Übungen zur Vorlesung Diskrete Strukturen I

Sommersemester 2012

Aufgaben 1a) und 4c) sind relevant für den Scheinerwerb.

Aufgabe 1. Beweisen Sie die folgenden Aussagen durch vollständige Induktion.

- a) Für alle natürlichen Zahlen $n \geq 1$ ist $3^n 3$ durch 6 teilbar.
- b) Für alle natürlichen Zahlen $n \ge 1$ gilt $\sum_{k=1}^n k = \frac{n(n+1)}{2}$. (Hier steht $\sum_{k=1}^n k$ für $1+2+3+\cdots+n$.)

Aufgabe 2. Prüfen Sie den folgenden Beweis auf Richtigkeit und geben Sie ggfls. an, was falsch gemacht wurde. (Kritisieren Sie aber bitte nicht zu viel.)

Behauptung: Für alle $n \in \mathbb{N}$ gilt $2n + 1 \leq 2^n$.

Beweis: Wir beweisen die Behauptung durch vollständige Induktion.

Induktionsanfang: Für n = 0 ist die Aussage richtig.

Induktionsschritt: Wir dürfen annehmen, daß $2n+1 \le 2^n$ (*) gilt. Wir müssen (unter dieser Annahme) zeigen, daß $2(n+1)+1 \le 2^{n+1}$ gilt. Aus der Annahme (*) folgt leicht, daß $2n+3 \le 2^n+2$ gilt. Also folgt

$$2n+3 \le 2^n+2 \le 2^n+2^n=2^{n+1}$$

wie gewünscht.

Aufgabe 3. Zur Erinnerung: Für $n \in \mathbb{N}$ definiert man n! rekursiv durch 0! := 1 und $(n+1)! = n! \cdot (n+1)$. Dann gilt: $n! = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$. Ferner wurde der Binomialkoeffizient definiert durch

$$\binom{n}{k} := \left\{ \begin{array}{l} \frac{n!}{k!(n-k)!} \text{ falls } k \in \{0,\cdots,n\}, \\ 0 \text{ sonst} \end{array} \right.$$

für $n \in \mathbb{N}$ und $k \in \mathbb{Z}$.

Beweisen Sie anhand dieser Definitionen:

- a) Für $n \in \mathbb{N}$ gilt $\binom{n}{0} = \binom{n}{n} = 1$.
- b) Für $n \in \mathbb{N}$ mit $n \ge 1$ und $k \in \mathbb{Z}$ gilt $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.
- c) Für $n \in \mathbb{N}$ gilt $\sum_{k=0}^{n} {n \choose k} = 2^n$.

Bitte wenden

Aufgabe 4. Entscheiden Sie von den folgenden Abbildungen jeweils, ob sie injektiv bzw. surjektiv sind. Begründen Sie alle Aussagen, die Sie treffen!

a) $f_1:\{0,1,2,3\} \rightarrow \{0,1,2\}$ definiert durch

b) $f_2: \{0,1,2,3\} \to \{0,1,2,3,4\}$ definiert durch

- c) $f_3: \{x \in \mathbb{R} : x \ge 0\} \to \{x \in \mathbb{R} : x \ge 0\}, \ x \mapsto x^2.$
- d) $f_4: \mathbb{N} \to \mathbb{N}, x \mapsto x^2$.

 $\bf Abgabe:$ Die Lösungen müssen spätestens am Mittwoch den 02.05.2012 um 08:15 Uhr abgegeben werden.