

Power Series and Summation

> Prof. Dr. Wolfram Koepf
> Department of Mathematics University of Kassel
koepf@mathematik.uni-kassel.de
http://www.mathematik.uni-kassel.de/~koepf

Tutorial ISSAC 2004

Santander, Spain

$$
\text { July 4, } 2004
$$

Overview

In this tutorial I will deal with the following algorithms:

- the computation of power series representations of hypergeometric type functions, given by expressions (like $\frac{\arcsin (x)}{x}$)
- the computation of holonomic differential equations for functions, given by expressions
- the computation of holonomic recurrence equations for sequences, given by expressions (like $\binom{n}{k} \frac{x^{k}}{k!}$)
- the computation of generating functions

Overview

- the computation of antidifferences of hypergeometric terms (Gosper's algorithm)
- the computation of holonomic differential and recurrence equations for hypergeometric series, given the series summand (like $P_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}\binom{-n-1}{k}\left(\frac{1-x}{2}\right)^{k}$ (Zeilberger's algorithm)
- the computation of hypergeometric term representations of series (Petkovsek's algorithm)
- the verification of identities for special functions.

Automatic Computation of Power Series

- Given an expression $f(x)$ in the variable x, one would like to find the Taylor series

$$
f(x)=\sum_{k=0}^{\infty} A_{k} x^{k}
$$

i.e., a formula for the coefficient A_{k}.

- For example, if $f(x)=e^{x}$, then

$$
f(x)=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k},
$$

hence $A_{k}=\frac{1}{k!}$.

FPS Algorithm

The main idea behind the FPS algorithm is

- to compute a holonomic differential equation for $f(x)$, i.e., a homogeneous linear differential equation with polynomial coefficients,
- to convert the differential equation to a holonomic recurrence equation for A_{k},
- and to solve the recurrence equation for A_{k}.

The above procedure is successful at least is $f(x)$ is a hypergeometric power series.

Computation of Holonomic Differential Equations

- Input: expression $f(x)$.
- Compute $c_{0} f(x)+c_{1} f^{\prime}(x)+\cdots+c_{J} f^{(J)}(x)$ with still undetermined coefficients c_{j}.
- Collect w. r. t. linearly independent functions $\in \mathbb{Q}(x)$ and determine their coefficients.
- Set these zero, and solve the corresponding linear system for the unknowns $c_{0}, c_{1}, \ldots, c_{J}$.
- Output: DE $:=c_{0} f(x)+c_{1} f^{\prime}(x)+\cdots+c_{J} f^{(J)}(x)=0$.

Algebra of Holonomic Functions

- We call a function that satisfies a holonomic differential equation a holonomic function.
- Sum and product of holonomic functions turn out to be holonomic.
- We call a sequence that satisfies a holonomic recurrence equation a holonomic sequence.
- Sum and product of holonomic sequences are holonomic.
- A function is holonomic iff it is the generating function of a holonomic sequence.

Hypergeometric Functions

- The power series

$$
{ }_{p} F_{q}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, x\right)=\sum_{k=0}^{\infty} A_{k} x^{k}=\sum_{k=0}^{\infty} a_{k},
$$

whose coefficients A_{k} have a rational term ratio

$$
\frac{a_{k+1}}{a_{k}}=\frac{A_{k+1} x^{k+1}}{A_{k} x^{k}}=\frac{\left(k+a_{1}\right) \cdots\left(k+a_{p}\right)}{\left(k+b_{1}\right) \cdots\left(k+b_{q}\right)} \cdot \frac{x}{k+1}
$$

is called the generalized hypergeometric function.

Coefficients of the Generalized Hypergeometric Function

- For the coefficients of the hypergeometric function that are called hypergeometric terms, one gets the formula

$$
{ }_{p} F_{q}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{q}\right)_{k}} \frac{z^{k}}{k!},
$$

where $(a)_{k}=a(a+1) \cdots(a+k-1)$ is called the Pochhammer symbol or shifted factorial.

Examples of Hypergeometric Functions

- The simplest hypergeometric function is

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}={ }_{0} F_{0}(-\mid x) .
$$

- Many elementary functions are hypergeometric, e. g.

$$
\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}=x_{0} F_{1}\left(\left.\begin{array}{c}
- \\
\frac{3}{2}
\end{array} \right\rvert\,-\frac{x^{2}}{4}\right) .
$$

- Further examples: $\cos (x), \arcsin (x), \arctan (x)$, $\ln (1+x), \operatorname{erf}(x), P_{n}(x), \ldots$, but for example not $\tan (x), \ldots$

Identification of Hypergeometric Functions

- Assume we have

$$
s=\sum_{k=0}^{\infty} a_{k} .
$$

- How do we find out which ${ }_{p} F_{q}(x)$ this is?
- Example: $\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}$.
- The coefficient term ratio yields

$$
\frac{a_{k+1}}{a_{k}}=\frac{(-1)^{k+1}}{(2 k+3)!} \frac{(2 k+1)!}{(-1)^{k}} \frac{x^{2 k+3}}{x^{2 k+1}}=\frac{-1}{(2 k+2)(2 k+3)} x^{2}
$$

Identification Algorithm

- Input: a_{k}.
- Compute the term ratio

$$
r_{k}:=\frac{a_{k+1}}{a_{k}}
$$

and check whether $r_{k} \in \mathbb{C}(k)$ is a rational function.

- Factorize r_{k}.
- Output: read off the upper and lower parameters and compute an initial value, e. g. a_{0}.

Recurrence Equations for Hypergeometric Functions

- Given a sequence s_{n}, as hypergeometric sum

$$
s_{n}=\sum_{k=-\infty}^{\infty} F(n, k)
$$

- How do we find a recurrence equation for the sum s_{n} ?

Celine Fasenmyer's Algorithm

- Input: summand $F(n, k)$.
- Compute for suitable $I, J \in \mathbb{N}$

$$
\sum_{j=0}^{J} \sum_{i=0}^{I} a_{i j} \frac{F(n+j, k+i)}{F(n, k)} \in \mathbb{Q}(n, k) .
$$

- Bring this into rational normal form, and set the numerator coefficient list w.r.t. k zero.
- If successful, linear algebra yields $a_{i j} \in \mathbb{Q}(n, k)$, and therefore a k-free recurrence equation for $F(n, k)$.
- Output: Sum the resulting recurrence equation for $F(n, k)$ w.r.t. k.

Drawbacks of Fasenmyer's Algorithm

In easy cases this algorithm succeeds, but:

- In many cases the algorithm generates a recurrence equation of too high order.
- From such a recurrence equation a lower order recurrence equation cannot be easily recovered.
- The algorithm is slow. If, e.g., $I=2$ and $J=2$, then already 9 linear equations have to be solved.
- Therefore the algorithm fails in many interesting cases.

The software used was developed in connection with my book

Hypergeometric Summation, Vieweg, 1998, Braunschweig/Wiesbaden
and can be downloaded from my home page:

Wolfram Koepf

Нурегеcometric Summation

An Algorithmic Approach to Summation and
Special Function Identities

http://www.mathematik.uni-kassel.de/~koepf

Indefinite Summation

- Given a sequence a_{k}, find a sequence s_{k} which satisfies

$$
a_{k}=s_{k+1}-s_{k}=\Delta s_{k}
$$

- Having found s_{k} makes definite summation easy since by telescoping one gets for arbitrary m, n

$$
\sum_{k=m}^{n} a_{k}=s_{n+1}-s_{m}
$$

- Indefinite summation is the inverse of Δ.

Gosper's Algorithm

- Input: a_{k}, a hypergeometric term.
- Compute $p_{k}, q_{k}, r_{k} \in \mathbb{Q}[k]$ with

$$
\frac{a_{k+1}}{a_{k}}=\frac{p_{k+1}}{p_{k}} \frac{q_{k+1}}{r_{k+1}} \quad \text { with } \operatorname{gcd}\left(q_{k}, r_{k+j}\right)=1 \text { for all } j \geqq 0 .
$$

- Find a polynomial solution f_{k} of the recurrence equation $q_{k+1} f_{k}-r_{k+1} f_{k-1}=p_{k}$.
- Output: the hypergeometric term $s_{k}=\frac{r_{k}}{p_{k}} f_{k-1} a_{k}$.

Definite Summation: Zeilberger's Algorithm

- Zeilberger had the brilliant idea to use a modified version of Gosper's algorithm to compute definite hypergeometric sums

$$
s_{n}=\sum_{k=-\infty}^{\infty} F(n, k)
$$

- Note however that, whenever s_{n} is itself a hypergeometric term, then Gosper's algorithm, applied to $F(n, k)$, fails!

Zeilberger's Algorithm

- Input: summand $F(n, k)$.
- For suitable $J \in \mathbb{N}$ set

$$
a_{k}:=F(n, k)+\sigma_{1} F(n+1, k)+\cdots+\sigma_{J} F(n+J, k) .
$$

- Apply the following modified version of Gosper's algorithm to a_{k} :
- In the last step, solve at the same time for the coefficients of f_{k} and the unknowns $\sigma_{j} \in \mathbb{Q}(n)$.
- Output by summation: The recurrence equation

$$
\mathrm{RE}:=s_{n}+\sigma_{1} s_{n+1}+\cdots+\sigma_{J} s_{n+J}=0 .
$$

The output of Zeilberger's Algorithm

- We apply Zeilbergers algorithm iteratively for $J=1,2, \ldots$ until it succeeds.
- If $J=1$ is successful, then the resulting recurrence equation for s_{n} is of first order, hence s_{n} is a hypergeometric term.
- If $J>1$, then the result is a holonomic recurrence equation for s_{n}.
- One can prove that Zeilberger's algorithm terminates for suitable input.
- Zeilberger's algorithm is much faster than Fasenmyer's.

Different Representations of Legendre Polynomials

All the following hypergeometric functions represent the Legendre Polynomials:

$$
\begin{aligned}
& P_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}\binom{-n-1}{k}\left(\frac{1-x}{2}\right)^{k}={ }_{2} F_{1}\left(\left.\begin{array}{c}
-n, n+1 \\
1
\end{array} \right\rvert\, \frac{1-x}{2}\right) \\
= & \frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k}^{2}(x-1)^{n-k}(x+1)^{k}=\left(\frac{1-x}{2}\right)^{n}{ }_{2} F_{1}\left(\left.\begin{array}{c}
-n,-n \mid c x \\
1
\end{array} \right\rvert\, \frac{1+x}{1-x}\right) \\
= & \frac{1}{2^{n}} \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n}{k}\binom{2 n-2 k}{n} x^{n-2 k}=\binom{2 n}{n}\left(\frac{x}{2}\right)^{n}{ }_{2} F_{1}\left(\left.\begin{array}{c}
-\frac{n}{2},-\frac{n}{2}+\frac{1}{2} \\
-n+1 / 2
\end{array} \right\rvert\, \frac{1}{x^{2}}\right)
\end{aligned}
$$

Recurrence Equation of the Legendre Polynomials

- This shows that special functions typically come in rather different disguises.
- However, the common recurrence equation of the different representations shows (after checking enough initial values) that they represent the same functions.
- This method is generally applicable to identify holonomic transcendental functions.
- In terms of computer algebra the recurrence equation forms a normal form for holonomic functions.

Differential Equations for Hypergeometric Series

- Zeilberger's algorithm can be adapted to generate holonomic differential equations for series

$$
s(x):=\sum_{k=-\infty}^{\infty} F(x, k) .
$$

- For this purpose, the summand $F(x, k)$ must be a hyperexponential term w.r.t. x, i.e.

$$
\frac{F^{\prime}(x, k)}{F(x, k)} \in \mathbb{Q}(x, k) .
$$

- Similarly as recurrence equations holonomic differential equations form a normal form for holonomic functions.

Clausen's Formula

- Clausen's formula gives the cases when a Clausen ${ }_{3} F_{2}$ function is the square of a Gauss ${ }_{2} F_{1}$ function:

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c|}
a, b \\
a+b+1 / 2
\end{array} \right\rvert\, x\right)^{2}={ }_{3} F_{2}\left(\left.\begin{array}{c}
2 a, 2 b, a+b \\
a+b+1 / 2,2 a+2 b
\end{array} \right\rvert\, x\right) .
$$

- Clausen's formula can be proved (using a Cauchy product) by a recurrence equation from left to right
- or "classically" with the aid of differential equations.

A Generating Function Problem

- Recently Folkmar Bornemann showed me a newly developed generating function of the Legendre polynomials and asked me to generate it automatically.
- Here is the question: Write

$$
G(x, z, \alpha):=\sum_{n=0}^{\infty}\binom{\alpha+n-1}{n} P_{n}(x) z^{n}
$$

as a hypergeometric function!

Generating Function as a Double Sum

- We can take any of the four given hypergeometric representations of the Legendre polynomials that we saw to write $G(x, z, \alpha)$ as a double sum.
- Then the trick is to change the order of summation

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\binom{\alpha+n-1}{k}\left(\sum_{k=0}^{\infty} p_{k}(n, x)\right) z^{n} \\
& =\sum_{k=0}^{\infty} \sum_{n=0}^{\infty}\binom{\alpha+n-1}{k} p_{k}(n, x) z^{n}
\end{aligned}
$$

Combining the Algorithms

- The following example combines some of the algorithms considered so far.
- We consider

$$
F(x)=\sum_{k=0}^{\infty} \frac{x^{3 k}}{(3 k)!} .
$$

- Zeilberger's algorithm finds a holonomic differential equation which can be explicitly solved.
- The FPS algorithm redetects the above representation.

Automatic Computation of Infinite Sums

- Whereas Zeilberger's algorithm finds

Chu-Vandermonde's formula for $n \in \mathbb{N}_{\geqq 0}$

$$
{ }_{2} F_{1}\left(\begin{array}{c|c}
-n, b & 1 \\
c & 1
\end{array}\right)=\frac{(c-b)_{n}}{(c)_{n}}
$$

the question arises to detect Gauss' identity

$$
{ }_{2} F_{1}\left(\begin{array}{c|c}
-n, b & \\
c & 1
\end{array}\right)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}
$$

for $a, b, c \in \mathbb{C}$ in case of convergence.

Solution

- The idea is to detect automatically

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c|c}
a, b \\
c+m
\end{array} \right\rvert\, 1\right)=\frac{(c-a)_{m}(c-b)_{m}}{(c)_{m}(c-a-b)_{m}}{ }_{2} F_{1}\left(\begin{array}{c|c}
a, b & 1 \\
c & 1
\end{array}\right),
$$

and then to consider the limit as $m \rightarrow \infty$.

- Using appropriate limits for the Γ function, this and similar questions can be handled automatically by a Maple package of Vidunas and Koornwinder.

Petkovsek's Algorithm

- Petkovsek's algorithm is an adaption of Gosper's.
- Given a holonomic recurrence equation, it determines all hypergeometric term solutions.
- Petkovsek's algorithm is slow, especially if the leading and trailing terms have many factors. Maple 9 contains a much more efficient algorithm due to Mark van Hoeij.

Combining Zeilberger's and Petkovsek's Algorithm

- Zeilberger's algorithm may not give a recurrence of first order, even if the sum is a hypergeometric term. This rarely happens, though.
- Therefore the combination of Zeilberger's algorithm with Petkovsek's guarantees to find out whether a given sum can be written as a hypergeometric term.
- Exercise 9.3 of my book gives 9 examples for this situation, all from p. 556 of
- Prudnikov, Brychkov, Marichev: Integrals and Series, Vol. 3: More Special Functions. Gordon Breach, 1990.

intecrals AND SERIES

VOLUMIE 3: MORE SPECIAL FUNCTIONS

A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev

Translated from the Russian by G.G. Gould

A. P. PRUDNIKOV, Yu. A. BRYCHKOV AND O. I. MARICHEV

26. ${ }_{4} F_{3}\binom{-n, a, a / 2+1, b ; 1}{a / 2,1+a-b, c}=$

$$
\begin{aligned}
& +a-b, c \\
& =\frac{(c-2 b-1)_{n}}{(c)_{n}}{ }_{4} F_{3}\binom{-n, a-2 b-1,(a+1) / 2-b,-b-1 ; 1}{(a-1) / 2-b, 1+a-b, c-2 b-1}=
\end{aligned}
$$

27. $\quad=\frac{c+n}{c}{ }_{3} F_{2}\binom{-n, a+1, b+1 ; 1}{c+1,1+a-b}$.
28. ${ }_{4} F_{3}\binom{-n, a, 1-a, b ; 1}{1-b-n, c, 1+2 b-c}=\frac{((a+c-1) / 2)_{n}((c-a) / 2)_{n}(2 b)_{n}}{(b)_{n}(b+1 / 2)_{n}(c)_{n}} \times$

$$
\begin{aligned}
& 1+2 b-c)-(b)_{n}(b+1 / 2)_{n}(c)_{n} \\
& \times{ }_{4} F_{\mathbf{s}}(-n, 1+b-(a+c) / 2, b+(1+a-c) / 2,1-c-n ; 1) .
\end{aligned}
$$

29. ${ }_{4} F_{3}\binom{-n, a, a / 2+1, b ; 1}{a / 2,1+a+n, 1+a-b}=\frac{(1+a)_{n}((1+a) / 2-b)_{n}}{((1+a) / 2)_{n}(1+a-b)_{n}}$.
30. ${ }_{4} F_{3}\left(\begin{array}{lr}-n, a, a / 2+1, b ; & 1 \\ a / 2,1+a-b, 2+2 b-n\end{array}\right)=$

$$
=\frac{(a-2 b-1)_{n}}{(-2 b-1)_{n}}{ }_{3} F_{2}(-n,(a+1) / 2, a-2 b+n-1 ; 1)=
$$

31. $\quad=\frac{(a-2 b-1)_{n}(-b-1)_{n}(a-2 b+2 n-1)}{(1+a-b)_{n}(-2 b-1)_{n}(a-2 b-1)}$.
32. ${ }_{4} F_{3}\binom{-n, \dot{a}, a+1 / 2, b ;}{2 a,(b-n+1) / 2,(b-n) / 2+1}=\frac{(2 a-b)_{n}(b-n)}{(1-b)_{n}(b+n)}$.
33. ${ }_{4} F_{3}\left(\begin{array}{cc}-n, a, a+1 / 2, b ; & 1 \\ 2 a+1,(b-n) / 2,(b-n+1) / 2\end{array}\right)=\frac{(1+2 a-b)_{n}}{(1-b)_{n}}$.
34. ${ }_{4} F_{3}\binom{-n, a, a+1 / 2, b ;}{2 a+1,(b-n+1) / 2,(b-n) / 2+1}=\frac{(1+2 a-b)_{n}(2 a-b-n)(b-n)}{(1-b)_{n}(2 a-b+n)(b+n)}$.
35. ${ }_{4} F_{3}(-n, a, b,-1 / 2-a-b-n ; 1)=\frac{(2 a+1)_{n}(2 b+1)_{n}(a+b+1)_{n}}{(a+1)_{n}}$
36. ${ }_{4} F_{3}\binom{-n, a, b,-1 / 2-a-b-n ;}{-a-n,-b-n, \quad a+b+1 / 2}=\frac{(2 a+1)_{n}(2 b+1)_{n}(a+b+1)_{n}}{(a+1)_{n}(b+1)_{n}(2 a+2 b+1)_{n}}$.
37. ${ }_{4} F_{3}\binom{-n, a, b, 1 / 2-a-b-n ; \quad 1}{-a-n, 1-b-n, a+b+1 / 2}=\frac{(2 a+1)_{n}(2 b)_{n}(a+b)_{n}}{(a+1)_{n}(b)_{n}(2 a+2 b)_{n}}$.
38. ${ }_{4} F_{3}(-n, a, b, 1 / 2-a-b-n ; \quad 1)=\frac{(a)_{n}(2 b)_{n}(a+b)_{n}}{(a+1)}$
$1-a-n, 1-b-n, a+b \pm 1 / 2)=\frac{(a)_{n}(b)_{n}(2 a+2 b-(1 \mp 1) / 2)_{n}}{(2 a)}$
39. ${ }_{4} F_{3}\binom{-n, a, b, 3 / 2-a-b-n ;}{1-a-n, 1-b-n, a+b+1 / 2}=\frac{(2 a)_{n}(2 b)_{n}(a+b)_{n}(2 a+2 b-1)}{(a)_{n}(b)_{n}(2 a+2 b-1)_{n}(2 a+2 b+2 n-1)}$.
40. ${ }_{4} F_{3}\binom{-n, a, b, 3 / 2-a-b-n ;}{1-a-n, 2-b-n, a+b-1 / 2}=\frac{(2 a)_{n}(2 b-1)_{n}(a+b-1)_{n}}{(a)_{n}(b-1)_{n}(2 a+2 b-2)_{n}}$.
41. $F_{3}\left(\begin{array}{cc}-n, a, b, 5 / 2-a-b-n ; & 1 \\ 2-a-n, 2-b-n, a+b-1 / 2\end{array}\right)=$
$=\frac{(2 a-1)_{n}(2 b-1)_{n}(a+b-1)_{n}(2 a+2 b-0)}{(a-1)_{n}(2 a+2 b-3)_{n}(2 a+2 n-3)}$
42. ${ }_{4} F_{3}\binom{-n, 1+n, a, a+1 / 2 ; 1}{1 / 2, b, 2 a-b+2}=\frac{1}{2(a-b+1)}\left[\frac{(1-b)_{n+1}}{(2 a-b+2)_{n}}-\frac{(b-2 a-1)_{n+1}}{(b)_{n}}\right]$.
43. ${ }_{4} F_{3}\binom{-n, 2+n, a, a+1 / 2 ; 1}{3 / 2, b, 2 a-b+2}=$
$=\frac{1}{2(n+1)(a-b+1)(1-2 a)}\left[\frac{(1-b)_{n+2}}{(2 a-b+2)_{n}}-\frac{(b-2 a-1)_{n+2}}{(b)_{n}}\right]$.
44. ${ }_{3} F_{3}\binom{-n, 1,1, a ; 1}{2, b, 1+a-b-n}=$
$=\frac{(b-1)(a-b-n)}{(n+1)(a-1)}[\psi(n+b)+\Psi(1+a-b)-\psi(b-1)-\psi(a-b-n)]$.
556

Examples

- As an example, we take

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{c k}{n}=(-c)^{n} \quad(c=2,3, \ldots)
$$

- and Exercise 9.3 (a), resp. PBM (7.5.3.32):

$$
{ }_{4} F_{3}\left(\left.\begin{array}{c}
-n, a, a+\frac{1}{2}, b \\
2 a, \frac{b-n+1}{2}, \frac{b-n}{2}+1
\end{array} \right\rvert\, 1\right)=\frac{(2 a-b)_{n}(b-n)}{(1-b)_{n}(b+n)} .
$$

Extensions

- To find recurrence and differential equations for hypergeometric and hyperexponential integrals, Almkvist and Zeilberger gave a continuous version of Gosper's algorithm. It finds hyperexponential antiderivatives if those exist.
- The resulting adaptations of the discrete versions of Zeilberger's algorithm find holonomic recurrence and differential equations for hypergeometric and hyperexponential integrals.

Extensions

- Using Cauchy's integral formula

$$
h^{(n)}(x)=\frac{n!}{2 \pi i} \oint \frac{h(t)}{(t-x)^{n+1}} d t
$$

for the nth derivative makes the integration algorithm accessible for Rodrigues type expressions

$$
f_{n}(x)=g_{n}(x) \frac{d^{n}}{d x^{n}} h_{n}(x) .
$$

Orthogonal Polynomials

- Hence one can easily show that the functions

$$
P_{n}(x)=\frac{(-1)^{n}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(1-x^{2}\right)^{n}
$$

are the Legendre polynomials, and

$$
L_{n}^{(\alpha)}(x)=\frac{e^{x}}{n!x^{\alpha}} \frac{d^{n}}{d x^{n}} e^{-x} x^{\alpha+n}
$$

are the generalized Laguerre polynomials.

Extensions

- If $F(z)$ is the generating function of the sequence $a_{n} f_{n}(x)$, i. e.

$$
F(z)=\sum_{n=0}^{\infty} a_{n} f_{n}(x) z^{n}
$$

then by Cauchy's formula and Taylor's theorem

$$
f_{n}(x)=\frac{1}{a_{n}} \frac{F^{(n)}(0)}{n!}=\frac{1}{a_{n}} \frac{1}{2 \pi i} \int_{\Gamma} \frac{F(t)}{t^{n+1}} d t .
$$

Laguerre Polynomials

- Hence we can easily prove the following generating function identity

$$
(1-z)^{-\alpha-1} \exp \left(\frac{x z}{z-1}\right)=\sum_{n=0}^{\infty} L_{n}^{(\alpha)}(x) z^{n}
$$

for the generalized Laguerre polynomials.

Extensions

- A further extension concerns the computation of basic hypergeometric series.
- Instead of considering series whose coefficients A_{k} have rational term ratio $A_{k+1} / A_{k} \in \mathbb{Q}(k)$, basic hypergeometric series are series whose coefficients A_{k} have term ratio $A_{k+1} / A_{k} \in \mathbb{Q}\left(q^{k}\right)$.
- The algorithms considered can be extended to the basic case.

Epilogue

- I hope I could give you an idea about the great algorithmic opportunities for sums.
- Some of the algorithms considered are also implemented in Macsyma, Mathematica, MuPAD or in Reduce.
- I wish you much success in using them!
- If you still have questions concerning this topic I ask you to send me your questions to koepf@mathematik.uni-kassel.de.

