Übungsblatt 11

ELEMENTARGEOMETRIE

23.06.2009

Für die Studierenden des L3 Studienganges.

Aufgabe 1

(a) Es bezeichne \mathbb{W} den Vektorraum der reellen Polynome maximal n-ten Grades. Es sei als bekannt vorausgesetzt, dass die Familie $\mathbb{B} := (1, x^1, \dots, x^n)$ eine Basis von \mathbb{W} bildet und die Differentiation D auf \mathbb{W} eine lineare Abbildung ist. Es gilt also

$$Dx^k = k \cdot x^{k-1}$$
 für $k = 1, \dots, n$.

Berechnen Sie die Matrix zu D bezüglich der Basis \mathbb{B} . Berechnen Sie Eigenwerte und Eigenvektoren von D.

(b) Es bezeichne $\mathbb T$ den Unterraum, der im Vektorraum der reellen differenzierbaren Funktionen (über $\mathbb R$) aufgespannt wird durch die Familie $\mathbb F:=(\sin,\cos)$. Dabei sei wie üblich z.B.

$$\sin : \mathbb{R} \to \mathbb{R}, \quad x \mapsto \sin(x).$$

Nun sei D die Differentiation auf \mathbb{T} und $\Delta := D \circ D$. Zeigen Sie:

- (i) F ist linear unabhängig.
- (ii) Δ ist linear.

Berechnen Sie Eigenwerte und Eigenvektoren von Δ .

(10 Punkte)

Falls Sie für die Aufgabe mehrere Blätter verwenden, tackern Sie diese zusammen. Geben Sie auf jedem Blatt NAMEN, VORNAMEN, AUFGABENNR. sowie ihre GRUPPENNR. an.