II.2. Lineare Abbildungen auf inneren Produkträumen

Zuerst werden lineare Abbildungen *A*, *B* zwischen verschiedenen Vektorräumen betrachtet. Dabei interessiert erst einmal, ob folgende Gleichungen überhaupt möglich sind:

$$(Ax, y) = (x, By), (Ax, Ay) = (x, y), (Ax, y) = (x, Ay).$$

Die Gleichungen werden in diesem Kapitel erkenntnisleitend sein.

Definition II.2.1:

ADJUNGIERTE ABBILDUNG (adjoint mapping)

Es seien (V, (,)), (W, \langle, \rangle) innere Produkträume über dem selben Körper \mathbb{K} . Es sei $A \in \text{hom}(V, W)$. Eine lineare Abbildung $B \in \text{hom}(W, V)$ heißt die Adjungierte von A, falls für alle $v \in V$ und alle $w \in W$ gilt $\langle Av, w \rangle = (v, Bw)$.

Satz II.2.1:

Es seien (V, (,)), (W, \langle, \rangle) innere Produkträume über dem selben Körper \mathbb{K} . Es sei $A \in \text{hom}(V, W)$. Dann gibt es höchstens eine adjungierte Abbildung zu A.

Beweis:

Es seien etwa $B, C \in \text{hom}(W, V)$ mit $\langle Av, w \rangle = \begin{cases} (v, Bw) \\ (v, Cw) \end{cases}$ für alle $v \in V$ und $w \in W$. (v, Bw) = (v, Cw) bedingt

$$Bw = Cw$$
, d.h. $B = C$

Beispiel II.2.1:

Es sei $V = W = \mathbb{R}^n$. Es seien $(e_1, ..., e_n)$ die kanonische Einheitsbasis des \mathbb{R}^n und $x = \sum_{\nu=1}^n x_{\nu} e_{\nu}$, $y = \sum_{\nu=1}^n y_{\nu} e_{\nu}$.

Es seien $a_{\nu\mu} \in \mathbb{R}$ mit $\nu, \mu \in \mathbb{n}$, wobei $a_{\nu\mu} = a_{\mu\nu}$. $A \in \text{hom}(V, V)$ sei definiert durch:

$$Ae_{\nu} := \sum_{\mu=1}^{n} a_{\mu\nu} e_{\mu} , \ \nu \in \mathbb{n} .$$

Dann folgt

$$(Ax, y) = (A(\sum_{\nu=1}^{n} x_{\nu} e_{\nu}), \sum_{\kappa=1}^{n} y_{\kappa} e_{\kappa})$$

$$= (\sum_{\nu=1}^{n} x_{\nu} A e_{\nu}, \sum_{\kappa=1}^{n} y_{\kappa} e_{\kappa})$$

$$= \sum_{\nu=1}^{n} x_{\nu} \sum_{\mu=1}^{n} a_{\mu\nu} (e_{\mu}, \sum_{\kappa=1}^{n} y_{\kappa} e_{\kappa})$$

$$= \sum_{\nu=1}^{n} x_{\nu} \sum_{\mu=1}^{n} a_{\mu\nu} \sum_{\kappa=1}^{n} y_{\kappa} (e_{\mu}, e_{\kappa})$$

$$= \sum_{\nu=1}^{n} x_{\nu} \sum_{\mu=1}^{n} a_{\mu\nu} y_{\mu},$$

und

$$\begin{aligned} (x,Ay) &= \left(\sum_{\nu=1}^{n} x_{\nu} e_{\nu}, A(\sum_{\mu=1}^{n} y_{\mu} e_{\mu}) \right) \\ &= \left(\sum_{\nu=1}^{n} x_{\nu} e_{\nu}, \sum_{\mu=1}^{n} y_{\mu} A e_{\mu} \right) \\ &= \left(\sum_{\nu=1}^{n} x_{\nu} e_{\nu}, \sum_{\mu=1}^{n} y_{\mu} \sum_{\kappa=1}^{n} a_{\kappa\mu} e_{\kappa} \right) \\ &= \sum_{\nu=1}^{n} x_{\nu} \sum_{\mu=1}^{n} y_{\mu} \sum_{\kappa=1}^{n} a_{\kappa\mu} (e_{\nu}, e_{\kappa}) \\ &= \sum_{\nu=1}^{n} x_{\nu} \sum_{\mu=1}^{n} y_{\mu} a_{\nu\mu} \\ &= \sum_{\nu=1}^{n} x_{\nu} \sum_{\mu=1}^{n} y_{\mu} a_{\mu\nu} . \end{aligned}$$

Also gilt
$$(Ax, y) = (x, Ay)$$

Satz II 2.2:

Es sei (V, (,)) innerer Produktraum über \mathbb{K} . Zu jedem linearen Funktional $L \in \text{hom}(V, \mathbb{K})$ gibt es genau ein $a \in V$ mit L(x) = (x, a) für alle $x \in V$.

Es sei $(e_1, ..., e_n)$ Orthonormalbasis von V. Dann seien $l_v := L(e_v) \in \mathbb{K}$ und $a_v := \overline{l_v}$.

Mit $a := \sum_{\nu=1}^{n} a_{\nu} e_{\nu}$ und $x := \sum_{\mu=1}^{n} x_{\mu} e_{\mu}$ folgt

$$L(x) = L(\sum_{\mu=1}^{n} x_{\mu} e_{\mu})$$

$$= \sum_{\mu=1}^{n} x_{\mu} L(e_{\mu})$$

$$= \sum_{\mu=1}^{n} x_{\mu} l_{\mu}$$

$$= \sum_{\mu=1}^{n} x_{\mu} \overline{a_{\mu}},$$

andererseits gilt auch $(x, a) = (\sum_{\mu=1}^n x_\mu e_\mu, \sum_{\nu=1}^n a_\nu e_\nu) = \sum_{\mu=1}^n x_\mu \overline{a_\mu}$.

Zur Eindeutigkeit:

Es sei $b \in V$, so dass auch L(x) = (x, b) für alle $x \in V$. Aus (x, a) = (x, b) für alle $x \in V$ folgt a = b

Nun der wichtige

Satz II 2.3:

Es seien (V, (,)), (W, (,)) innere Produkträume über dem selben Körper \mathbb{K} . Es sei V endlichdimensional.

Es sei $A \in \text{hom}(V, W)$. Dann existiert zu A eine Adjungierte.

Beweis:

Es sei $w \in W$. Mit $x \in V$ wird durch $L(x) := \langle Ax, w \rangle (= L_w(x))$ ein lineares Funktional $L \in \text{hom}(V, \mathbb{K})$ definiert.

Nach Satz II.2.2 gibt es dann zu w und L ein $y \in V$ mit L(x) = (x, y). Nun wird $A^*(w) := y$ für $w \in W$ gesetzt, d.h. $A^* \in abb(W, V)$. Dann gilt für alle $x \in V$ und jedes $w \in W$

$$L(x) = \langle Ax, w \rangle = (x, y) = (x, A^*(w)) .$$

Es bleibt zu zeigen, dass A^* linear ist: Es sei $\alpha \in \mathbb{K}$:

 $(x, A^*(a w)) = \langle Ax, \alpha w \rangle = \overline{\alpha} \langle Ax, w \rangle = \overline{\alpha}(x, A^* w) = (x, \alpha A^* w).$

Also ist $A^*(\alpha, w) = \alpha A^*(w)$.

Mit $v, w \in W$ folgt

 $(x, A^*(v+w)) = \langle Ax, v+w \rangle = \langle Ax, v \rangle + \langle Ax, w \rangle = (x, A^*v) + (x, A^*w) = (x, A^*v + A^*w).$

Also ist $A^*(v + w) = A^*v + A^*w$ und insgesamt A^* linear

Satz II 2.4:

Es seien $(V, (,)), (W, \langle, \rangle)$ innere Produkträume über dem selben Körper \mathbb{K} . Es seien $A \in \text{hom}(V, W)$ und $(e_1, ..., e_n)$ Orthonormalbasis. Dann ist $A^* w = \sum_{\nu=1}^n \langle w, A e_{\nu} \rangle e_{\nu}$ für alle $w \in W$.

Beweis

Für alle $x \in V$ gilt $x = \sum_{\nu=1}^{n} (x, e_{\nu}) e_{\nu}$ und damit auch $A^* w = \sum_{\nu=1}^{n} (A^* w, e_{\nu}) e_{\nu} = \sum_{\nu=1}^{n} \langle w, A e_{\nu} \rangle e_{\nu}$

Satz II 2.5:

Es seien (V, (,)), (W, (,)) innere Produkträume über dem selben Körper \mathbb{K} . Zu $A \in \text{hom}(V, W)$ existiere die Adjungierte A^* .

Dann gilt:

- (i) Es existiert $(A^*)^*$ und es gilt $A^{**} := (A^*)^* = A$.
- (ii) $\ker A^* = (\operatorname{im} A)^{\perp}.$
- (iii) $\ker A = (\operatorname{im} A^*)^{\perp}$.
- (iv) Ist A surjektiv, so ist A^* injektiv.
- (v) Ist A^* surjektiv, so ist A injektiv.

Beweis:

Zu (i): Es seien $v \in V$ und $w \in W$.

Dann folgt $(A^* w, v) = \overline{(v, A^* w)} = \overline{\langle Av, w \rangle} = \langle w, Av \rangle$, also $A^{**} = A$.

Zu (ii):
$$\operatorname{im} A = \{ w \in W \mid \text{Es gibt ein } v \in V \text{ mit } Av = w \}$$

 $(\operatorname{im} A)^{\perp} = \{ w \in W \mid w \perp Av \text{ für alle } v \in V \}$
 $= \{ w \in W \mid 0 = \langle Av, w \rangle = (v, A^* w) \text{ für alle } v \in V \}$
 $= \{ w \in W \mid A^* w = 0 \}$
 $= \ker A^*$

zu (iii): ker A = {
$$w \in W \mid Aw = 0$$
 }
= { $w \in W \mid 0 = \langle A^*v, w \rangle = (v, Aw)$ }
= { $w \in W \mid w \perp A^*v$ für alle $v \in V$ }
= $(\operatorname{im} A^*)^{\perp}$

Zu (iv): Ist A surjektiv, dann ist $\operatorname{im} A = W$. Da $\{0\} = W^{\perp} = (\operatorname{im} A)^{\perp} = \ker A^{*} \text{ folgt, dass } A^{*} \text{ injektiv ist.}$

Zu (v): Ist A^* surjektiv, dann ist $\operatorname{im} A^* = W$. Da $\{0\} = W^{\perp} = (\operatorname{im} A^*)^{\perp} = \ker A$ folgt, dass A injektiv ist \blacksquare