Algebraische Geometrie II

Blatt 4

Aufgabe 1

Sei R ein Ring.

- a) Sei P ein minimales Primideal von R. Zeige, dass P_P nilpotent ist. Zeige damit, dass jedes $p \in P$ ein Nullteiler in R ist.
- b) Sei R ein reduzierter Ring (d.h. R enthält neben dem Nullelement keine weiteren nilpotenten Elemente). Zeige, dass dann jeder Nullteiler in R in einem minimalen Primideal enthalten ist. Gebe ein Beispiel an, um zu zeigen, dass dies nicht der Fall ist, wenn R kein reduzierter Ring ist.

Aufgabe 2

Sei K ein Körper. Zeige, dass die Abbildung

$$\iota: \mathbb{A}^n(K) \to \operatorname{Spec} K[x_1, \dots, x_n]$$

 $(a_1, \dots, a_n) \mapsto (x_1 - a_1, \dots, x_n - a_n)$

stetig und injektiv ist. Was ist $im(\iota)$?

Aufgabe 3

Sei R ein Ring.

- a) Zeige, dass jede abgeschlossene Teilmenge von $\operatorname{Spec}(R)$ homöomorph zum Spektrum eines Ringes $\operatorname{Spec}(R/I)$, wobei I ein Ideal von R ist.
- b) Sei $f \in R$. Zeige, dass $D(f) \subseteq \operatorname{Spec} R$ quasi-kompakt bzgl. der induzierten Topologie ist.

Aufgabe 4

Bestimme alle abgeschlossenen Punkte von $Spec(\mathbb{R}[x])$.