
Computer Algebra Algorithms for Orthogonal
Polynomials and Special Functions

Wolfram Koepf

Department of Mathematics and Computer Science, University of Kassel,
Heinrich-Plett-Str. 40, D–34132 Kassel, Germany,
koepf@mathematik.uni-kassel.de

Summary. In this minicourse I would like to present computer algebra algorithms
for the work with orthogonal polynomials and special functions. This includes

• the computation of power series representations of hypergeometric type func-
tions, given by “expressions”, like arcsin(x)/x ,

• the computation of holonomic differential equations for functions, given by ex-
pressions,

• the computation of holonomic recurrence equations for sequences, given by ex-

pressions, like
(

n
k

)
xk

k!
,

• the identification of hypergeometric functions,
• the computation of antidifferences of hypergeometric terms (Gosper’s algo-

rithm),
• the computation of holonomic differential and recurrence equations for hyperge-

ometric series, given the series summand, like

Pn(x) =

n∑
k=0

(
n

k

)(
−n − 1

k

)(
1 − x

2

)k

(Zeilberger’s algorithm),
• the computation of hypergeometric term representations of series (Zeilberger’s

and Petkovšek’s algorithm),
• the verification of identities for (holonomic) special functions,
• the detection of identities for orthogonal polynomials and special functions,
• the computation with Rodrigues formulas,
• the computation with generating functions,
• corresponding algorithms for q -hypergeometric (basic hypergeometric) func-

tions,
• the identification of classical orthogonal polynomials, given by recurrence equa-

tions.

All topics are properly introduced, the algorithms are discussed in some detail and
many examples are demonstrated by Maple implementations. In the lecture, the
participants are invited to submit and compute their own examples.

Let us remark that as a general reference we use the book [11], the computer
algebra system Maple [16], [4] and the Maple packages FPS [9], [7], gfun [19], hsum
[11], infhsum [22], hsols [21], qsum [2] and retode [13].

E. Koelink and W. Van Assche (Eds.): LNM 1817, pp. 1–24, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

2 Wolfram Koepf

1 The computation of power series and hypergeometric
functions . 2

1.1 Hypergeometric series . 3
1.2 Holonomic differential equations . 4
1.3 Algebra of holonomic functions . 4
1.4 Hypergeometric power series . 5
1.5 Identification of hypergeometric functions . 5

2 Summation of hypergeometric series . 6

2.1 Fasenmyer’s method . 6
2.2 Indefinite summation and Gosper’s algorithm 7
2.3 Zeilberger’s algorithm . 8
2.4 A generating function problem . 11
2.5 Automatic computation of infinite sums . 11
2.6 The WZ method . 12
2.7 Differential equations . 13

3 Hypergeometric term solutions of recurrence equations . . . 14

3.1 Petkovšek’s algorithm . 14
3.2 Combining Zeilberger’s and Petkovšek’s algorithms 14

4 Integration . 15

4.1 Indefinite integration . 15
4.2 Definite integration . 15
4.3 Rodrigues formulas . 17
4.4 Generating functions . 17

5 Applications and further algorithms . 18

5.1 Parameter derivatives . 18
5.2 Basic hypergeometric summation . 19
5.3 Orthogonal polynomial solutions of recurrence equations 20

6 Epilogue . 22

References . 23

1 The computation of power series and hypergeometric
functions

Given an expression f(x) in the variable x , one would like to find the Taylor
series

f(x) =
∞∑
k=0

ak x
k ,

i.e., a formula for the coefficient ak . For example, if f(x) = exp(x), then

Computer Algebra Algorithms 3

f(x) =
∞∑
k=0

1
k!
xk ,

hence ak = 1
k! . If the result is simple enough, the FPS (formal power series)

procedure of the Maple package FPS.mpl ([9], [7]) computes this series, even if
it is a Laurent series (including negative powers) or Puiseux series (including
rational powers).

The main idea behind this procedure is

1. to compute a differential equation for f(x),
2. to convert the differential equation to a recurrence equation for ak ,
3. and to solve the recurrence equation for ak .

1.1 Hypergeometric series

The above procedure is successful at least if f(x) is hypergeometric. A series

∞∑
k=0

ak

is called hypergeometric, if the series coefficient ak has rational term ratio

ak+1

ak
∈ Q(k) .

The function

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣∣∣ x
)

:=
∞∑
k=0

Ak x
k =

∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

xk

k!
(1.1)

is called the generalized hypergeometric series, since its term ratio

Ak+1 x
k+1

Ak xk
=

(k + a1) · · · (k + ap)
(k + b1) · · · (k + bq)

x

(k + 1)
(1.2)

is a general rational function, in factorized form. Here (a)k = a(a+1) · · · (a+
k− 1) denotes the Pochhammer symbol or shifted factorial. The summand ak
of the generalized hypergeometric series is called a hypergeometric term.

The Maple commands factorial (short form !), pochhammer, binomial,
and GAMMA can be used to enter the corresponding functions, hypergeom de-
notes the hypergeometric series, and the hyperterm command of the sum-
tools and hsum packages denotes a hypergeometric term.1

1 The package sumtools is part of Maple [4]. Note that Maple 8 contains a second
package SumTools ([15], [4]) which also contains summation algorithms.

4 Wolfram Koepf

1.2 Holonomic differential equations

A homogeneous linear differential equation with polynomial coefficients is
called holonomic. If f(x) satisfies a holonomic differential equation, then its
Taylor series coefficients ak satisfy a holonomic recurrence equation, and vice
versa.

To find a holonomic differential equation for an expression f(x), one dif-
ferentiates f(x), and writes the sum

J∑
j=0

cjf
(j)(x)

as a sum of (over Q(x)) linearly independent summands, whose coefficients
should be zero. This gives a system of linear equations for cj ∈ Q(x) (j =
0, . . . , J). If it has a solution, we have found a differential equation with
rational function coefficients, and multiplying by their common denominator
yields the equation sought for.

Iterating this procedure for J = 1, 2, . . . yields the holonomic differential
equation of lowest order valid for f(x).

The command HolonomicDE2 of the FPS package is an implementation of
this algorithm.

Exercise 1. Find a holonomic differential equation for f(x) = sin(x) exp(x).
Use the algorithm described. Don’t use the FPS package.
Using the FPS package FPS.mpl, find a holonomic differential equation for
f(x) and for g(x) = arcsin(x)3 .

1.3 Algebra of holonomic functions

A function that satisfies a holonomic differential equation is called a holonomic
function. Sum and product of holonomic functions turn out to be holonomic,
and their representing differential equations can be computed from the differ-
ential equations of the summands and factors, respectively, by linear algebra.

We call a sequence that satisfies a holonomic recurrence equation a holo-
nomic sequence. Sum and product of holonomic sequences are holonomic, and
similar algorithms exist. As already mentioned, a function is holonomic if and
only if it is the generating function of a holonomic sequence.

The gfun package by Salvy and Zimmermann [19] contains—besides
others—implementations of the above algorithms.
2 In earlier versions of the FPS package the command name was SimpleDE.

Computer Algebra Algorithms 5

Exercise 2. Use the gfun package to generate differential equations for
f(x) = sin(x) exp(x), and g(x) = sin(x) + exp(x) by utilizing the (known)
ODEs for the summands and factors, respectively.
Use the gfun package to generate recurrence equations for

ak = k

(
n

k

)2

and bk = k +
(
n

k

)2

.

1.4 Hypergeometric power series

Having found a holonomic differential equation for f(x), by substituting

f(x) =
∞∑
k=0

ak x
k ,

and equating coefficients, it is easy to deduce a holonomic recurrence equation
for ak .

If we are lucky, the recurrence is of first order, hence the function is a
hypergeometric series, and the coefficients can be computed by (1.1)–(1.2).

The command SimpleRE of the FPS package combines the above steps and
computes a recurrence equation for the series coefficients of an expression.

1.5 Identification of hypergeometric functions

Assume, we have

F =
∞∑
k=0

ak .

How do we find out which pFq(x) this is?
The simple idea is to write the ratio ak+1

ak
as factorized rational function,

and to read off the upper and lower parameters according to (1.2).
The command Sumtohyper of the sumtools and hsum packages are im-

plementations of this algorithm.

Exercise 3. Write cos(x) in hypergeometric notation by hand computation.
Use the sumtools package to do the same. Restart your session and use the
hsum package hsum6.mpl instead.
Get the hypergeometric representations for sin(x), sin(x)2 , arcsin(x),
arcsin(x)2 , and arctan(x), combining FPS and hsum.

6 Wolfram Koepf

Exercise 4. Write the following representations of the Legendre polynomials
in hypergeometric notation:

Pn(x) =
n∑
k=0

(
n

k

)(
−n− 1
k

)(
1− x

2

)k
(1.3)

=
1
2n

n∑
k=0

(
n

k

)2

(x− 1)n−k(x + 1)k (1.4)

=
1
2n

�n/2�∑
k=0

(−1)k
(
n

k

)(
2n− 2k

n

)
xn−2k . (1.5)

In the hypergeometric representations, where from can you read off the upper
bound of the sum?

2 Summation of hypergeometric series

In this section, we try to simplify both definite and indefinite hypergeometric
series.

2.1 Fasenmyer’s method

Given a sequence sn , as hypergeometric sum

sn =
∞∑

k=−∞
F (n, k) ,

how do we find a recurrence equation for sn ? Celine Fasenmyer proposed the
following algorithm (see e.g., [11], Chapter 4):

1. Compute ansatz :=
∑

i=0,...,I
j=0,...,J

F (n+ j, k + i)
F (n, k)

∈ Q(n, k).

2. Bring this into rational form and set the numerator coefficient list w.r.t.
k zero. If the corresponding linear system has a solution, this leads to a
k -free recurrence equation for the summand F (n, k).

3. Summing this recurrence equation for k = −∞, . . . ,∞ gives the desired
recurrence for sn .

If successful, this results in a holonomic recurrence equation for sn . If we are
lucky, and the recurrence is of first order, then the sum can be written as a
hypergeometric term by formula (1.1)–(1.2). This algorithm can be accessed
by the commands kfreerec and fasenmyer of the hsum package.

As an example, to compute

Computer Algebra Algorithms 7

sn =
n∑
k=0

F (n, k) =
n∑
k=0

(
n

k

)
,

in the first step one gets the well-known binomial coefficient recurrence

F (n+ 1, k) = F (n, k) + F (n, k − 1)

or in the usual notation(
n+ 1
k

)
=
(
n

k

)
+
(

n

k − 1

)
,

from which it follows by summation for k = −∞, . . . ,∞

sn+1 = sn + sn = 2sn ,

since ∞∑
k=−∞

F (n, k) =
∞∑

k=−∞
F (n, k − 1) .

With s0 = 1 one finally gets sn = 2n .
In practice, however, Fasenmyer’s algorithm is rather slow and inefficient.

Exercise 5. Using Fasenmyer’s method, compute a three-term recurrence
equation for the Laguerre polynomials

Ln(x) =
n∑
k=0

(−1)k

k!

(
n

k

)
xk = 1F1

(
−n
1

∣∣∣∣∣ x
)

and for the generalized Laguerre polynomials

L(α)
n (x) =

n∑
k=0

(−1)k

k!

(
n+ α

n− k

)
xk. (2.1)

2.2 Indefinite summation and Gosper’s algorithm

Given a sequence ak , one would like to find a sequence sk which satisfies

ak = sk+1 − sk = ∆sk . (2.2)

Having found sk makes definite summation easy since by telescoping it follows
from (2.2) for arbitrary M,N ∈ Z

N∑
k=M

ak = sN+1 − sM .

8 Wolfram Koepf

We call sk =
∑
ak an indefinite sum (or an antidifference) of ak . Hence

indefinite summation is the inverse of the forward difference operator ∆.
Gosper’s algorithm ([6], see e.g., [11], Chapter 5) takes a hypergeometric

term ak and decides whether or not ak has a hypergeometric term anti-
difference, and computes it in the affirmative case. In the latter case sk is a
rational multiple of ak , sk = Rk ak with Rk ∈ Q(k).

Note that whenever Gosper’s algorithm does not find a hypergeometric
term antidifference, it has therefore proved that no such antidifference exists.
In particular, using this approach, it is easily shown that the harmonic num-

bers Hn =
n∑
k=1

1
k cannot be written as a hypergeometric term. On the other

hand, one gets (checking the result applying ∆ is easy!)∑
ak =

∑
(−1)k

(
n

k

)
= −k

n
ak .

Both Maple’s sumtools package and hsum6.mpl contain an implementation
of Gosper’s algorithm by the author. The gosper command of the hsum
package will give error messages that let the user know whether the input
is not a hypergeometric term (and hence the algorithm is not applicable)
or whether the algorithm has deduced that no hypergeometric term antid-
ifference exists. Since this is (unfortunately) against Maple’s general policy,
sumtools[gosper] does not do so, and gives FAIL in these cases.

Exercise 6. Use Gosper’s algorithm to compute

s(m,n) =
m∑
k=0

(−1)k
(
n

k

)
,

tn =
n∑
k=1

k3 ,

and

un =
n∑
k=1

1
k(k + 5)

.

2.3 Zeilberger’s algorithm

Zeilberger [24] had the brilliant idea to use a modified version of Gosper’s
algorithm to compute definite hypergeometric sums

sn =
∞∑

k=−∞
F (n, k) ,

Computer Algebra Algorithms 9

like Fasenmyer’s algorithm does (see e.g., [11], Chapter 7). However, Zeil-
berger’s algorithm is much more efficient than Fasenmyer’s. Note that, when-
ever sn is itself a hypergeometric term, then Gosper’s algorithm, applied to
F (n, k), fails! Thus a direct application of Gosper’s algorithm to the summand
is not possible.

Zeilberger’s algorithm works as follows:

1. For suitable J ∈ N set

ak = F (n, k) + σ1F (n+ 1, k) + · · ·+ σJF (n+ J, k) .

2. Apply Gosper’s algorithm to determine a hypergeometric term sk , and at
the same time rational functions σj ∈ Q(n) such that ak = sk+1 − sk .

3. Summing for k = −∞, . . . ,∞ yields the desired holonomic recurrence
equation for sn by telescoping.

One can prove that Zeilberger’s algorithm terminates for suitable input.
The command sumtools[sumrecursion] as well as sumrecursion and

closedform of the hsum package are implementations of Zeilberger’s algo-
rithm.

Exercise 7. Compute recurrence equations for the binomial power sums

n∑
k=0

(
n

k

)m
for m = 2, . . . , 7.
In the 1980s these results were worth a paper in a mathematical journal!

If the resulting recurrence equation is of first order, then in combination
with formula (1.1)–(1.2) and the value s0 one gets a hypergeometric term rep-
resentation of the sum sn . This is the strategy of the closedform command.

As an example, using this approach, it is easy to deduce Dougall’s identity

7F6

(
a, 1 + a

2 , b, c, d, 1 + 2a− b− c− d+ n,−n
a
2 , 1 + a− b, 1 + a− c, 1 + a− d, b+ c+ d− a− n, 1 + a+ n

∣∣∣∣∣ 1
)

=
(1 + a)n (a+ 1− b− c)n (a+ 1− b − d)n (a+ 1− c− d)n
(1 + a− b)n (1 + a− c)n (1 + a− d)n (1 + a− b− c− d)n

from its left hand side.

10 Wolfram Koepf

Exercise 8. Find hypergeometric term representations for the sums

sn =
n∑
k=0

k

(
n

k

)
,

tn =
n∑
k=0

(
n

k

)2

,

un =
n∑
k=0

(−1)k
(
n

k

)2

,

and

vn =
n∑
k=0

(
a

k

)(
b

n− k

)
.

Assume you have two hypergeometric sums, how can you check whether
they are different disguised versions of the same special function? Zeilberger’s
paradigm is to compute their recurrence equations, and, if these agree, then
it remains to check enough initial values. Using this approach, it is easy to
check that the three representations of the Legendre polynomials, given in
(1.3)–(1.5), all agree with the fourth representation

Pn(x) = xn 2F1

(
n
2 ,

1−n
2

1

∣∣∣∣∣ 1− 1
x2

)
(2.3)

Exercise 9. Prove that the representations (1.3)–(1.5) and (2.3) all con-
stitute the same functions, the Legendre polynomials.

With this method, one can prove many of the hypergeometric identities
that appear in Joris van der Jeugt’s contribution in these lecture notes, for
example Whipple’s transformation (2.10) as well as the different representa-
tions of the Clebsch-Gordan coefficients Clebsch-Gordan coefficients and
Racah polynomials, and many of the corresponding exercises can be solved
automatically.

Even more advanced questions that involve double sums can be solved: to
prove Clausen’s formula

2F1

(
a, b

a+ b+ 1
2

∣∣∣∣∣ x
)2

= 3F2

(
2a, 2b, a+ b

2a+ 2b, a+ b+ 1
2

∣∣∣∣∣x
)
,

which gives the cases when a 3F2 is the square of a 2F1 , one can write the
left hand side as a Cauchy product. This gives a double sum. It turns out that
the inner sum can be simplified by Zeilberger’s algorithm, and the remaining
sum is exactly the right hand side.

Computer Algebra Algorithms 11

2.4 A generating function problem

Recently, Folkmar Bornemann showed me a generating function of the Leg-
endre polynomials and asked me to generate it automatically [3]. Here is the
problem: write

G(x, z, α) :=
∞∑
n=0

(
α+ n− 1

n

)
Pn(x) zn

as a hypergeometric function. We can take any of the four given hypergeomet-
ric representations of the Legendre polynomials to write G(x, z, α) as double
sum. Then the trick is to change the order of summation. If we are lucky,
then the inner sum is Zeilberger-summable, hence a single hypergeometric
sum remains which gives the desired result.

It turns out that (only) the fourth representation (2.3) leads to such a
result, namely

∞∑
n=0

(
α+ n− 1

n

)
Pn(x) zn =

1
(1− xz)α 2F1

(
α
2 ,

α+1
2

1

∣∣∣∣∣ (x2 − 1) z2

(xz − 1)2

)
.

Note that a variant of this identity can be found as number 05.03.23.0006.01 in
the extensive online handbook [23]. It occurs there without citation, though,
hence without proof.

Advanced Exercise 10. Derive the Askey-Gasper identity which was the
essential ingredient in de Branges’ proof of the Bieberbach conjecture (see,
e.g., [11], Example 7.4). Hence write as a single hypergeometric series

�n−k
2 �∑
j=0

(
1
2

)
j

(
α
2 +1

)
n−j
(
α+3

2

)
n−2j

(α+1)n−2j

j!
(
α+3

2

)
n−j
(
α+1

2

)
n−2j

(n− 2j)!

3F2

(
2j − n, n− 2j + α+ 1, α+1

2

α+ 1, α+2
2

∣∣∣∣∣x
)
.

2.5 Automatic computation of infinite sums

Whereas Zeilberger’s algorithm finds Chu-Vandermonde’s formula for n ∈
N≥0

2F1

(
−n, b
c

∣∣∣∣∣ 1
)

=
(c− b)n

(c)n
, (2.4)

the question arises how to detect Gauss’ identity

12 Wolfram Koepf

2F1

(
a, b

c

∣∣∣∣∣ 1
)

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

for a, b, c ∈ C in case of convergence, i.e., if Re (c − a − b) > 0, extending
(2.4).

The idea is to detect by Zeilberger’s algorithm

2F1

(
a, b

c+m

∣∣∣∣∣ 1
)

=
(c− a)m (c− b)m
(c)m (c− a− b)m 2F1

(
a, b

c

∣∣∣∣∣ 1
)

and then consider the limit as m→∞ .
Using appropriate limits for the Gamma function, this and similar ques-

tions can be handled automatically by the infclosedform prodecure of
Vidunas’ and Koornwinder’s Maple package infhsum [22].

Exercise 11. Derive Kummer’s theorem, i.e. find a closed form for

2F1

(
a, b

1 + a− b

∣∣∣∣∣−1

)
.

Find an extension of the Pfaff-Saalschütz formula

3F2

(
a, b,−n

c, 1 + a+ b− c− n

∣∣∣∣∣ 1
)

=
(c− a)n (c− b)n
(c)n (c− a− b)n

.

2.6 The WZ method

Assume we want to prove an identity

∞∑
k=−∞

f(n, k) = s̃n

with hypergeometric terms f(n, k) and s̃n , see e.g. [11], Chapter 6. Then
Wilf’s idea is to divide by s̃n , and therefore to put the identity into the form

sn :=
∞∑

k=−∞
F (n, k) = 1 . (2.5)

Now we can apply Gosper’s algorithm to F (n+ 1, k)− F (n, k) as a function
of k . If this is successful, then it generates a rational multiple G(n, k) of
F (n, k), i.e., G(n, k) = R(n, k)F (n, k) with R(n, k) ∈ Q(n, k), such that

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k) , (2.6)

Computer Algebra Algorithms 13

and telescoping yields sn+1 − sn = 0, and therefore (2.5). Hence the sheer
success of Gosper’s algorithm gives a proof of (2.5). This is called the WZ
method.

Moreover, if the WZ method was successful, it has computed the rational
certificate R(n, k) ∈ Q(n, k) which enables a completely independent proof
of (2.5) that can be carried out by hand computations: Dividing (2.6) by
F (n, k), we have only to prove

F (n+ 1, k)
F (n, k)

− 1 = R(n, k + 1)
F (n, k + 1)
F (n, k)

−R(n, k) ,

a purely rational identity.
The function WZcertificate of the hsum package computes the rational

certificate if applicable.

Exercise 12. Prove by the WZ method:

n∑
k=1

k

(
n

k

)
= n2n−1

and (this is again the disguised Chu-Vandermonde formula)

n∑
k=0

(
a

k

)(
b

n− k

)
=
(
a+ b

n

)
.

2.7 Differential equations

Zeilberger’s algorithm can easily be adapted to generate holonomic differential
equations for hyperexponential sums (see, e.g., [11], Chapter 10)

s(x) =
∞∑

k=−∞
F (x, k) .

For this purpose, the summand F (x, k) must be a hyperexponential term
w.r.t. x :

∂
∂xF (x, k)
F (x, k)

∈ Q(x, k) .

With this algorithm which is implemented as sumdiffeq in the hsum package
it is easy to check that all representations (1.3)–(1.5) and (2.3) of the Legendre
polynomials satisfy the same differential equation

(1− x2)P ′′
n (x) − 2xP ′

n(x) + n(n+ 1)Pn(x) = 0 .

In CAOP [20], an online version of the Askey-Wilson scheme of orthogonal
polynomials [8] developed by René Swarttouw, the hsum package is used

14 Wolfram Koepf

to interactively compute recurrence and differential equations for personally
standardized orthogonal polynomial families of the Askey-Wilson scheme.

Exercise 13. Find holonomic differential equations for the Jacobi polyno-
mials

P (α,β)
n (x) =

(
n+ α

n

)
2F1

(
−n, n+ α

α+ β + 1

∣∣∣∣∣ 1 + x

2

)
, (2.7)

and the generalized Laguerre polynomials (2.1).

3 Hypergeometric term solutions of recurrence equations

3.1 Petkovšek’s algorithm

Petkovšek’s algorithm is an adaption of Gosper’s (see, e.g., [11], Chapter 9).
Given a holonomic recurrence equation, it determines all hypergeometric term
solutions. The command rechyper of the hsum package is an implementation
of Petkovšek’s algorithm.

Petkovšek’s algorithm is slow, especially if the leading and trailing coeffi-
cients of the recurrence equation have many factors. Maple 9 will contain a
much more efficient algorithm hsols due to Mark van Hoeij [21] for the same
purpose.

As an example, the recurrence equation

3(3n+ 4)(3n+ 7)(3n+ 8)sn+3 + 4(3n+ 4)(37n2 + 180n+ 218)sn+2

+16(n+ 2)(33n2 + 125n+ 107)sn+1 + 64(n+ 1)(n+ 2)(3n+ 7)sn = 0

which is the output of Zeilberger’s algorithm applied to the sum

sn =
n∑
k=0

(−1)k
(
n

k

)(
4k
n

)
,

has the hypergeometric term solution (−4)n which finally yields sn = (−4)n .

3.2 Combining Zeilberger’s and Petkovšek’s algorithms

As seen, Zeilberger’s algorithm may not give a recurrence equation of first
order, even if the sum is a hypergeometric term. This rarely happens, though.
In such a case, the combination of Zeilberger’s with Petkovšek’s algorithm
guarantees to find out whether a given sum can be written as a hypergeometric
term.

Exercise 9.3 of my book [11] gives 9 examples for this situation, all from
p. 556 of [18].

Computer Algebra Algorithms 15

Advanced Exercise 14. Use a combination of Zeilberger’s algorithm and
Petkovšek’s algorithm to find a simple representation (as linear combination
of two hypergeometric terms) of the sum

sn =
�n/3�∑
k=0

(
n− 2k
k

)(
− 4

27

)k
.

4 Integration

4.1 Indefinite integration

To find holonomic recurrence and differential equations for hypergeometric
and hyperexponential integrals, one needs a continuous version of Gosper’s
algorithm. Almkvist and Zeilberger gave such an algorithm ([1], see, e.g.,
[11], Chapter 11). It finds hyperexponential antiderivatives if those exist. This
algorithm is accessible as procedure contgosper of the hsum package.

For example, this algorithm proves that the function ex
2

does not have a
hyperexponential antiderivative. In fact, this function does not even have an
elementary antiderivative; but this cannot be detected by the given algorithm.
On the other hand, the algorithm computes, e.g., the integral∫ (

2x
1− x10

+
10(1 + x2)x9

(1− x10)2

)
dx =

1 + x2

1− x10
.

4.2 Definite integration

Applying the continuous Gosper algorithm, one can easily adapt the discrete
versions of Zeilberger’s algorithm to the continuous case. The resulting algo-
rithms find holonomic recurrence and differential equations for hypergeometric
and hyperexponential integrals.

The procedures intrecursion and intdiffeq of the hsum package are
implementations of these algorithms, see [11], Chapter 12.

As an example, we would like to find

S(x, y) =

1∫
0

tx (1− t)y dt .

Applying the continuous Zeilberger algorithm w.r.t. x and y , respectively,
results in the two recurrence equations

−(x+ y + 2)S(x+ 1, y) + (x+ 1)S(x) = 0

and

16 Wolfram Koepf

−(x+ y + 2)S(x, y + 1) + (x+ 1)S(x) = 0 .

Solving both recurrence equations (e.g., with Maple’s rsolve command)
shows that S(x, y) must be a multiple of

Γ(x+ 1)Γ(y + 1)
Γ(x+ y + 2)

.

Computing the initial value

S(0, 0) =

1∫
0

dt = 1

proves the identity

S(x, y) =
Γ(x+ 1)Γ(y + 1)

Γ(x+ y + 2)

for x, y ∈ Z . Since we work with recurrence equations, this method cannot
find the result for other complex values x, y .

Another example is given by the integral

I(x) =

∞∫
0

x2

(x4 + t2)(1 + t2)
dt

for which the algorithm detects the holonomic differential equation

x(x4 − 1) I ′′(x) + (1 + 7x4) I ′(x) + 8x3 I(x) = 0 .

Maple’s dsolve command finds the solution

I(x) =
π

2(x2 + 1)
.

Advanced Exercise 15. Write the integral

1∫
0

tc−1 (1− t)d−1
2F1

(
a, b

c

∣∣∣∣∣ tx
)

as a hypergeometric series. This generates the so-called Bateman integral
representation. For which c, d ∈ C is the result valid?

Advanced Exercise 16. Find a similar representation for the integral

1∫
0

tc−1 (1− t)d−1
2F1

(
a, b

d

∣∣∣∣∣ tx
)
.

Computer Algebra Algorithms 17

4.3 Rodrigues formulas

Using Cauchy’s integral formula

h(n)(z) =
n!
2πi

∫
γ

h(t)
(t− x)n+1

dt

for the nth derivative makes the integration algorithms accessible for Ro-
drigues type expressions

fn(x) = gn(x)
dn

dxn
hn(x) .

This is implemented inrodriguesrecursion and rodriguesdiffeq of the
hsum package, see [11], Chapter 13.

Using these algorithms, one can easily show that the functions

Pn(x) =
(−1)n

2n n!
dn

dxn
(1 − x2)n

are the Legendre polynomials, and that

L(α)
n (x) =

ex

n!xα
dn

dxn
(
e−x xα+n

)
are the generalized Laguerre polynomials.

Exercise 17. Prove the Rodrigues formula

P (α,β)
n (x) =

(−1)n

2n n!
(1− x)−α (1 + x)−β

dn

dxn
(
(1− x)α(1 + x)β(1− x2)n

)
for the Jacobi polynomials (2.7).

4.4 Generating functions

If F (z) is the generating function of the sequence anfn(x),

F (z) =
∞∑
n=0

an fn(x) zn ,

then by Cauchy’s formula and Taylor’s theorem

fn(x) =
1
an

F (n)(0)
n!

=
1
an

1
2πi

∫
γ

F (t)
tn+1

dt .

Hence, again, we can apply the integration algorithms. This is implemented
in the functions GFrecursion and GFdiffeq of the hsum package, see [11],
Chapter 13.

18 Wolfram Koepf

Using these algorithms, we can easily prove the generating function iden-
tity

(1− z)−α−1 e
xz

z−1 =
∞∑
n=0

L(α)
n (x) zn

for the generalized Laguerre polynomials.

Exercise 18. Prove that

1√
1− 2xz + z2

=
∞∑
n=0

Pn(x) zn

is the generating function of the Legendre polynomials.

Advanced Exercise 19. Write the exponential generating function

F (x) =
∞∑
n=0

1
n!
Pn(x) zn

of the Legendre polynomials in terms of Bessel functions.
Hint: Use one of the hypergeometric representations of the Legendre poly-
nomials and change the order of summation.

5 Applications and further algorithms

5.1 Parameter derivatives

For some applications, one uses parametrized families of orthogonal polyno-
mials like the generalized Laguerre polynomials that are parametrized by the
parameter α . It might be necessary to know the rate of change of the family
in the direction of the parameter α (see [10]).

Using Zeilberger’s algorithm and limit computations (with Maple’s limit)
one can compute such parameter derivatives in this and in similiar occasions.

Advanced Exercise 20. Prove the following representation for the pa-
rameter derivative of the generalized Laguerre polynomials

∂

∂α
L(α)
n (x) =

n−1∑
k=0

1
n− k L

(α)
k (x)

by proving first that

L(α+µ)
n (x) =

n∑
k=0

(µ)n−k
(n− k)! L

(α)
k (x)

and taking limit µ→ 0.

Computer Algebra Algorithms 19

5.2 Basic hypergeometric summation

Instead of considering series whose coefficients Ak have rational term ra-
tio Ak+1/Ak ∈ Q(k), we can also consider such series whose coefficients
Ak have term ratio Ak+1/Ak ∈ Q(qk) for some q ∈ C . This leads to the
q -hypergeometric series—also called basic hypergeometric series—(see, e.g.,
[5])

rϕs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣ q;x
)

=
∞∑
k=0

Ak x
k .

Here the coefficients are given by

Ak =
(a1; q)k · · · (ar; q)k
(b1; q)k · · · (bs; q)k

xk

(q; q)k

(
(−1)k q(

k
2)
)1+s−r

,

where

(a; q)k =
k−1∏
j=0

(1− aqj)

denotes the q -Pochhammer symbol.
Further q -expressions are given by

1. the infinite q -Pochhammer symbol: (a; q)∞ = lim
n→∞

(a; q)n ;

2. the q -factorial: [k]q! =
(q; q)k

(1− q)k ;

3. the q -Gamma function: Γq(z) =
(q; q)∞
(qz ; q)∞

(1 − q)1−z ;

4. the q -binomial coefficient:
[
n
k

]
q

=
(q; q)n

(q; q)k (q; q)n−k
;

5. the q -brackets: [k]q =
1− qk
1− q = 1 + q + · · ·+ qk−1 .

For many of the algorithms mentioned in this minicourse corresponding q -
versions exist, see [11]. These are implemented in the qsum package, see [2],
and the above q -expressions are accessible, see [11], Chapter 3.

For all classical hypergeometric theorems corresponding q -versions exist.
These can be proved by a q -version of Zeilberger’s algorithm (qsumrecursion)
via the qsum package. For example, the q -Chu-Vandermonde theorem states
that

2ϕ1

(
q−n, b

c

∣∣∣∣∣ q; c qnb
)

=
(c/b; q)n
(c; q)n

.

As usual, the right hand side can be computed from the left hand side.
All classical orthogonal families have q -hypergeometric equivalents. For

example, the little and the big q -Legendre polynomials, respectively, are given
by

20 Wolfram Koepf

pn(x|q) = 2ϕ1

(
q−n, qn+1

q

∣∣∣∣∣ q; qx
)

and

Pn(x; c; q) = 3ϕ2

(
q−n, qn+1, x

q, cq

∣∣∣∣∣ q; q
)
.

For these, by the procedure qsumrecursion, we get the recurrence equations

qn(qn−1)(qn+q)pn(x|q)+(q2n−q)(q2nx+xqn+qn+1x−2qn+qx)pn−1(x|q)
+ qn(qn + 1)(qn − q)pn−2(x|q) = 0 ,

and

q(qn − 1)(cqn − 1)(qn + q)Pn(x; c; q)

+ (q2n − q)(q2nx− 2qn+1 + qn+1x− 2qm+1c+ xqn + qx)Pn−1(x; c; q)

− qn(qn + 1)(qb − q)(qn − cq)Pn−2(x; c; q) = 0 .

Exercise 21. Prove the identity

1ϕ0

(
a

−

∣∣∣∣∣ q;x
)
· 1ϕ0

(
b

−

∣∣∣∣∣ q; ax
)

= 1ϕ0

(
ab

−

∣∣∣∣∣ q;x
)
.

Compute pn(1|q) in closed form.

With the algorithms of the qsum package some of the exercises of Dennis
Stanton’s contribution in these lecture notes can be solved.

Using Hahn’s q -difference operator

Dqf(x) :=
f(x)− f(qx)

(1− q)x ,

one can also compute q -difference equations w.r.t. the variable x by the
qsumdiffeq procedure.

5.3 Orthogonal polynomial solutions of recurrence equations

The classical orthogonal polynomials

Pn(x) = kn x
n + · · ·

(Jacobi, Laguerre, Hermite and Bessel) satisfy a second order differential equa-
tion

σ(x)P ′′
n (x) + τ(x)P ′

n(x) + λn Pn(x) = 0 ,

Computer Algebra Algorithms 21

where σ(x) is a polynomial of degree at most 2 and τ(x) is a polynomial of
degree 1.3 From this differential equation one can determine the three-term
recurrence equation for Pn(x) in terms of the coefficients of σ(x) and τ(x),
see [12].

Using this information in the opposite direction, one can find the cor-
responding differential equation of second order—if applicable—from a given
holonomic three-term recurrence equation. This is implemented in the procud-
ure REtoDE of the retode package retode.mpl [13]. Note that Koornwinder
and Swarttouw have a similar package rec2ortho [14] but use a different
approach.

As an example, we consider the recurrence equation

Pn+2(x)− (x − n− 1)Pn+1(x) + α (n+ 1)2 Pn(x) = 0 . (5.1)

For this recurrence, the program finds that only if α = 1
4 there is a classical

orthogonal polynomial solution Pn(x) with kn = 1 and density ρ(x) = 4e−2x

on the interval [− 1
2 ,∞) satisfying the differential equation(
x+

1
2

)
P ′′
n (x) − 2xP ′

n(x) + 2nPn(x) = 0 ,

hence a translate of the Laguerre polynomials.
Similarly, the classical discrete orthogonal polynomials (Hahn, Meixner,

Krawtchouk, Charlier) satisfy a second order difference equation

σ(x)∆∇Pn(x) + τ(x)∆Pn(x) + λn Pn(x) = 0 ,

where ∇f(x) = f(x)−f(x−1) is the backward difference operator, σ(x) is a
polynomial of degree at most 2 and τ(x) is a polynomial of degree 1. Again,
from this equation one can determine the three-term recurrence equation for
Pn(x) in terms of the coefficients of σ(x) and τ(x) and convert this step, see
[13]. This algorithm is accessible via REtodiscreteDE.

Taking again example (5.1), now we find that only for α < 1
4 there are

classical discrete orthogonal polynomial solutions of the Meixner/Krawtchouk
family.
3 If σ(x) has two different real roots a < b , then Pn(x) is of the Jacobi family in

the interval [a, b] , if it has one double root, then Pn(x) is of the Bessel family, if
it has one single root, Pn(x) is of the Laguerre family, and if it is constant, then
Pn(x) is of the Hermite family.

22 Wolfram Koepf

Exercise 22. Find the classical orthogonal polynomial solutions of the
recurrence equation

(n+ 3)Pn+2(x)− x(n+ 2)Pn+1(x) + (n+ 1)Pn(x) = 0 .

Compute the recurrence equation for the functions

Pn(x) = 2F0

(
−n,−x
−

∣∣∣∣∣λ
)

and determine whether they are classical orthogonal polynomial systems.

Finally, the classical q -orthogonal polynomials (see [8]) of the Hahn class
satisfy a second order q -difference equation

σ(x)DqD1/qPn(x) + τ(x)DqPn(x) + λn Pn(x) = 0 ,

where σ(x) is a polynomial of degree at most 2 and τ(x) is a polynomial of
degree 1. Again, from this equation one can determine the three-term recur-
rence equation for Pn(x) in terms of the coefficients of σ(x) and τ(x) and
convert this step, see [13]. This algorithm is accessible via REtoqDE.

As an example, for the recurrence equation

Pn+2(x)− xPn+1(x) + α qn (qn+1 − 1)Pn(x) = 0 ,

we get the corresponding q -difference equation

(x2 + α)DqD1/qPn(x)− x

q − 1
DqPn(x) +

q(qn − 1)
(q − 1)2 qn

Pn(x) = 0 .

Exercise 23. Check that the little and big q -Legendre polynomials are in
the Hahn class of q -orthogonal polynomials.

6 Epilogue

The author’s Maple packages and their help pages can be downloaded from the
website http://www.mathematik.uni-kassel.de/~koepf/Publikationen.
Installation guidelines can be obtained by e-mail request. Finally, the ac-
companying Maple worksheets for this minicourse can be found at http:
//www.mathematik.uni-kassel.de/~koepf/iivortrag.html.

Software development is a time consuming activity! Software developers
love it when their software is used. But they need also your support. Hence
my suggestion: if you use one of the packages mentioned for your research,
please cite its use!

Computer Algebra Algorithms 23

References

1. Almkvist, G. and Zeilberger, D.: The method of differentiating under the integral
sign. J. Symbolic Computation 10 (1990), 571–591.

2. Böing, H. and Koepf, W.: Algorithms for q -hypergeometric summation in com-
puter algebra. J. Symbolic Computation 28 (1999), 777–799.

3. Bornemann, F.: private communication, 2002.
4. Char, B. W.: Maple 8 Learning Guide. Waterloo Maple, Waterloo, 2002.
5. Gasper, G. and Rahman, M.: Basic Hypergeometric Series. Encyclopedia of

Mathematics and its Applications 35, Cambridge University Press, London and
New York, 1990.

6. Gosper Jr., R. W.: Decision procedure for indefinite hypergeometric summation.
Proc. Natl. Acad. Sci. USA 75 (1978), 40–42.

7. Gruntz, D. and Koepf, W.: Maple package on formal power series. Maple Tech-
nical Newsletter 2 (2) (1995), 22–28.

8. Koekoek, R. and Swarttouw, R. F.: The Askey-scheme of hypergeometric or-
thogonal polynomials and its q -analogue. Report 98-17, Delft University of
Technology, Faculty of Information Technology and Systems, Department of
Technical Mathematics and Informatics, Delft; electronic version available at
http://aw.twi.tudelft.nl/~koekoek/askey, 1998.

9. Koepf, W.: Power series in computer algebra. J. Symbolic Computation 13
(1992), 581–603.

10. Koepf, W.: Identities for families of orthogonal polynomials and special func-
tions. Integral Transforms and Special Functions 5 (1997), 69–102.

11. Koepf, W.: Hypergeometric Summation. Vieweg, Braunschweig/Wiesbaden,
1998.

12. Koepf, W. and Schmersau, D.: Representations of orthogonal polynomials. J.
Comput. Appl. Math. 90 (1998), 57–94.

13. Koepf, W. and Schmersau, D.: Recurrence equations and their classical orthog-
onal polynomial solutions. Appl. Math. Comput. 128 (2-3), special issue on
Orthogonal Systems and Applications (2002), 303–327.

14. Koornwinder, T. H. and Swarttouw, R.: rec2ortho: an algorithm for identifying
orthogonal polynomials given by their three-term recurrence relation as special
functions. http://turing.wins.uva.nl/~thk/recentpapers/rec2ortho.html,
1996–1998

15. Le, H. Q., Abramov, S. A. and Geddes, K. O.: HypergeometricSum: A Maple
package for finding closed forms of indefinite and definite sums of hypergeometric
type. ftp://cs-archive.uwaterloo.ca/cs-archive/CS-2001-24, 2002.

16. Monagan, M. B. et al.: Maple 8 Introductory Programming Guide, Waterloo
Maple, Waterloo, 2002.

17. Petkovšek, M., Wilf, H. and Zeilberger, D.: A = B . A. K. Peters, Wellesley,
1996.

18. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O. I.: Integrals and Series.
Vol. 3: More Special Functions. Gordon & Breach, New York, 1990.

19. Salvy, B. and Zimmermann, P.: GFUN: A Maple package for the manipulation
of generating and holonomic functions in one variable. ACM Transactions on
Mathematical Software 20 (1994), 163–177.

20. Swarttouw, R.: CAOP: Computer algebra and orthogonal polynomials. http:
//amstel.wins.uva.nl:7090/CAOP, 1996–2002.

24 Wolfram Koepf

21. Van Hoeij, M.: Finite singularities and hypergeometric solutions of linear recur-
rence equations. J. Pure Appl. Algebra 139 (1999), 109–131.

22. Vidunas, R. and Koornwinder, T. H.: Zeilberger method for non-terminating
hypergeometric series. 2002, to appear.

23. Wolfram’s Research Mathematica Functions: http://www.functions.wolfram.
com, 2002.

24. Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identi-
ties. Discrete Math. 80 (1990), 207–211.

	Summary
	Table of Contents
	1 The computation of power series and hypergeometric functions
	1.1 Hypergeometric series
	1.2 Holonomic differential equations
	1.3 Algebra of holonomic functions
	1.4 Hypergeometric power series
	1.5 Identification of hypergeometric functions

	2 Summation of hypergeometric series
	2.1 Fasenmyer’s method
	2.2 Indefinite summation and Gosper’s algorithm
	2.3 Zeilberger’s algorithm
	2.4 A generating function problem
	2.5 Automatic computation of infinite sums
	2.6 The WZ method
	2.7 Differential equations

	3 Hypergeometric term solutions of recurrence equations
	3.1 Petkov\v{s}ek’s algorithm
	3.2 Combining Zeilberger’s and Petkov\v{s}ek’s algorithms

	4 Integration
	4.1 Indefinite integration
	4.2 Definite integration
	4.3 Rodrigues formulas
	4.4 Generating functions

	5 Applications and further algorithms
	5.1 Parameter derivatives
	5.2 Basic hypergeometric summation
	5.3 Orthogonal polynomial solutions of recurrence equations

	6 Epilogue
	References

