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ABSTRACT
It is well-known that de Branges’ original proof of the Bieber-
bach and Milin conjectures on the coefficients an of univa-
lent functions f(z) =

∑

∞

k=1 anzn of the unit disk as well as
Weinstein’s later proof deal with the same special function
system that de Branges had introduced in his work.

These hypergeometric polynomials had been already stud-
ied by Askey and Gasper who had realized their positiveness.
This fact was the essential tool in de Branges’ proof.

In this article, we show that many identities, e.g. the rep-
resentation of their generating function w.r.t. n, for these
polynomials, which are intimately related to the Koebe func-
tion K(z) =

∑

∞

k=1 nzn and therefore to univalent functions,
can be automatically detected from power series computa-
tions by a method developed by the author and accessible
in several computer algebra systems.

In other words, in this paper a new and interesting ap-
plication of the FPS (Formal Power Series) algorithm is
given. As working engine we use a Maple implementation
by Dominik Gruntz and the author. In particular, the hy-
pergeometric representation of both the de Branges and the
Weinstein functions are determined by successive power se-
ries computations from their generating functions.

The new idea behind this algorithm is the observation that
hypergeometric function coefficients of double series can be
automatically detected by an iteration of the FPS procedure.

In a final section we show how algebraic computation en-
ables the fast verification of Askey-Gasper’s positivity re-
sults for specific (not too large) n using Sturm sequences or
similar approaches.
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1. INTRODUCTION
Let S denote the family of analytic and univalent functions
f(z) = z + a2z

2 + . . . of the unit disk D. S is compact with
respect to the topology of locally uniform convergence so
that kn := max

f∈S
|an(f)| exists. In 1916 Bieberbach [2] proved

that k2 = 2, with equality if and only if f is a rotation of
the Koebe function

K(z) :=
z

(1 − z)2
=

1

4

(

(

1 + z

1 − z

)2

− 1

)

=

∞
∑

n=0

nzn , (1)

and in a footnote he mentioned “Vielleicht ist überhaupt
kn = n.”.1 This statement is known as the Bieberbach

conjecture.

In 1923 Löwner [14] proved the Bieberbach conjecture for
n = 3. His method was to embed a univalent function f(z)
into a Löwner chain, i.e. a family {f(z, t) | t = 0} of univa-
lent functions of the form

f(z, t) = etz+

∞
∑

n=2

an(t)zn, (z ∈ D, t = 0, an(t) ∈ C (n = 2))

which start with f

f(z, 0) = f(z) ,

and for which the relation

Re p(z, t) = Re

(

ḟ(z, t)

zf ′(z, t)

)

> 0 (z ∈ D) (2)

is satisfied. Here ′ and ˙ denote the partial derivatives with
respect to z and t, respectively. Equation (2) is referred to as
the Löwner differential equation, and geometrically it states
that the image domains of f(D, t) expand as t increases.

The history of the Bieberbach conjecture showed that it
was easier to obtain results about the logarithmic coeffi-

cients of a univalent function f , i.e. the coefficients dn of
the expansion

ϕ(z) = ln
f(z)

z
=:

∞
∑

n=1

dnzn

rather than for the coefficients an of f itself. So Lebedev and
Milin [13] in the mid sixties of the last century developed

1Perhaps kn = n is generally valid.



methods to exponentiate such information. They proved
that if for f ∈ S the Milin conjecture

n
∑

k=1

(n + 1 − k)

(

k|dk|
2 −

4

k

)

5 0

on its logarithmic coefficients is satisfied for some n ∈ N,
then the Bieberbach conjecture for the index n + 1 follows.

In 1984 de Branges [3] verified the Milin, and therefore
the Bieberbach conjecture, and in 1991, Weinstein [16] gave
a different proof. Both proofs use special function systems,
and independently, Todorov [15] and Wilf [17] discovered
that these essentially are the same, see also [11], [12].

In [5], Zeilberger showed how parts of Weinstein’s proof
version can be principally computerized. The main argu-
ment is the following: The coefficients Ck,n(x) of the func-
tion

1
√

1 − z
(

2x2 + (1 − z2)(w + 1/w)
)

+ z2

=

∞
∑

n=0

n
∑

k=0

(n − k)!

(n + k)!
(1 − x2)kCk,n(x)(wk + w−k)zn

are polynomials Ck,n(x) ∈ Q[x] with rational coefficients.
To prove that these form the squares of another system of
polynomials Dk,n ∈ Q[x],

Dk,n(x)2 = Ck,n(x) ,

Zeilberger suggests to calculate the first polynomials Dk,n(x)
for 0 ≤ k ≤ n ≤ 20, then to “guess” a holonomic recurrence
equation w.r.t. n

σ2Dk,n+2(x) + σ1Dk,n+1(x) + σ0Dk,n(x) = 0

with polynomials σj ∈ Q[k, n] of fixed degrees w.r.t. k and
n, and to use linear algebra to find σ0, σ1, σ2. In a final
part, the initial guess can be a posteriori verified by the
WZ method [18] finishing this part of Weinstein’s proof.2

Note, however, that this approach is much different from the
approach of the given paper which mechanizes other parts
of the given proofs.

In this article, we show that many identities, e.g. the rep-
resentation of their generating function, for the de Branges
and Weinstein polynomials, which are intimately related to
the Koebe function and therefore to univalent function the-
ory, can be automatically detected from power series compu-
tations by a method developed by the author and accessible
in several computer algebra systems.

As working engine we use a Maple implementation by Do-
minik Gruntz and the author. In particular, the hyperge-
ometric representations of the de Branges and Weinstein
functions are determined by successive power series compu-
tations from their generating functions.

2. AUTOMATIC COMPUTATION OF POWER
SERIES COEFFICIENTS

In this section, we review the FPS algorithm enabling the
automatic computation of power series as designed in [8].

2Although the ideas of the article [5] are very interesting, the
presentation of some details is not completely correct. Hence
we refer the reader to my review 0894.30013 in Zentralblatt
für Mathematik which contains a corrected version which
was approved by Zeilberger.

Given an expression f(x) in the variable x, one would like
to find the Taylor series

f(x) =
∞
∑

k=0

Ak xk ,

i.e., a formula for the coefficient Ak. For example, if f(x) =
exp(x), then

f(x) =
∞
∑

k=0

1

k!
xk ,

hence Ak = 1
k!

.
If the result is simple enough, the FPS (formal power se-

ries) procedure of the Maple package FPS.mpl ([8], [6], [7])
computes this series, even if it is a Laurent series (includ-
ing negative powers) or Puiseux series (including rational
powers).

The main idea behind this procedure is

1. to compute a holonomic differential equation for f(x),
i.e., a homogeneous linear differential equation with
polynomial coefficients,

2. to convert the differential equation to a holonomic re-
currence equation for ak,

3. and to solve the recurrence equation for ak.

The above procedure is successful at least is f(x) is hy-
pergeometric. A series

∞
∑

k=0

ak

is called hypergeometric, if the series coefficients ak have
rational term ratio

ak+1

ak

∈ C(k) .

The function

pFq

(

a1, a2, . . . , ap

b1, b2, . . . , bq

∣

∣

∣

∣

∣

x

)

:=

∞
∑

k=0

Ak xk =

∞
∑

k=0

(a1)k · (a2)k · · · (ap)k

(b1)k · (b2)k · · · (bq)k

xk

k!

is called the generalized hypergeometric series, since its term
ratio

Ak+1 xk+1

Ak xk
=

(k + a1) · · · (k + ap)

(k + b1) · · · (k + bq)

x

(k + 1)

is a general rational function, in factorized form. Here (a)k =
a(a + 1) · · · (a + k − 1) denotes the Pochhammer symbol or
shifted factorial. The summand ak of the generalized hyper-
geometric series is called a hypergeometric term.

3. THE L ÖWNER CHAIN OF THE KOEBE
FUNCTION

In this section, we consider the Löwner chain

W (z, t) := K−1
(

e−tK(z)
)

(z ∈ D, t = 0) (3)

of bounded univalent functions in the unit disk D which is
defined in terms of the Koebe function (1). Since K maps



the unit disk onto the entire plane slit along the negative x-
axis in the interval (−∞, 1/4], w(D, t) is the unit disk with
a radial slit increasing with t.

A computation shows that

W (z, t) =
4e−tz

(

1 − z +
√

1 − 2(1 − 2e−t)z + z2
)2

(see [11], after Eq. (47)).
As a first application of the FPS algorithm, we compute

the Taylor series of w(z, y) = W (z,− ln y), considered as
function of the variable y := e−t,

w(z, y) =
4yz

(

1 − z +
√

1 − 2(1 − 2y)z + z2
)2 ,

which turns out to be hypergeometric:

> read "FPS.mpl";

Package Formal Power Series, Maple V-8

Copyright 1995, Dominik Gruntz, University of Basel

Copyright 2002, Detlef Müller & Wolfram Koepf,

University of Kassel

> assume(z<1,z>0); interface(showassumed=0);

> w:=4*y*z/(1-z+sqrt(1-2*(1-2*y)*z+z^2))^2:

> s:=standardsum(FPS(w,y,j));

s :=

∞
∑

j=0









2 (−1)j (
1

(z − 1)2
)j (1 + 2 j)! z(j+1) y(j+1)

(z − 1)2 (j!)2 (j + 1) (j + 2)









Note that standardsum puts the sum signs in front of the
expression.

Essentially by computing and simplifying the coefficient
term ratio, from the above result one gets the hypergeomet-
ric representation for w(z, y) ([9], [10], Chapter 2)3

> factor(sumtools[Sumtohyper](op(1,s),j));

−
1

2

(z − 1)2 Hypergeom([
−1

2
], [], −

4 z y

(z − 1)2
)

z y
To obtain this representation, as an intermediate result

FPS uses the differential equation

> DE:=HolonomicDE(w,W(y));

DE := y2 (1 − 2 z + 4 z y + z2) (
d2

dy2
W(y))−

(−1 + z)2 W(y) + (6 z y + 1 + z2 − 2 z) y (
d

dy
W(y)) = 0

for w(z, y).
Note that the above series result can be used to find a hy-

pergeometric representation for the Taylor coefficients An(y)
of the function

w(z, y) =

∞
∑

n=0

An(y) zn .

Writing

An(y) =
∞
∑

j=0

a
(n)
j yj ,

3Sumtohyper is the inert form of sumtohyper which outputs
the inert form Hypergeom for the hypergeometric series to
prevent evaluation.

one arrives at the double sum

w(z, y) =
∞
∑

n=0

∞
∑

j=0

a
(n)
j yj zn . (4)

By another application of the FPS algorithm, the coefficients

a
(n)
j of this double series can be determined, which therefore

yields a representation for An(y). We compute

> ss:=standardsum(FPS(s,z,i));

ss :=

∞
∑

j=0

(

∞
∑

i=0

(
2 (−1)j (2 j)! (2 j + 1) yj y (2 j + 2)i z(j+i+1)

(j!)2 (j + 1) (j + 2) i!
)

)

By (4), the exponent of z is n, hence we substitute i by
n − j − 1

> summand:=subs(i=n-j-1,op([1,1],ss));

summand :=
2 (−1)j (2 j)! (2 j + 1) yj y (2 j + 2)n−j−1 zn

(j!)2 (j + 1) (j + 2) (n − j − 1)!
to get the hypergeometric representation for An(y)

> sumtools[sumtohyper](summand,j);

y n zn hypergeom([n + 1, 1 − n], [3], y)

Hence our computations have generated the result

An(y) =

∞
∑

j=0

2 (−1)j (2 j)! (2 j + 1) (2 j + 2)n−j−1

(j!)2 (j + 1) (j + 2) (n − j − 1)!
yj+1

= n y 2F1

(

n + 1, 1 − n

3

∣

∣

∣

∣

∣

y

)

in agreement with [11], Eq. (19).
The above method can be summarized in

Theorem 1. Assume w(z, y), given as function in z and

y, can be written as double sum (4) with coefficients a
(n)
j

that are hypergeometric terms w.r.t. both summation vari-
ables j and n. Then a double application of the FPS algo-

rithm, applied to w(z, y), computes a
(n)
j , and hence gives the

hypergeometric representation

An(y) =

∞
∑

j=0

a
(n)
j yj

for the coefficient functions An(y) that are generated by
w(z, y), i.e.

w(z, y) =
∞
∑

n=0

An(y) zn .

We would like to mention how efficiently the above result
was obtained compared to the lengthy and complicated de-
duction given in [11]. This statement is valid for all results
of this paper.

4. THE DE BRANGES AND WEINSTEIN
FUNCTIONS

In [3] de Branges showed that the Milin conjecture is valid
if for all n = 2 the de Branges functions τn

k : R=0 → R (k =

1, . . . , n) defined by the system of differential equations

τn
k+1(t) − τn

k (t) =
τ̇n

k (t)

k
+

τ̇n
k+1(t)

k + 1
(k = 1, . . . , n)

with the initial values

τn
k (0) = n + 1 − k



have the properties

lim
t→∞

τn
k (t) = 0 , (5)

and

τ̇n
k (t) 5 0 (t ∈ R=0) . (6)

Whereas the relation (5) is easily checked using standard
methods for ordinary differential equations, (6) is a deep
result.

L. de Branges gave an explicit representation of the func-
tion system τn

k (t) [3] with which the proof of the de Branges
theorem was completed as soon as de Branges realized that
(6) was a theorem previously proved by Askey and Gasper
[1].

On the other hand, Weinstein [16] uses the Löwner chain
(3), and shows the validity of Milin’s conjecture if for all
n = 2 the Weinstein functions Λn

k : R=0 → R (k = 1, . . . , n)
defined by

etW (z, t)k+1

1 − W 2(z, t)
=:

∞
∑

n=k

Λn
k (t)zn+1 = Lk(z, t) (7)

satisfy the relations

Λn
k (t) = 0 (t ∈ R=0, k, n ∈ N) . (8)

Weinstein did not identify the functions Λn
k (t), but was able

to prove (8) without an explicit representation.
Independently, both Todorov [15] and Wilf [17] proved—

using the explicit representation of the de Branges func-
tions to be developed in Section 6—that for all n ∈ N,
k = 1, . . . , n, one has the identity

τ̇n
k (t) = −kΛn

k (t) , (9)

i.e. the de Branges and the Weinstein functions essentially
are the same, and the main inequalities (6) and (8) are
identical. Note that in [11] an algebraic proof of (9) was
given which does not use the explicit representation of the
de Branges functions.

5. CLOSED FORM REPRESENTATION OF
THE WEINSTEIN FUNCTIONS

In this section, we use Theorem 1 to generate the hyper-
geometric representation for the Weinstein functions Λn

k (t)
directly from their defining generating function (7).

To generate a power series w.r.t. y for the generating func-
tion of the Weinstein functions

1

y
·

w(z, y)k+1

1 − w(z, y)2
=

∞
∑

j=0

αj yj

which starts for j = 0, we put the factor yk+1 in front of
FPS and compute

> s:=standardsum(y^(k+1)*
> FPS(1/y*(w/y)^(k+1)/(1-w^2),y,j));

s :=

∞
∑

j=0

yk y (−1)j z(j+1+k) (1 + 2 k)2j (
1

(z − 1)2
)(k+j) y(j−1)

(z − 1)2 (1 + 2 k)j j!

Note that the differential equation w.r.t. y

> DE1:=HolonomicDE(1/y*w^(k+1)/(1-w^2),L(y));

DE1 := (2 z y − k2 + 2 z k2 − z2 k2) L(y)

+y (10 z y + 1 + z2 − 2 z) ( d
dy

L(y))

+y2 (1 − 2 z + 4 z y + z2) ( d2

dy2 L(y)) = 0

for the generating function Lk(z, t) leads to the above hy-
pergeometric result.

An iterated power series computation w.r.t. z gives

> ss:=FPS(s,z,i);

ss :=

∞
∑

j=0





∞
∑

i=0

(

2 (−1)j z(i+1+k+j) Γ(2 j + 2 k) y(k+j) (2 j + 2 + 2 k)i j

j! (j + 2 k) Γ(j + 2 k) i!

+
2 (−1)j z(i+1+k+j) y(k+j) k (2 j + 2 + 2 k)i Γ(2 j + 2 k)

Γ(j + 2 k) (j + 2 k) j! i!
)





with summand

> summand:=op([1,1],ss):

> summand:=simplify(subs(i=n-j-k,summand));

summand :=
(−1)j z(n+1) y(k+j) Γ(j + 2 + k + n)

(2j+1+2k)Γ(j+1+2k)Γ(j+1)Γ(n−j−k+1)
This finally yields the hypergeometric representation for Λn

k

> result1:=convert(
> sumtools[sumtohyper](summand,j),binomial);

result1 := z(n+1) yk binomial(k + n + 1, 1 + 2 k)

hypergeom([
1

2
+ k, k − n, 2 + k + n], [1 + 2 k,

3

2
+ k], y)

showing that

Λn
k (z, t) = e−kt

(

k+n+1

1 + 2 k

)

3F2





1
2
+k, k−n, 2+k+n

1 + 2 k,
3

2
+ k

∣

∣

∣

∣

∣

∣

e−t



,

(10)
see e.g. [11], Section 5. The plot

> plot(simplify(
> subs(y=(1-x)/2,z=1,n=30,k=6,result1)),x=-1..1);
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x

of Λ30
6 with y = 1−x

2
for x = −1, . . . , 1 shows the nonneg-

ativity of this polynomial. Moreover the highly oscillatory
character of the Weinstein functions, resp. the derivatives of
the de Branges functions, can be seen.



6. GENERATING FUNCTION OF THE DE
BRANGES FUNCTIONS

In [11], a very simple generation function for the de Branges
function was given:

Bk(z, t) =
∞
∑

n=k

τn
k (t) zn+1 = K(z) W (z, t)k (11)

= K(z)k+1 e−kt
2F1

(

k, k + 1/2

2k + 1

∣

∣

∣

∣

∣

−4K(z)e−t

)

(12)

=
∞
∑

j=k

(−1)j+k 2k

j + k

(

2j − 1

j − k

)

K(z)j+1 e−jt . (13)

Equation (11) shows the intimate relation of the de Branges
functions with the Koebe function: Their generating func-
tion is basically a power of the Löwner chain of the Koebe
function.

By Theorem 1 we can obtain these representations auto-
matically. Note that these results include a hypergeometric
representation of the k-th power of w(z, y), extending the
result for k = 1 given in Section 3.

We compute for K(z) w(z, y)k

> s:=standardsum(y^k*FPS(z/(1-z)^2*(w/y)^k,y,j));

s :=

∞
∑

j=0

yk (−1)j z(j+1+k) (
1

(−1 + z)2
)(k+j) (2 k)2 j yj

(−1 + z)2 (1 + 2 k)j j!

and therefore get (13), which by the calculation

> sumtools[Sumtohyper](op(1,s),j);

yk z(k+1) (
1

(−1 + z)2
)k Hypergeom([k,

1

2
+ k], [1 + 2 k], −

4 z y

(−1 + z)2
)

(−1 + z)2

gives the hypergeometric representation (12) of K(z) w(z, y)k.
As intermediate result, the differential equation

> DE:=HolonomicDE(z/(1-z)^2*w^k,B(y));

DE := (1 − 2 z + 4 z y + z2) y2 ( d2

dy2 B(y)) − k2 (−1 + z)2 B(y)

+ y (6 z y + 1 − 2 z + z2) ( d
dy

B(y)) = 0

for w(z, y)k is used.
At this point we would like to mention that this differen-

tial equation can also be automatically determined applying
a version of Zeilberger’s algorithm (see e.g. [10], Chapter
7) to the summand of the hypergeometric representation of
w(z, y):

> read "hsum6.mpl";

Package ”Hypergeometric Summation”, Maple V-8

Copyright 1998-2002, Wolfram Koepf, University of Kassel

> DE2:=sumdiffeq(op(1,s),j,B(y));

DE2 := −(1 − 2 z + 4 z y + z2) y2 ( d2

dy2 B(y))

−y (z2 + 1 + 6 z y − 2 z) ( d
dy

B(y)) + k2 (−1 + z)2 B(y) = 0

By (11), a second application of the FPS procedure leads
to a hypergeometric representation of τn

k :

> ss:=standardsum(FPS(s,z,i));

ss :=

∞
∑

j=0
(

∞
∑

i=0

(
2 (−1)j yk yj k Γ(2 j + 2 k) (2 j + 2 + 2 k)i z(j+i+1+k)

Γ(j + 2 k) (j + 2 k) j! i!
)

)

> summand:=op([1,1],ss):

> summand:=subs(i=n-j-k,summand):

> result:=sumtools[sumtohyper](summand,j):

> result:=convert(result,binomial);

result := yk z(n+1) binomial(1 + k + n, 1 + 2 k)

hypergeom([
1

2
+ k, n + k + 2, k, −n + k], [k + 1, 1 + 2 k,

3

2
+ k], y)

Therefore, we have finally computed that

τn
k (t) = e−kt

(

1 + k + n

1 + 2 k

)

·

4F3





1

2
+ k, n + k + 2, k, −n + k

k + 1, 1 + 2 k,
3

2
+ k

∣

∣

∣

∣

∣

∣

e−t



 .

By taking derivative w.r.t t, this representation of τn
k as

4F3-hypergeometric function is easily seen to be equivalent
to (10). Hence our computations have proved identity (9).

The plot
> plot(simplify(
> subs(y=(1-x)/2,z=1,n=30,k=6,result)),x=-1..1);
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x

shows the nonnegativity of τ30
6 . Morover it indicates that

τn
k is much less oscillatory than its derivative.

7. FURTHER RESULTS
In this section we briefly mention some more examples for
the use of Theorem 1 which, although not directly connected
to the proof of the Bieberbach conjecture, still deal with the
Löwner chain w(z, y) of the Koebe function. These examples
emphasize the rich structure of this function.

For this purpose we present some generating functions
with hypergeometric representations, and leave the respec-
tive second application of the FPS algorithm to the reader:

• generating function
(

1+w(z,y)
1−w(z,y)

)m

:

> standardsum(FPS(((1+w)/(1-w))^m,y,j));



∞
∑

j=0

zj (
1

(−1 + z)2
)j (−1)j 4j (−

m

2
)j yj

j!

• generating function w(z, y)k 1−w(z,y)
1+w(z,y)

:

> standardsum(y^k*FPS((w/y)^k*(1-w)/(1+w),y,j));

∞
∑

j=0

yk (−1)j z(j+k) (
1

(−1 + z)2
)(j+k) (1 + 2 k)2 j yj

(1 + 2 k)j j!

• generating function w(z,y)k

1−w(z,y)m :

> standardsum(y^k*FPS((w/y)^k/(1-w)^m,y,j));

∞
∑

j=0

yk (−1)j z(j+k) (
1

(−1 + z)2
)(j+k) (2 k − m)2 j yj

(−m + 2 k + 1)j j!

• generating function w(z,y)k

1+w(z,y)
1

1−w(z,y)m :

> standardsum(y^k*FPS((w/y)^k/(1-w)^m/(1+w),y,j));

∞
∑

j=0

yk (−1)j z(j+k) (
1

(−1 + z)2
)(j+k) (2 k − m)2 j yj

(2 k − m)j j!

8. POSITIVITY AND STURM SEQUENCES
When de Branges had found his function system τn

k (t), he
was able to check the Bieberbach conjecture by hand com-
putations for n 5 6. For this purpose he proved the non-
positivity of τ̇n

k (t) for 1 5 n 5 5, 1 5 k 5 n, t = 0.
He asked his colleague Walter Gautschi from Purdue Uni-

versity to verify (6) numerically, which was done for n 5 30,
and de Branges became confident of the validity of the gen-
eral statement (6).

Note, however, although Gautschi used Sturm sequences,
because of the oscillatory nature of Λn

k his numerical com-
putations had to be very careful to obtain correct results.

Nowadays, we can apply Sturm sequences and count the
roots easily by rational arithmetic to obtain correct count-
ings since the input polynomials are elements of Q[y].

For example, the computation

> sturm(simplify(
> subs(y=(1-x)/2,z=1,n=30,k=6,result1)),x,-1,1);

1

proves that Λ30
6 (x) has exactly one zero in the semi-open

interval (−1, 1] (namely at the point x = 1), and since its
value at x = −1 is positive, Λ30

6 (x) is nonnegative in [−1, 1].
Using Mathematica’s CountRoots command which is based

on a more efficient approach than Sturm sequences [4], the
author could show relations (6) for n = 100, k = 1, . . . , 100,
e.g., hence Bieberbach’s conjecture for n = 101, within 110
seconds (Intel Pentium III, 1066 MHz under Windows 2000).

9. CONCLUSION
In this article, we show how the algorithmic computation
of power series can be applied to generating functions that
appear naturally in the study of the Koebe function, to ob-
tain hypergeometric representations for the de Branges and
Weinstein functions. Moreover, we have considered how al-
gebraic computation enables the fast verification of the pos-
itivity results in the proofs of de Branges and Weinstein for
fixed n and k using Sturm sequences or similar approaches.

10. REMARKS
The Maple packages FPS.mpl and hsum6.mpl can be down-
loaded from the author’s web site http:/www.mathematik.

uni-kassel.de/~koepf/Publikationen, where also a cor-
responding Maple Help Database is available.
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