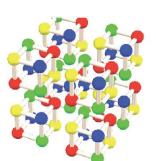
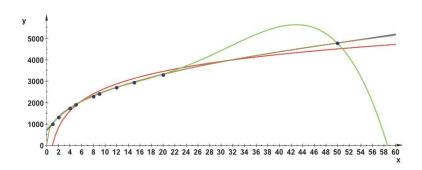
U N I K A S S E L V E R S I T A T

FRÜHSTUDIUM MATHEMATIK Computeralgebrapraktikum Prof. Dr. W. Koepf und Prof. Dr. W. Seiler



Einige Themen

- Approximation
- Interpolation
- Differentialgleichungen
- Taylorreihen



START Mi., 26. Oktober 2011

Zeit: 16:15 - 17:45 Uhr Wird als Frühstudium anerkannt Anmeldung und Infos bei shg@lg-kassel.de

http://www.mathematik.uni-kassel.de/~seiler/Courses/AGCA-1112.html

MuPAD Computeralgebrapraktikum: Approximation

Prof. Dr. Wolfram Koepf

Prof. Dr. Werner Seiler

WS 2011

Frühstudium

- Alle Teilnehmer dieses Praktikums können sich zum <u>Frühstudium</u> anmelden.
- Bei erfolgreicher Teilnahme (mündliche Prüfung) erhalten Sie 4 ECTS-Credits im Rahmen der Schlüsselkompetenzen, die Ihnen bei einem späteren Studium anerkannt werden.

Frühstudium

- Hierzu müssen Sie
 - sich ein Anmeldeformular mitnehmen,
 - ein <u>Empfehlungsschreiben</u> des Lehrers besorgen,
 - und beides am nächsten Mittwoch mitbringen.
- Dann werde ich die Formulare unterschrieben an die Universitätsverwaltung weiterreichen.
- Die Genehmigung für das Frühstudium gilt dann nur für diesen Kurs.

Zum Kurs

- Unser Kurs findet im Computerraum 2421 statt.
- Der Kurs besteht aus einem Wechsel zwischen Vorlesung und Übung.
- Ich rate Ihnen, das Wichtigste mitzuschreiben.
- Außerdem sollten Sie unbedingt die Programmierübungen mit MuPAD durchführen.

- Rechnen mit Dezimalzahlen
- Rechnen mit ganzen Zahlen
- Rechnen mit algebraischen Zahlen
- Rechnen mit Polynomen und rationalen Funktionen
- Rechnen mit Matrizen
- Lösen von Gleichungen
- Graphische Darstellungen
- Differential- und Integralrechnung

Vorläufiger Zeitplan (Raum 2421)

0209.11.2011	Koepf: Programmiertechniken
1623.11.2011	Koepf: Regression und Interpolation
30.1114.12.11	Seiler: Splines und Bezierkurven
1118.01.2012	Koepf: Wachstumsmodelle
25.0108.02.12	Seiler: Taylorapproximation
16.02.2011	Prüfungen

Programmiertechniken

- MuPAD besitzt wie alle General-Purpose-CAS eine eingebaute Programmiersprache.
- Diese enthält die üblichen Programmiertechniken, aber auch viele Hochsprachen-Konstrukte, die Schleifen z. T. unnötig machen.
- Wir beginnen mit der Fallunterscheidung, dem <u>if then else</u>.
- o MuPAD

Schleifen

o Will man die Fakultät $n!=1\cdots n$ berechnen, so geht dies z. B. mit einer Zählschleife (for):

- $\circ x := 1 :$
- o for k from 1 to 100 do
 - x:=x*k
- o end_for:
- 0 X;

Schleifen

 Als vollständiges Programm sieht die Fakultätsfunktion dann so aus:

```
Fak1:=proc(n)local x,k;
```

- o begin
- $\circ x := 1;$
- o for k from 1 to n do
 - x := x * k
- end_for;
- \circ X
- o end_proc:

Übungsaufgabe 1: Summen

 Programmieren Sie die Berechnung der Summe der ersten n Quadratzahlen

$$S(n) := \sum_{k=1}^{n} k^2 = 1 + 4 + \dots + n^2$$

- o <u>Lösung</u>:
- S:=proc(n)
- local s,k;
- o begin s:=0;
- for k from 1 to n do s:=s+k^2 end_for;
- 0 S
- o end_proc:

Übungsaufgabe 2: Summen mit Hochsprachenkonstrukten

- Gegeben seien Datenpaare (x_k, y_k), konkret data:=
 [[0,0],[1,1],[1,2],[2,3],[3,5],[5,6]]
- Programmieren Sie die Berechnung der arithmetischen Mittelwerte

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$
 und $\overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k$.

o MuPAD

Berechnung der Fakultät durch Hochsprachenkonstrukte

- _mult (Produkt), _plus (Summe), \$ (Liste)
- product, sum (Formel gesucht!)
- fact bzw.! (Hochsprachenfunktion)
- rekursiv: Die Fakultät ist eindeutig gegeben durch die Vorschriften

$$n! = n(n-1)!$$
 und $0! = 1$.

- Zugehöriges <u>Programm</u>:
- o Fak3:=proc(n) begin if n=0 then 1 else n*Fak3(n-1) end_if end_proc:

Fibonaccizahlen

Die Fibonaccizahlen sind erklärt durch

$$F_n = F_{n-1} + F_{n-2}$$
 und $F_0 = 0$, $F_1 = 1$.

- Wir bestimmen die Fibonaccizahlen rekursiv. <u>MuPAD</u>
- Das Programm ist sehr langsam, weil die Anzahl der Aufrufe exponentiell wächst.
- Merkt man sich aber die bereits berechneten Resultate (im Speicher), dann ist die Anzahl der Aufrufe linear in n.
- o MuPAD

Übungsaufgabe 3: Fibonaccizahlen mit Divide-and-Conquer

 Schreiben Sie ein Programm, welches die Fibonaccizahlen aus den Beziehungen

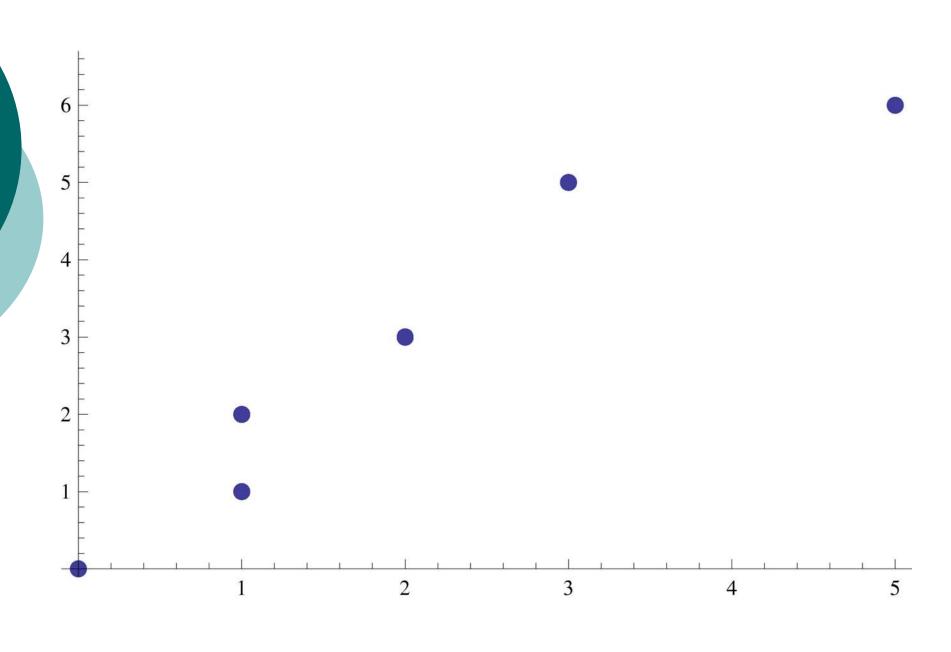
$$F_{2n} = F_n(F_n + 2F_{n-1})$$
 und $F_{2n+1} = F_{n+1}^2 + F_n^2$

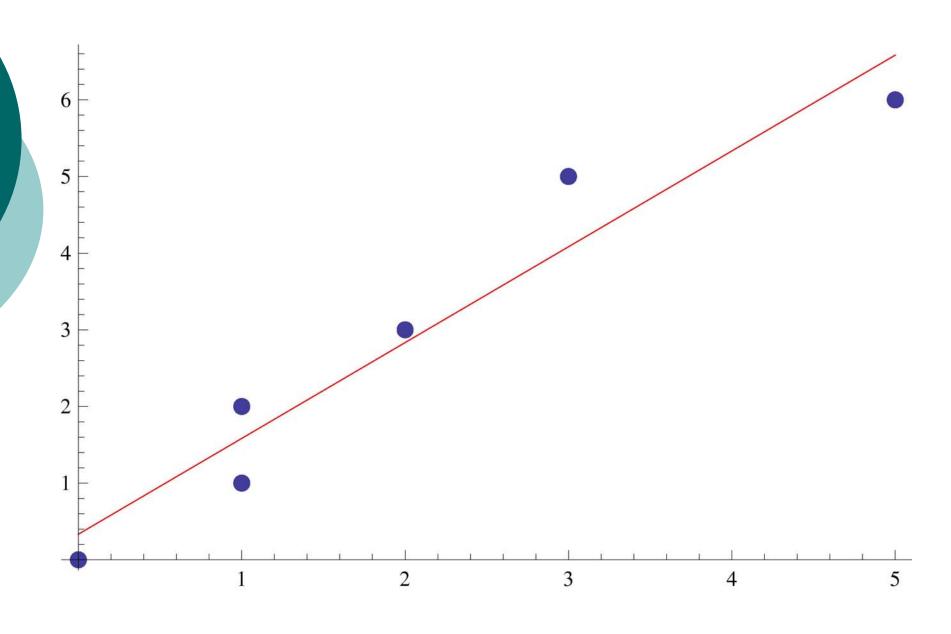
durch sukzessives Halbieren berechnet.

- Vergleichen Sie die Rechenzeiten Ihrer Funktion mit der eingebauten Funktion numlib::fibonacci für n=1.000.000.
- o MuPAD

Regressionsgerade

- Hat man eine Reihe von Datenpaaren (x_k, y_k) gegeben, so bilden diese eine Datenwolke.
- Kommen die Daten von realen Größen (z. B. x = Größe, y = Gewicht), so kann man sich fragen, ob die Daten voneinander abhängen und wenn ja, wie stark.
- Die Regressionsgerade ist diejenige lineare Funktion, die möglichst "gut" in die Datenwolke passt.





Berechnung der Regressionsgeraden

- \circ Gegeben sind die Punkte $(x_k, y_k)_{k=1,...,n}$.
- Die Mittelwerte bezeichnen wir mit

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$
 und $\overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k$.

- Gesucht ist eine lineare Funktion y = mx + b, die die Punkte möglichst gut "trifft".
- Man wählt die Parameter m und b derart, dass die Abstandsquadratsumme

$$Q = \sum_{k=1}^{n} (mx_k + b - y_k)^2$$

möglichst klein wird.

Übungsaufgabe 4

- Benutzen Sie die eingebaute MuPAD-Funktion stats::linReg, um die Regressionskoeffizienten m und b der Datenwolke [[0,0],[1,1],[1,2],[2,3],[3,5],[5,6]] zu bestimmen.
- Mit Listplot kann man die Daten auch sehr gut grafisch darstellen.
- o <u>MuPAD</u>

Berechnung der Regressionsgeraden

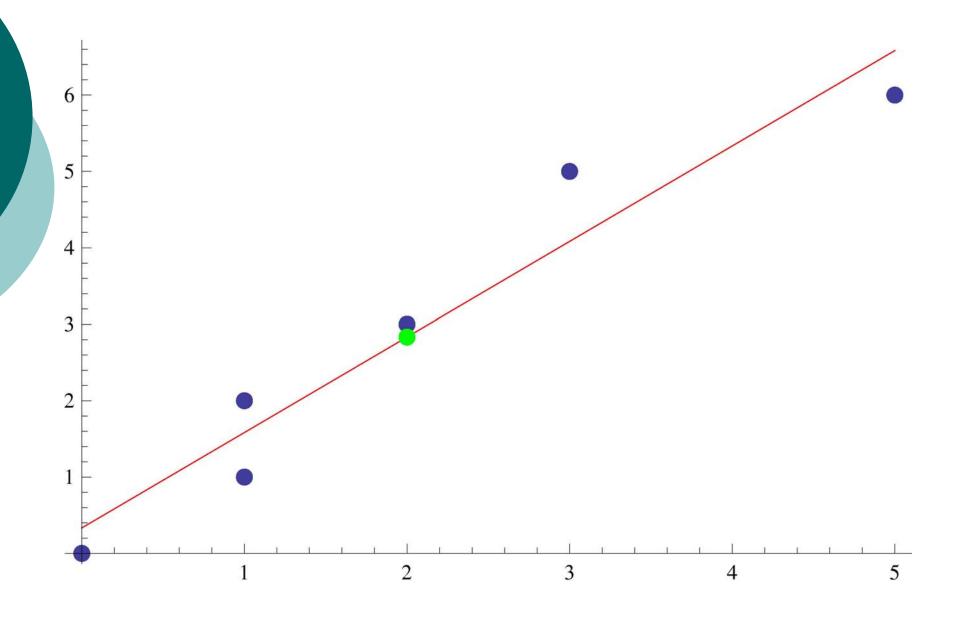
- Um den Punkt minimalen Abstands zu finden, kann man die beiden Ableitungen nach b und nach m von Q jeweils gleich 0 setzen.
- Ableiten nach b führt wegen

$$Q'(b) = 2\sum_{k=1}^{n} (mx_k + b - y_k) = 0$$

zu der Gleichung

$$\overline{y} = m\overline{x} + b$$
.

o Also liegt der Schwerpunkt $(\overline{x}, \overline{y})$ auf der Regressionsgeraden.



Berechnung der Regressionsgeraden

Ableiten nach m führt wegen

$$Q'(m) = 2\sum_{k=1}^{n} (mx_k + b - y_k)x_k = 0$$

zu der zweiten Gleichung

$$m = \frac{\frac{1}{n} \sum_{k=1}^{n} x_k y_k - \overline{xy}}{\frac{1}{n} \sum_{k=1}^{n} x_k^2 - \overline{x}^2}.$$

Übungsaufgabe 5

- Programmieren Sie eine eigene MuPAD-Funktion
- regressionsgerade(data,x),
 die diese Formeln benutzt, um die Formel der Regressionsgeraden anzugeben.
- Wenden Sie Ihre Funktion auf die Daten [[0,0],[1,1],[1,2],[2,3],[3,5],[5,6]] an.
- o MuPAD

Hausaufgabe

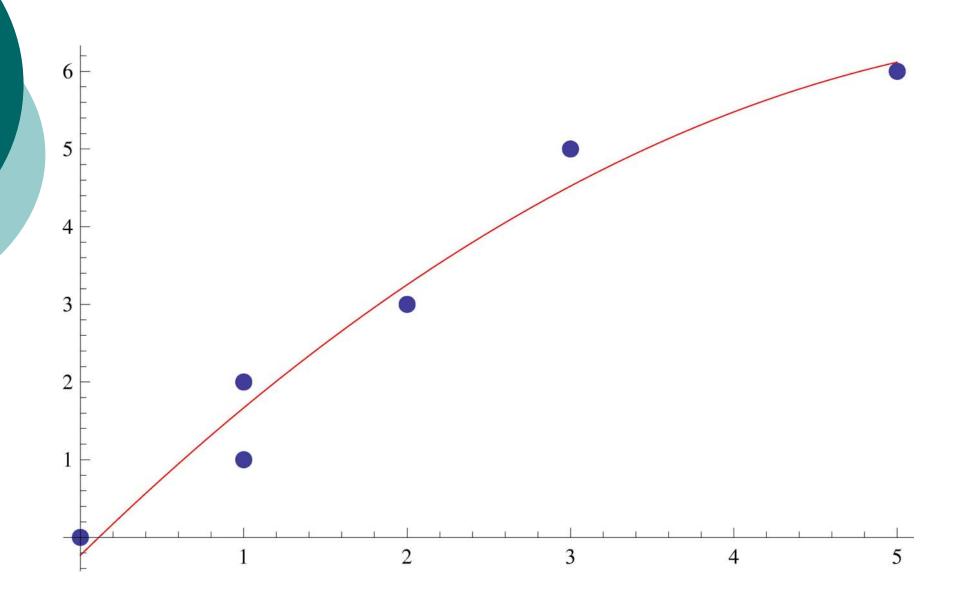
 Finden Sie mit folgenden Daten heraus, ob ein Zusammenhang zwischen Leistung eines PkW und seinem Benzinverbrauch besteht:

Motor	1	2	3	4	5	6
Leistung (kW)	55	74	77	85	110	150
Verbrauch (km/h)	6,4	7,6	6,8	7,9	9,3	10,8

o MuPAD

Lineare und nichtlineare Regression

- Man kann die Berechnung der Regressionsgeraden ausdehnen auf andere Funktionen.
- Die Berechnung bleibt linear d.h. man muss ein lineares Gleichungssystem lösen – falls die gesuchten Parameter linear vorkommen.
- o Beispiel: Funktionsform $a+bx+cx^2$.
- Hierfür benutzt man die Funktion stats::reg.
- MuPAD

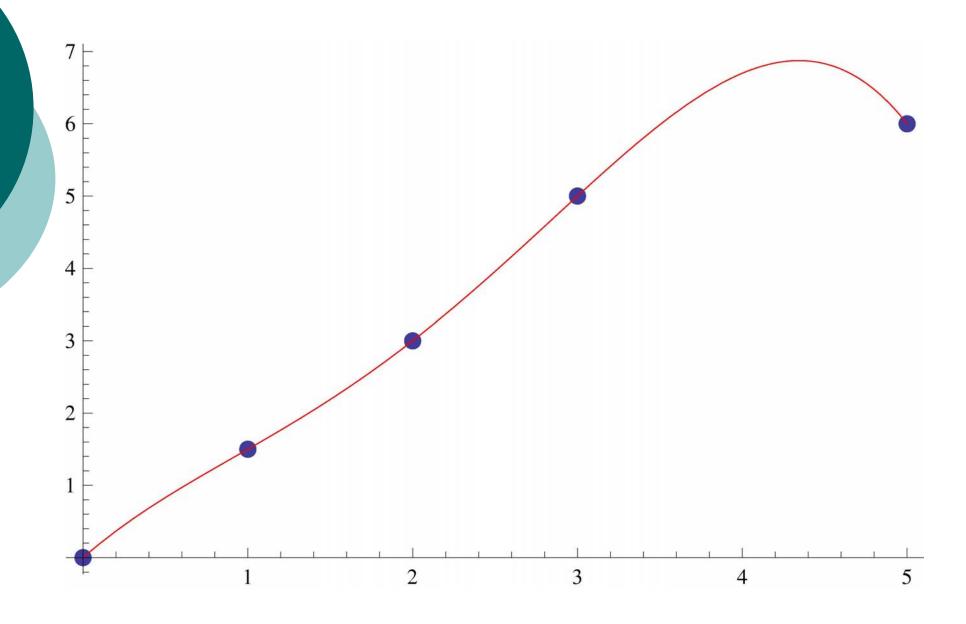


Polynominterpolation

- In der Schule wurden bereits Aufgaben der folgenden Art behandelt:
 - Eine Parabel $y = ax^2 + bx + c$ gehe durch die Punkte P, Q und R.
 - Man bestimme a, b und c.
- Das allgemeine Problem der Bestimmung eines Polynoms vom Grad n, das durch n+1 Punkte seines Graphen gegeben ist, nennt man Polynominterpolation.

Polynominterpolation

- Sie wissen, dass man durch Einsetzen der Punkte in die Gleichung des Polynoms ein lineares Gleichungssystem erhält, das man lösen kann.
- Wir gehen einen anderen Weg und wollen für den allgemeinen Fall eine Formel angeben.
- Dieses Verfahren nennt man Lagrange-Interpolation.
- MuPAD



Lagrange-Interpolation

- o Gegeben seien die Punkte $(x_k, y_k)_{k=1,...,n}$.
- Wir berechnen für alle k = 1, ..., n

$$L_{k}(x) = \frac{(x - x_{1}) \cdots (x - x_{k-1}) \cdot (x - x_{k+1}) \cdots (x - x_{n})}{(x_{k} - x_{1}) \cdots (x_{k} - x_{k-1}) \cdot (x_{k} - x_{k+1}) \cdots (x_{k} - x_{n})}$$

mit

$$L_k(x_j) = \begin{cases} 1, & \text{falls } j = k \\ 0, & \text{sonst} \end{cases}.$$

Dann ist

$$L(x) = \sum_{k=1}^{n} y_k L_k(x)$$

das gesuchte Interpolationspolynom.

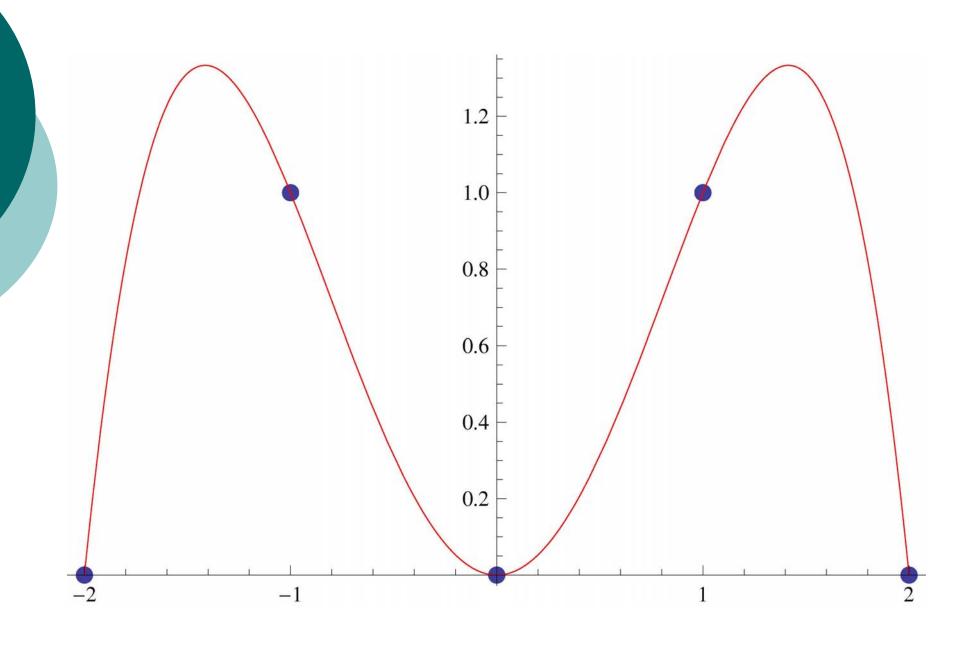
Übungsaufgabe 6

- Programmieren Sie die Lagrange-Interpolation als Lagrange(data,x).
- Wenden Sie Ihre Funktionen auf die Daten

$$((-2,0),(-1,1),(0,0),(1,1),(2,0))$$

an.

- Stellen Sie die Interpolation graphisch dar.
- o MuPAD



Modell des Bevölkerungswachstums

- Gegeben sei eine Population P(t). Wie wird sie sich in der zukünftigen Zeit t entwickeln?
- Wenn es keine Raumrestriktionen gibt, ist es plausibel anzunehmen, dass die Änderungsrate proportional zur jeweiligen Population ist:

$$\Delta P(t) \sim P(t)$$
.

 Außerdem ist die Änderungsrate proportional zum Zeitintervall

$$\Delta P(t) \sim \Delta t$$
.

Modell des Bevölkerungswachstums

- Also haben wir für eine Fertilitätskonstante a>0 $\frac{\Delta P(t)}{\Delta t} = a \cdot P(t).$
- o Bedeutung von \overline{a} : relative jährliche Zunahme.
- Wir gehen ferner davon aus, dass das Wachstum praktisch kontinuierlich vonstatten geht.
- o Daher gilt für den Grenzübergang $t \rightarrow 0$ die Differentialgleichung des unbegrenzten Wachstums

$$P'(t) = a \cdot P(t)$$

mit Anfangsbedingung $P(t_0) = P_0$.

o MuPAD

Unbegrenztes Wachstum

 Die Lösung dieses Anfangswertproblems ist gegeben durch

$$P(t) = P_0 e^{a(t-t_0)} .$$

- Reale Daten der Erdbevölkerung:
 - P(1950) = 2.5 Milliarden
 - Wachstumsrate a = 0.02
- Die Formel stimmt gut zwischen 1700 und 2000 mit realen Daten überein.
- Aber langfristig kann es unbegrenztes Wachstum natürlich nicht geben.

Geben Sie die Funktion

$$P(t) = P_0 e^{a(t-t_0)}$$

des unbegrenzten Wachstums für a = 0.02, $t_0 = 1950$ und $P_0 = 2.5 \cdot 10^9$ ein.

- Zeichnen Sie die Funktion mit plot::Function2d, der Option LineColor=RGB::Red und plot.
- Wieviel Platz hätte ein Mensch im Jahr 2500?
 Der Erdradius beträgt 6,37 Millionen *m*.
- o MuPAD

MuPAD-Hausaufgabe

- Ebenso modelliert man den radioaktiven Zerfall. Hier ist a<0.
- Wie lautet die Mengenfunktion M(t), wenn wir wissen, dass
 - M(2000) = 1 kg
 - die Halbwertszeit 100 Jahre beträgt.
- Stellen Sie die Mengenfunktion M(t) graphisch dar.
- Wann ist die radioaktive Substanz auf 1 g reduziert?
- o MuPAD

Logistisches Wachstum

- Wir müssen in unser Modell also Konkurrenz einbauen.
- O Konkurrenz führt zu einer Abnahme der Wachstumsrate, welche wegen "Jeder steht mit jedem in Konkurrenz" als proportional zu $P(t)^2$ angenommen werden kann.
- Dies führt zur Differentialgleichung des logistischen Wachstums (a,b > 0)

$$P'(t) = a \cdot P(t) - b \cdot P(t)^{2}.$$

 Zunächst sehen wir uns wieder das zugehörige Richtungsfeld an: <u>MuPAD</u>

Logistisches Wachstum

- Stellen, an denen P'(t) = 0 ist, wo sich die Population also lokal nicht ändert, nennt man Gleichgewichtsstellen.
- Für die Gleichgewichtsstellen des logistischen Wachstums gilt also

$$0 = a \cdot P(t) - b \cdot P(t)^2 = P(t) \left(a - bP(t) \right).$$

- Gleichgewicht herrscht also für P(t) = 0 und für P(t) = a/b.
- Ist die Anfangspopulation $P(t_0) > 0$ und $P(t_0) < a/b$, so wird die Population also wachsen.

Logistisches Wachstum

 Die Lösung der logistischen Differentialgleichung ist

$$P(t) = \frac{aP_0}{bP_0 - (a - bP_0)e^{-a(t - t_0)}} .$$

- Wir haben den Grenzwert $P(\infty) = a/b$.
- Was wissen wir über den Wendepunkt W? Wir können leicht berechnen, dass dieser den Wert P(W)=a/(2b) liefert.
- Wir werden uns noch Gedanken machen, wo der Wendepunkt liegt.

 Geben Sie in MuPAD die logistische Funktion ein:

$$P(t) = \frac{aP_0}{bP_0 - (a - bP_0)e^{-a(t - t_0)}} .$$

- Stellen Sie die logistische Funktion für $t_0 = 1950$ und $P_0 = 2,5 \cdot 10^9$ im selben Graphen rot dar.
- Finden Sie den Wendepunkt $(t_W, P(t_W))$ mit $P''(t_W)=0$.
- MuPAD

 Für die Bevölkerungszahlen der USA gibt es einen zehnjährigen Zensus-Rhythmus.

1790	3,93 Mil	1860	31,43 Mil	1930	122,8 Mil
1800	5,31 Mil	1870	39,82 Mil	1940	131,7 Mil
1810	7,24 Mil	1880	50,16 Mil	1950	151,3 Mil
1820	9,64 Mil	1890	62,95 Mil	1960	179,3 Mil
1830	12,87 Mil	1900	76,00 Mil	1970	203,3 Mil
1840	17,07 Mil	1910	91,97 Mil	1980	226,5 Mil
1850	23,19 Mil	1920	105,7 Mil	1990	248,7 Mil

- Geben Sie diese Daten in MuPAD ein.
- Nutzt man die Logarithmen dieser Daten, so kann man eine lineare Regression durchführen:

$$y = a \cdot e^{bx} \Leftrightarrow \ln y = \ln a + b \cdot x$$

- Führen Sie die lineare Regression durch und stellen Sie die Daten sowie die Regressionskurve graphisch dar.
- o MuPAD

Regression bei logistischem Wachstum

Wie kann man die Konstanten a, b und P_0 der Funktion

$$P(t) = \frac{aP_0}{bP_0 - (a - bP_0)e^{-a(t - t_0)}}$$

durch lineare Regression finden?

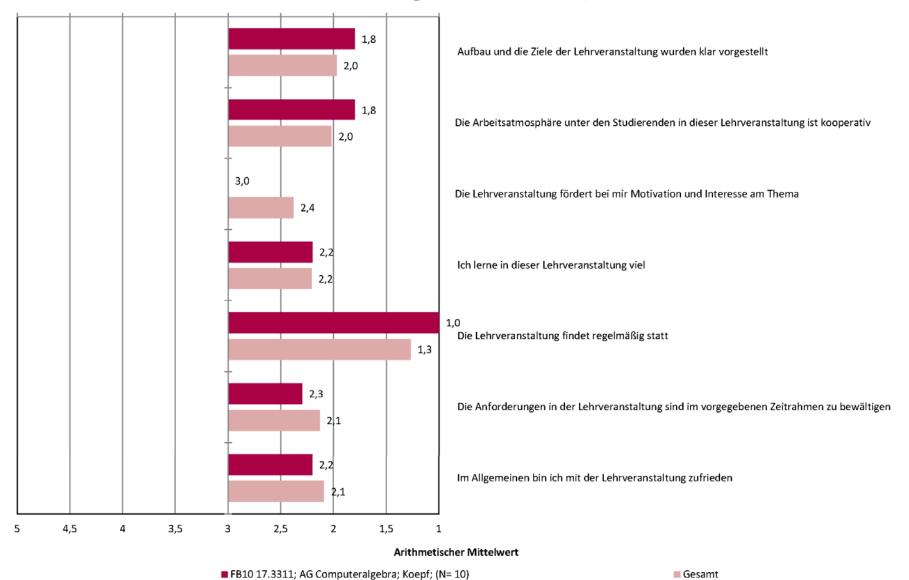
- Dies geht im Allgemeinen gar nicht!
- Ist aber wie im Fall der amerikanischen Zensusdaten – der zeitliche Abstand konstant, gibt es hierfür eine Möglichkeit.

 Terry Anderson gab die folgende logistische Approximation der US-Daten

$$P(t) = \frac{387,9802}{1 + 54,0812 \cdot e^{-0.02270347(t-1790)}} .$$

- Zeichnen Sie diese Lösung in die Datenwolke mit ein.
- Was ist die prognostizierte maximale Bevölkerung der USA?
- o MuPAD

Evaluation der Lehrveranstaltungen FB10 im WSS 11/12:



In welchem Maße treffen die folgenden Aussagen auf diese Lehrveranstaltung zu? (Antwortskala 1 = trifft völlig zu; 5 = trifft nicht zu)