Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions

> Prof. Dr. Wolfram Koepf Department of Mathematics University of Kassel

koepf@mathematik.uni-kassel.de

http://www.mathematik.uni-kassel.de/~koepf

Yaounde, Cameroon March 23, 2005

> UNIKASSEL VERSITÄT

Overview

In this talk I will deal with the following algorithms:

- the computation of power series representations of hypergeometric type functions (like $\frac{\arcsin(x)}{x}$)
- the computation of holonomic differential equations
- the computation of holonomic differential and recurrence equations for hypergeometric series, given the series summand (like

$$P_n(x) = \sum_{k=0}^n \binom{n}{k} \binom{-n-1}{k} \left(\frac{1-x}{2}\right)^k$$
 (Zeilberger's algorithm)

• the verification of identities for orthogonal polynomials and special functions

Automatic Computation of Power Series

 Given an expression f(x) in the variable x, one would like to find the Taylor series

$$f(x) = \sum_{k=0}^{\infty} A_k x^k ,$$

i.e., a formula for the coefficient A_k .

• For example, if $f(x) = e^x$, then

$$f(x) = \sum_{k=0}^{\infty} \frac{1}{k!} x^k ,$$

hence $A_k = \frac{1}{k!}$.

FPS Algorithm

The main idea behind the FPS algorithm is

- to compute a holonomic differential equation for f(x),
 i.e., a homogeneous linear differential equation with
 polynomial coefficients,
- to convert the differential equation to a holonomic recurrence equation for A_k ,
- and to solve the recurrence equation for A_k .

The above procedure is successful at least is f(x) is a hypergeometric power series. Maple demonstration

Computation of Holonomic Differential Equations

- Input: expression f(x).
- Compute $c_0 f(x) + c_1 f'(x) + \cdots + c_J f^{(J)}(x)$ with still undetermined coefficients c_j .
- Collect w. r. t. linearly independent functions $\in \mathbb{Q}(x)$ and determine their coefficients.
- Set these zero, and solve the corresponding linear system for the unknowns c_0, c_1, \ldots, c_J .
- Output: $\mathsf{DE} := c_0 f(x) + c_1 f'(x) + \dots + c_J f^{(J)}(x) = 0.$

UNIKASSEL VERSITÄT

Algebra of Holonomic Functions

- We call a function that satisfies a holonomic differential equation a holonomic function.
- Sum and product of holonomic functions turn out to be holonomic.
- We call a sequence that satisfies a holonomic recurrence equation a holonomic sequence.
- Sum and product of holonomic sequences are holonomic.
- A function is holonomic iff it is the generating function of a holonomic sequence.

Hypergeometric Functions

• The power series

$$_{p}F_{q}\left(\begin{vmatrix} a_{1}, \dots, a_{p} \\ b_{1}, \dots, b_{q} \end{vmatrix} x \right) = \sum_{k=0}^{\infty} A_{k} x^{k} = \sum_{k=0}^{\infty} a_{k} ,$$

whose coefficients A_k have a rational term ratio

$$\frac{a_{k+1}}{a_k} = \frac{A_{k+1} x^{k+1}}{A_k x^k} = \frac{(k+a_1) \cdots (k+a_p)}{(k+b_1) \cdots (k+b_q)} \cdot \frac{x}{k+1} ,$$

is called the generalized hypergeometric function.

Coefficients of the Generalized Hypergeometric Function

• For the coefficients of the hypergeometric function that are called hypergeometric terms, one gets the formula

$$_{p}F_{q}\left(\begin{vmatrix} a_{1}, \dots, a_{p} \\ b_{1}, \dots, b_{q} \end{vmatrix} z \right) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k} \cdots (a_{p})_{k} z^{k}}{(b_{1})_{k} \cdots (b_{q})_{k} k!},$$

where $(a)_k = a(a+1) \cdots (a+k-1)$ is called the Pochhammer symbol or shifted factorial.

Identification of Hypergeometric Functions

• Assume we have

$$s = \sum_{k=0}^{\infty} a_k \; .$$

• How do we find out which ${}_{p}F_{q}(x)$ this is?

• Example:
$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$
.

• The coefficient term ratio yields

$$\frac{a_{k+1}}{a_k} = \frac{(-1)^{k+1}}{(2k+3)!} \frac{(2k+1)!}{(-1)^k} \frac{x^{2k+3}}{x^{2k+1}} = \frac{-1}{(2k+2)(2k+3)} x^2$$

Identification Algorithm

- Input: a_k .
- Compute the term ratio

$$r_k := \frac{a_{k+1}}{a_k} ,$$

and check whether $r_k \in \mathbb{C}(k)$ is a rational function.

- Factorize r_k .
- Output: read off the upper and lower parameters and compute an initial value, e. g. a_0 .

Recurrence Equations for Hypergeometric Functions

• Given a sequence s_n , as hypergeometric sum

$$s_n = \sum_{k=-\infty}^{\infty} F(n,k)$$
.

• How do we find a recurrence equation for the sum s_n ?

UNIKASSEL VERSIT'A'T

Celine Fasenmyer's Algorithm

- Input: summand F(n,k).
- Compute for suitable $I,J\in\mathbb{N}$

$$\sum_{j=0}^{J} \sum_{i=0}^{I} a_{ij} \frac{F(n+j,k+i)}{F(n,k)} \in \mathbb{Q}(n,k) .$$

- Bring this into rational normal form, and set the numerator coefficient list w.r.t. k zero.
- If successful, linear algebra yields $a_{ij} \in \mathbb{Q}(n)$, and therefore a k-free recurrence equation for F(n, k).
- Output: Sum the resulting recurrence equation for F(n,k) w.r.t. k.

Drawbacks of Fasenmyer's Algorithm

In easy cases this algorithm succeeds, but:

- In many cases the algorithm generates a recurrence equation of too high order.
- From such a recurrence equation a lower order recurrence equation cannot be easily recovered.
- The algorithm is slow. If, e.g., I = 2 and J = 2, then already 9 linear equations have to be solved.
- Therefore the algorithm fails in many interesting cases.

The software used was developed in connection with my book

Hypergeometric Summation, Vieweg, 1998, Braunschweig/Wiesbaden

and can be downloaded from my home page:

Wolfram Koepf Hypergeometric Summation An Algorithmic Approach to Summation and **Special Function Identities**

http://www.mathematik.uni-kassel.de/~koepf

Different Representations of Legendre Polynomials

All the following hypergeometric functions represent the *Legendre Polynomials*:

$$P_{n}(x) = \sum_{k=0}^{n} \binom{n}{k} \binom{-n-1}{k} \left(\frac{1-x}{2}\right)^{k} = {}_{2}F_{1} \binom{-n,n+1}{1} \left|\frac{1-x}{2}\right)$$
$$= \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k}^{2} (x-1)^{n-k} (x+1)^{k} = \left(\frac{1-x}{2}\right)^{n} {}_{2}F_{1} \binom{-n,-n}{1} \left|\frac{1+x}{1-x}\right)$$
$$= \frac{1}{2^{n}} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^{k} \binom{n}{k} \binom{2n-2k}{n} x^{n-2k} = \binom{2n}{n} \left(\frac{x}{2}\right)^{n} {}_{2}F_{1} \binom{-\frac{n}{2},-\frac{n}{2}+\frac{1}{2}}{-n+1/2} \left|\frac{1}{x^{2}}\right)$$

UNIKASSEL VERCIT'A'T

Recurrence Equation of the Legendre Polynomials

- This shows that special functions typically come in rather different disguises.
- However, the common recurrence equation of the different representations shows (after checking enough initial values) that they represent the same functions.
- This method is generally applicable to identify holonomic transcendental functions.
- In terms of computer algebra the recurrence equation forms a normal form for holonomic functions.

Differential Equations for Hypergeometric Series

• Zeilberger's algorithm can be adapted to generate holonomic differential equations for series

$$s(x) := \sum_{k=-\infty}^{\infty} F(x,k) \; .$$

• For this purpose, the summand F(x,k) must be a hyperexponential term w.r.t. x, i.e.

$$\frac{F'(x,k)}{F(x,k)} \in \mathbb{Q}(x,k) .$$

• Similarly as recurrence equations holonomic differential equations form a normal form for holonomic functions.

UNIKASSEL VERSITAT

Clausen's Formula

• Clausen's formula gives the cases when a Clausen $_{3}F_{2}$ function is the square of a Gauss $_{2}F_{1}$ function:

$$_{2}F_{1}\left(\left. \begin{array}{c} a,b\\ a+b+1/2 \end{array} \right| x \right)^{2} = {}_{3}F_{2}\left(\left. \begin{array}{c} 2a,2b,a+b\\ a+b+1/2,2a+2b \end{array} \right| x \right) \, .$$

- Clausen's formula can be proved (using a Cauchy product) by a recurrence equation from left to right
- or "classically" with the aid of differential equations.

Combining the Algorithms

- The following example combines some of the algorithms considered so far.
- We consider

$$F(x) = \sum_{k=0}^{\infty} \frac{x^{3k}}{(3k)!} \,.$$

- Zeilberger's algorithm finds a holonomic differential equation which can be explicitly solved.
- The FPS algorithm redetects the above representation.

Extensions

- To find recurrence and differential equations for hypergeometric and hyperexponential integrals, Almkvist and Zeilberger gave a continuous version of Gosper's algorithm. It finds hyperexponential antiderivatives if those exist.
- The resulting adaptations of the discrete versions of Zeilberger's algorithm find holonomic recurrence and differential equations for hypergeometric and hyperexponential integrals.

Extensions

• Using Cauchy's integral formula

$$h^{(n)}(x) = \frac{n!}{2\pi i} \oint \frac{h(t)}{(t-x)^{n+1}} dt$$

for the *n*th derivative makes the integration algorithm accessible for Rodrigues type expressions

$$f_n(x) = g_n(x) \frac{d^n}{dx^n} h_n(x)$$
.

Orthogonal Polynomials

• Hence one can easily show that the functions

$$P_n(x) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} (1 - x^2)^n$$

are the Legendre polynomials, and

$$L_n^{(\alpha)}(x) = \frac{e^x}{n! \, x^\alpha} \frac{d^n}{dx^n} e^{-x} \, x^{\alpha+n}$$

are the generalized Laguerre polynomials.

Extensions

• If F(z) is the generating function of the sequence $a_n f_n(x)$, i. e.

$$F(z)=\sum_{n=0}^\infty a_n\,f_n(x)\,z^n\;,$$

then by Cauchy's formula and Taylor's theorem

$$f_n(x) = \frac{1}{a_n} \frac{F^{(n)}(0)}{n!} = \frac{1}{a_n} \frac{1}{2\pi i} \int_{\Gamma} \frac{F(t)}{t^{n+1}} dt .$$

UNIKASSEL

Laguerre Polynomials

• Hence we can easily prove the following generating function identity

$$(1-z)^{-\alpha-1} \exp\left(\frac{xz}{z-1}\right) = \sum_{n=0}^{\infty} L_n^{(\alpha)}(x) z^n$$

for the generalized Laguerre polynomials.

Extensions

- A further extension concerns the computation of basic hypergeometric series.
- Instead of considering series whose coefficients A_k have rational term ratio $A_{k+1}/A_k \in \mathbb{Q}(k)$, basic hypergeometric series are series whose coefficients A_k have term ratio $A_{k+1}/A_k \in \mathbb{Q}(q^k)$.
- The algorithms considered can be extended to the basic case.

Epilogue

- I hope I could give you an idea about the great algorithmic opportunities for orthogonal polynomials and special functions.
- Some of the algorithms considered are also implemented in *Macsyma*, *Mathematica*, *MuPAD* or in *Reduce*.
- I wish you much success in using them!
- If you have questions concerning this topic don't hesitate to ask me!