KLAUSUR

Analysis (E-Techniker/Mechatroniker/W-Ingenieure)

14.03.2017

Dr. habil. Sebastian Petersen Dr. Anen Lakhal

Version mit Lösungsskizzen

Für jede Aufgabe gibt es 10 Punkte. Zum Bestehen der Klausur sollten 27 Punkte erreicht werden.

Aufgabe 1.

a) Man berechne die folgenden Grenzwerte:

$$\lim_{n \to \infty} \frac{n^2 + n}{7n^2 + (-1)^n}, \ \lim_{n \to \infty} \frac{n^2 + 1}{2n^2 + \sqrt{n^3}}, \ \text{und} \ \lim_{n \to \infty} \cos\left(\frac{2n - 1}{3n^3}\right).$$

b) Beweisen Sie durch vollständige Induktion, dass $\sum\limits_{k=0}^{n} \frac{k+3}{2^k} = 8 - \frac{n+5}{2^n}$ für alle $n \in \mathbb{N}$ gilt, und berechnen Sie dann den Grenzwert $\sum\limits_{k=0}^{\infty} \frac{k+3}{2^k}$.

Lösungsskizze zu Aufgabe 1.

a)
$$\bullet \lim_{n \to \infty} \frac{n^2 + n}{7n^2 + (-1)^n} = \lim_{n \to \infty} \frac{1 + n^{-1}}{7 + (-1)^n n^{-2}} = \frac{1}{7}.$$

•
$$\lim_{n \to \infty} \frac{n^2 + 1}{2n^2 + \sqrt{n^3}} = \lim_{n \to \infty} \frac{1 + n^{-2}}{2 + n^{-0.5}} = \frac{1}{2}$$
.

• $\lim_{n\to\infty}\cos(\frac{2n-1}{3n^3})=\lim_{n\to\infty}\cos(\frac{2}{3n^2}-\frac{1}{3n^3})=\cos(0)=1$, wobei wir im vorletzten Schritt die Stetigkeit des Cosinus benutzt haben.

b) Behauptung: Es gilt $\sum_{k=0}^{n} \frac{k+3}{2^k} = 8 - \frac{n+5}{2^n}$ für alle $n \in \mathbb{N}$.

Induktionsanfang: $\sum_{k=0}^{0} \frac{k+3}{2^k} = \frac{0+3}{2^0} = 3$ und $8 - \frac{0+5}{2^0} = 3$, d.h. die zu zeigende Aussage ist für n=0 richtig.

Induktionsschritt:

$$\sum_{k=0}^{n+1} \frac{k+3}{2^k} = \sum_{k=0}^{n} \frac{k+3}{2^k} + \frac{(n+1)+3}{2^{n+1}} \stackrel{(!)}{=} 8 - \frac{n+5}{2^n} + \frac{n+4}{2^{n+1}} = 8 - \frac{2n+10}{2^{n+1}} + \frac{n+4}{2^{n+1}} = 8 - \frac{n+6}{2^{n+1}},$$

wobei an der mit (!) gekennzeichneten Stelle die Induktionsannahme benutzt wurde.

Nun sieht man, dass

$$\sum_{k=0}^{\infty} \frac{k+3}{2^k} = \lim_{n \to \infty} 8 - \frac{n+5}{2^n} = 8$$

gilt.

Aufgabe 2.

Wir betrachten die Funktion $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}, \ f(x) = \frac{e^x}{x-1}$.

- a) Hat f eine Nullstelle?
- b) Bestimmen Sie die erste Ableitung f' von f.
- c) Bestimmen Sie Lage und Art der lokalen Extrema von f.
- d) Berechnen Sie $\lim_{x\to 1,x<1} f(x)$, $\lim_{x\to 1,x>1} f(x)$, $\lim_{x\to -\infty} f(x)$ und $\lim_{x\to \infty} f(x)$.
- e) Skizzieren Sie den ungefähren Verlauf des Graphen von f.

Lösungsskizze zu Aufgabe 2.

- a) Nein.
- b) $f'(x) = \frac{e^x(x-1) e^x}{(x-1)^2} = \frac{e^x(x-2)}{(x-1)^2}$ für alle $x \in D = \mathbb{R} \setminus \{1\}$.
- c) Offenbar ist $x_0 := 2$ die einzige Nullstelle von f' und somit der einzige Kandidat für ein Extremum. Es ist f'(x) < 0 für $x \in]1, 2[$, d.h. f ist in]1, 2[streng monoton fallend. Es ist f'(x) > 0 für $x \in]2, \infty[$, d.h. f ist in $]2, \infty[$ streng monoton wachsend. Damit sieht man, dass in $x_0 = 2$ ein isoliertes lokales Minimum vorliegt; weitere lokale Extrema hat f nicht. Anmerkung: Alternativ kann man die stationäre Stelle x_0 mit Hilfe der zweiten Ableitung blackif einze f(x) extinitie erst einzel herselnen was ein gewissen.

Anmerkung: Alternativ kann man die stationare Stelle x_0 mit Hilfe der zweiten Ableitung klassifizieren. (Dafür muss man f'' natürlich erst einmal berechnen, was ein gewisser Mehraufwand gegenüber dem hier geschilderten Weg ist.)

- - $\lim_{x \to 1, x > 1} f(x) = \infty$. (Situation " $\frac{1}{0^+}$ ".)
 - $\lim_{x \to -\infty} f(x) = 0$. (Situation " $\frac{0}{-\infty}$ ".)
 - $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} e^x = \infty$, wobei im vorletzten Schritt die Regel von de L'Hospital benutzt wurde.
- e) Skizze machen!

Aufgabe 3.

- a) Für die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x^2 4x + 3)$ berechne man f' und f'' und das Taylorpolynom 2. Ordnung von f im Entwicklungspunkt $x_0 = 1$.
- b) Man berechne $\lim_{x\to 0} \frac{e^{7x}-1}{\sin(3x)}$. (Hinweis: L'Hospital!)
- c) Berechnen Sie die folgenden Integrale:
 - (i) $\int 3x^2 \ln(x) dx$, x > 0. (Hinweis: Partielle Integration!)
 - (ii) $\int_{0}^{\pi^2} \frac{\cos(\sqrt{x})+1}{6\sqrt{x}} dx$. (Hinweis: Man substituiere $u=\sqrt{x}$.)

Lösungsskizze zu Aufgabe 3.

a) Es gilt

$$\begin{array}{rcl} f(x) & = & \sin(x^2 - 4x + 3), & f(1) = 0, \\ f'(x) & = & (2x - 4)\cos(x^2 - 4x + 3), & f'(1) = -2, \\ f''(x) & = & 2\cos(x^2 - 4x + 3) - (2x - 4)\sin(x^2 - 4x + 3), & f''(1) = 2. \end{array}$$

Das gesuchte Taylorpolynom ist also

$$T(x) = f(1) + f'(1)(x - 1) + \frac{f''(1)}{2}(x - 1)^2 = -2(x - 1) + (x - 1)^2.$$

b)
$$\lim_{x \to 0} \frac{\exp(7x) - 1}{\sin(3x)} = \lim_{x \to 0} \frac{7 \exp(7x)}{3 \cos(3x)} = \frac{7 \exp(0)}{3 \cos(0)} = \frac{7}{3}.$$

(Es wurde die Regel von de L'Hospital benutzt.)

c) (i)
$$\int 3x^2 \ln(x) dx = x^3 \ln(x) - \int x^3 x^{-1} dx = x^3 \ln(x) - \int x^2 dx = x^3 \ln(x) - \frac{1}{3}x^3 + C.$$

(ii) Substituiere
$$u = \sqrt{x}$$
, $du = \frac{dx}{2\sqrt{x}}$:
$$\int_{0}^{\pi^{2}} \frac{\cos(\sqrt{x})+1}{6\sqrt{x}} dx = \frac{1}{3} \int_{0}^{\pi} (\cos(u)+1) du = \frac{1}{3} [\sin(u)+u]_{0}^{\pi} = \frac{\pi}{3}.$$

Aufgabe 4.

- a) Berechnen Sie den Konvergenzradius der Potenzreihe $\sum_{n=1}^{\infty} 7^n \cdot n \cdot (x-3)^n$ mit dem Quotientenkriterium.
- b) Berechnen Sie den Konvergenzradius der Potenzreihe $\sum_{n=1}^{\infty} \left(2 \frac{3}{n}\right)^n \cdot x^n$ mit dem Wurzelkriterium.
- c) Wir betrachten die Funktion $f: \mathbb{R} \setminus \{1,2\} \to \mathbb{R}, \ f(x) = \frac{1}{(x-1)(x-2)}$
 - (i) Berechnen Sie $A, B \in \mathbb{R}$ derart, dass

$$f(x) = \frac{A}{x-1} + \frac{B}{x-2}$$

für alle $x \in \mathbb{R} \setminus \{1, 2\}$ gilt.

- (ii) Berechnen Sie nun das unbestimmte Integral $\int f(x)dx$.
- (iii) Berechnen Sie die Taylorreihe von f im Entwicklungspunkt $x_0=0$. (Hinweis: Man verwende Teil (i) und die geometrische Reihe; $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ für $x \in]-1,1[.)$

Lösungsskizze zu Aufgabe 4.

a) Wir setzten $a_n := 7^n n$. Dann gilt

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{7^{n+1}(n+1)}{7^n n} = \lim_{n \to \infty} 7^{n+1} = 7.$$

Also ist $R = \frac{1}{7}$ der Konvergenzradius der angegebenen Potenzreihe.

b) Wir setzen $b_n := \left(2 - \frac{3}{n}\right)^n$. Es gilt

$$\lim_{n \to \infty} \sqrt{|b_n|} = \lim_{n \to \infty} \left(2 - \frac{3}{n}\right) = 2.$$

Also ist $R = \frac{1}{2}$ der Konvergenzradius der angegebenen Potenzreihe.

c) (i)

$$\frac{1}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2} \quad \Leftrightarrow \quad 1 = A(x-2) + B(x-1)$$

$$\Leftrightarrow \quad 0x + 1 = (A+B)x - (2A+B)$$

$$\Leftrightarrow \quad A + B = 0 \text{ und } 2A + B = -1$$

$$\Leftrightarrow \quad A = -1 \text{ und } B = 1$$

Wir sehen, dass $f(x) = -\frac{1}{x-1} + \frac{1}{x-2}$ gilt.

- (ii) Es folgt $\int f(x)dx = -\ln(|x-1|) + \ln(|x-2|)$.
- (iii) Ferner sieht man, dass

$$f(x) = \frac{1}{1-x} - \frac{1}{2} \cdot \frac{1}{1-2^{-1}x} = \sum_{n=0}^{\infty} x^n - \frac{1}{2} \sum_{n=0}^{\infty} 2^{-n} x^n = \sum_{n=0}^{\infty} (1-2^{-n-1})x^n$$

zumindest für alle x mit |x|<1 gilt. Die Potenzreihe $\sum_{n=0}^{\infty}(1-2^{-n-1})x^n$ muss also die Taylorreihe von f sein.

Aufgabe 5.

Wir betrachten die Funktion $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x_1, x_2) = x_1^2 + 2x_2^2 + 2x_1x_2 + 6x_2$.

- a) Berechnen Sie den Gradient $\nabla f(x_1, x_2)$ und die Hesse-Matrix Hess $f(x_1, x_2)$.
- b) Bestimmen Sie Lage und Art der lokalen Extrema von f.
- c) Finden Sie die Gleichung der Tangetialebene an f im Punkt (1, 1).

Lösungsskizze zu Aufgabe 5.

a) $\nabla f(x_1, x_2) = (2x_1 + 2x_2, 2x_1 + 4x_2 + 6)$. Ferner gilt

$$\operatorname{Hess} f(x_1, x_2) = \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix}.$$

b) $\nabla f(x_1, x_2) = (0, 0) \Leftrightarrow \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \end{pmatrix}$ $\Leftrightarrow \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \end{pmatrix}$

Einziger Kandidat für ein lokales Extremum ist also der Punkt (3, -3). Die Matrix $H := \operatorname{Hess} f(3, -3)$ hat einen positiven (1, 1)-Eintrag und $\det(H) = 8 - 4 = 4$ ist positiv. Nach dem Hauptminorenkriterium ist H positiv definit. Also hat f in (3, -3) ein isoliertes lokales Minimum und keine weiteren lokalen Extrema.

c) Die Tangentialebene ist der Graph des 1-ten Taylorpolynoms

$$T_1(x_1, x_2) = f(1, 1) + \langle \nabla f(1, 1), (x_1 - 1, x_2 - 1) \rangle = 11 + 4(x_1 - 1) + 12(x_2 - 1).$$

Die Gleichung der Tangetialebene ist $y = T_1(x_1, x_2)$.

Aufgabe 6.

- a) Berechnen Sie das Mehrfachintegral $\int_0^1 \int_0^1 (1-x^2-y^2) dy dx$.
- b) Wir betrachten das Dreieck

$$D := \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ 0 \le y \le 1, \ y \ge x\}$$

mit den Eckpunkten (0,0), (0,1) und (1,1). Berechnen Sie $\int_D xy \, d(x,y)$.

c) Sei V der Viertelkreis

$$V := \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, x^2 + y^2 \le 1\}.$$

Man berechne $\int_V (x-5y)\,d(x,y)$. (Hinweis: Polarkoordinaten!)

Lösungsskizze zu Aufgabe 6.

a)
$$\int_0^1 \int_0^1 (1 - x^2 - y^2) dy dx = \int_0^1 [y - x^2 y - \frac{1}{3} y^3]_{y=0}^1 dx = \int_0^1 (\frac{2}{3} - x^2) dx = = [\frac{2}{3} x - \frac{1}{3} x^3]_0^1 = \frac{1}{3}.$$

b)
$$\int_D xy \, d(x,y) = \int_0^1 \int_x^1 xy \, dy \, dx =$$

$$= \int_0^1 \left[\frac{1}{2} xy^2 \right]_{y=x}^1 dx =$$

$$= \frac{1}{2} \int_0^1 (x - x^3) \, dx = \frac{1}{2} \left[\frac{1}{2} x^2 - \frac{1}{4} x^4 \right]_0^1 = \frac{1}{8}$$

c) Die Polarkoordinatentransformation $\varphi(r,\alpha)=(r\cos(\alpha),r\sin(\alpha))$ bildet das Rechteck $R=[0,1]\times[0,\frac{\pi}{2}]$ auf V ab, und die Funktionaldeterminante von φ ist bekanntlich r. Mit der Transformationsformel ergibt sich:

$$\begin{split} \int_{V} \underbrace{(x-5y)}_{=:g(x,y)} d(x,y) &= \int_{R} g(\varphi(r,\alpha)) r d(r,\alpha)) = \\ &= \int_{0}^{0.5\pi} \int_{0}^{1} (r\cos(\alpha) - 5r\sin(\alpha)) r dr d\alpha = \\ &= \int_{0}^{0.5\pi} \int_{0}^{1} r^{2}(\cos(\alpha) - 5\sin(\alpha)) dr d\alpha = \\ &= \left(\int_{0}^{1} r^{2} dr\right) \left(\int_{0}^{0.5\pi} (\cos(\alpha) - 5\sin(\alpha)) d\alpha\right) = \\ &= \frac{1}{3} [\sin(\alpha) + 5\cos(\alpha)]_{0}^{0.5\pi} = \\ &= \frac{1}{3} (1-5) = -\frac{4}{3}. \end{split}$$