(an+d-a+ak)C_k(n)$$

+ $(k+1)(bk+e)C_{k+1}(n)$
+ $c(k+1)(k+2)C_{k+2}(n) = 0$.

UNIKASSEL VERSITAT

Classical Discrete Orthogonal Polynomials of Hahn Class as Hypergeometric Functions

• From these general results, we get, for example, for the Laguerre polynomials

$$L_{n}^{\alpha}(x) = \frac{(\alpha+1)_{n}}{n!} {}_{1}F_{1} \begin{pmatrix} -n \\ \alpha+1 \\ \end{pmatrix} ,$$

and the Hahn polynomials are given by $h_n^{(\alpha,\beta)}(x,N) =$

$$\frac{(-1)^{n}(N-n)_{n}(\beta+1)_{n}}{n!} \, _{3}F_{2} \begin{pmatrix} -n, -x, \alpha+\beta+n+1 \\ \beta+1, 1-N \end{pmatrix} 1 \end{pmatrix}$$

UNIKASSEL VERSITÄT

Zeilberger's Algorithm

 In 1990 Zeilberger developed an algorithm to detect a holonomic recurrence equation for hypergeometric sums

$$s_n = \sum_{k=-\infty}^{\infty} F(n,k) \; .$$

- A recurrence equation is called holonomic, if it is homogeneous, linear and has polynomial coefficients.
- The holonomic recurrence equation constitutes a normal form for holonomic sequences.

Zeilberger's Algorithm

• A similar algorithm detects a holonomic differential equation for sums of the form

$$s(x) = \sum_{k=-\infty}^{\infty} F(x,k)$$
.

- The holonomic differential equation constitutes a normal form for holonomic functions.
- Holonomic functions form an algebra, i.e. sum and product of holonomic functions are holonomic, and there are linear algebra algorithms to compute the corresponding differential / recurrence equations.

Application to Orthogonal Polynomials

• As examples, we apply Zeilberger's algorithm to the Laguerre polynomials

$$L_n^{\alpha}(x) = \frac{(\alpha+1)_n}{n!} {}_1F_1 \begin{pmatrix} -n \\ \alpha+1 \end{pmatrix} x$$

and to the Hahn polynomials $h_n^{(\alpha,\beta)}(x,N) =$

$$\frac{(-1)^{n}(N-n)_{n}(\beta+1)_{n}}{n!} {}_{3}F_{2} \begin{pmatrix} -n, -x, \alpha+\beta+n+1\\ \beta+1, 1-N \end{pmatrix} 1 \end{pmatrix}$$

The software used was developed for my book

Hypergeometric Summation, Vieweg, 1998, Braunschweig/Wiesbaden

and can be downloaded from my home page:

Wolfram Koepf

Hypergeometric Summation

An Algorithmic Approach to Summation and Special Function Identities

http://www.mathematik.uni-kassel.de/~koepf

Computation of the Differential Equation from the Recurrence Equation

- We have shown how the recurrence equation can be explicitly expressed in terms of the coefficients of the differential / difference equation.
- If one uses this information in the opposite direction, then the corresponding differential / difference equation can be obtained from a given three-term recurrence.

Example

• Let the recurrence

$$P_{n+2}(x) - (x - n - 1) P_{n+1}(x) + \alpha(n+1)^2 P_n(x) = 0$$

be given.

• We can compute that for $\alpha = 1/4$ this corresponds to translated Laguerre polynomials, and for $\alpha < 1/4$ Meixner and Krawtchouk polynomial solutions occur.

The End

Thank you very much for your attention!