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Abstract. This contribution compares the efficiency of Rosenbrock time integration
schemes with ESDIRK schemes, applicable to unsteady flow and fluid-structure interac-
tion simulations. Compared to non-linear ESDIRK schemes, the linear implicit Rosenbrock-
Wanner schemes require subsequent solution of the same linear systems with different
right hand sides. By solving the linear systems with the iterative solver GMRES, the pre-
conditioner can be reused for the subsequent stages of the Rosenbrock-Wanner scheme.
Unsteady flow simulations show a gain in computational efficiency of approximately factor
three to five in comparison with ESDIRK.

1 INTRODUCTION

Efficient time integration methods applicable to fluid dynamics and fluid-structure
interaction simulations are of high importance. High order time integration methods are
employed in order to increase the efficiency of unsteady computations. Currently, second
order implicit schemes are commonly used in engineering codes [1]. The use of implicit
methods is advised, since explicit methods impose strict stability constraints on the time
step used by the method. Contrary to explicit methods, the time step for implicit methods
can be chosen based on accuracy considerations. For fluid flows, large differences in length
and time scales are present, namely in the boundary layer, which increase the stiffness
of the system. Therefore, implicit schemes are preferred over explicit schemes for fluid
solvers.
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This contribution compares the computational efficiency and accuracy of implicit Runge-
Kutta schemes, namely ESDIRK, with Rosenbrock-Wanner schemes for a non-linear
convection-diffusion problem and a two-dimensional laminar flow problem [2]. Rosenbrock-
Wanner methods follow from a linearisation of a DIRK scheme, thereby loosing some sta-
bility and accuracy properties of the implicit Runge-Kutta scheme, but the computational
costs per time step are reduced. As a result of the linearisation step, the linear implicit
Rosenbrock-Wanner scheme consists of solving the subsequent stages with constant sys-
tem matrix and varying right hand sides. The preconditioner can be reused for all the
stages of the scheme.

The paper is structured as follows. ESDIRK and Rosenbrock-Wanner time integration
schemes are discussed in Section 2. The Newton-Krylov method is shortly discussed in
Section 3. The results for a non-linear convection-diffusion problem and for a uniform
flow around a cylinder are shown in Section 4 and 5, respectively. Section 6 finalises this
paper with the conclusions.

2 TIME INTEGRATION SCHEMES

The method of lines paradigm is followed in this paper. Therefore, the non-linear
convection-diffusion problem, and the Navier-Stokes equations are discretised in space
and in time. The initial value problem of the form

d

dt
w(t) = F(w(t)), w(0) = w0 (1)

is solved for a known initial solution w0, where F represents the spatial discretisation of
the convection-diffusion problem or Navier-Stokes equations. ESDIRK and Rosenbrock-
Wanner time integration schemes are considered for this study, and discussed in Section
2.1 and 2.2. The used adaptive time step control method is shortly laid out in Section
2.3.

2.1 ESDIRK schemes

Explicit first stage, single diagonal, diagonally implicit Runge-Kutta (ESDIRK) meth-
ods are a subclass of SDIRK methods, and as a consequence are L-stable for any design
order. The ESDIRK method is given by

w(i) = wn + ∆t
s∑
j=1

aij F(j), F(j) = F
(
w(j)

)
, i = 1, ..., s (2)

wherein w(i) are the stage values, and ∆t is the used time step. The solution at the next
time level wn+1 is computed with

wn+1 = wn + ∆t
s∑
j=1

bj F(j). (3)
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A lower order solution ŵn+1 can be determined with

ŵn+1 = wn + ∆t
s∑
j=1

b̂j F(j), (4)

which is used by the adaptive time step control algorithm to efficiently calculate an error
estimate for the time step. The coefficients aij, bj and b̂j can be found in a Butcher
tableau. The coefficients of the used schemes are shown in [3, 4].

The first stage of an ESDIRK method is explicit, i.e. a11 = 0. Hence, s− 1 non-linear
systems need to be solved. Also, the solution at the last stage of the method is equal to
the solution at the next time step, thus asj = bj. The implicit stages can be solved with
a multi grid method or a Newton-Krylov method.

2.2 Rosenbrock-Wanner schemes

Rosenbrock, Rosenbrock-Wanner or ROW-schemes are part of a class of linearly im-
plicit Runge-Kutta methods. Rosenbrock methods replace non-linear systems with a
sequence of linear systems, and are derived by linearizing a DIRK scheme. As a result,
some stability and accuracy properties are lost, but the computational costs per time step
are reduced: s linear equation systems with a constant coefficient matrix and different
right hand sides need to be solved, instead of s non-linear systems.

An s-stage Rosenbrock method is described with the following relation:

(I−∆t γii J) w(i) = ∆tF

(
wn +

i−1∑
j=1

αij w(j)

)
+ ∆tJ

i−1∑
j=1

γij w(j), i = 1, ..., s. (5)

The solution at the next time step wn+1 is determined with

wn+1 = wn +
s∑
j=1

bj w(j). (6)

A lower order estimation ŵn+1 can be found by evaluating

ŵn+1 = ŵn +
s∑
j=1

b̂j w(j). (7)

The coefficients αij, γij and bj are generally shown in a Butcher tableau.
In order to accelerate the computations, the Jacobians J

(
w(i)

)
are replaced by J =

J (wn), such that the Jacobian needs to be evaluated only once during the Rosenbrock
computation [5]. W-methods are obtained, if an approximation for the Jacobian is used.
W-methods have additional order conditions. Krylov-ROW schemes are applied, if a
Krylov subspace method is used to compute a solution for the linear system.
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For implementation purposes, Equations (5) and (6) can be rewritten by introducing
the new variables u(i). This approach is applied, since a direct implementation of Equa-
tions (5) and (6) requires the solution of a linear system with the matrix I − ∆t γii J
and the matrix-vector multiplication J ·

∑
γij w(j). This matrix-vector multiplication is

avoided by introducing the new variables u(i):

u(i) =
i∑

j=1

γij w(j) i = 1, ..., s. (8)

If γij 6= 0 for j 6 i, then the matrix Γ = (γij) is invertible and w(i) can be determined
from u(i) with

w(i) =
1

γii
u(i) −

i−1∑
j=1

cij u(j), (9)

wherein C is given by C = diag (γ11
−1, ..., γss

−1)− Γ−1.
Thus the following formulation of the Rosenbrock method is found for practical imple-

mentations,

L u(i) = F

(
wn +

i−1∑
j=1

aiju
(j)

)
+

1

∆t

i−1∑
j=1

ciju
(j), i = 1, ..., s, (10)

with L =

(
1

∆t γ
I− J

)
, and γ = γii , thus L is constant for the consecutive stages of the

Rosenbrock scheme. The solution at the next time step wn+1 is given by

wn+1 = wn +
s∑
j=1

mj u(j), (11)

wherein the coefficients aij and mj are given by (aij) = (αij) Γ−1 and (m1, ...,ms) =
(b1, ..., bs) Γ−1. The coefficients of the used ROW-schemes can be found in [6, 7, 8, 9].

Concluding, Rosenbrock-type methods are presented as an alternative to ESDIRK time
integration schemes. Rosenbrock-Wanner methods can be used, which use an approxi-
mation for the Jacobian, thus effectively reducing the computational costs per time step.
However, the accuracy and stability are also reduced per time step. When Krylov-ROW
schemes are applied, a Krylov subspace method is used to compute the solution for the
linear system resulting from the Rosenbrock scheme.

2.3 Adaptive time step control

Time step control is an important measure to increase the efficiency and robustness of
a time integration method. A constant time step often results in a large number of small
steps, increasing the computational costs of a simulation significantly.
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For Runge-Kutta and Rosenbrock schemes, an embedded scheme can be used as an
error estimator:

rn = ||ŵn+1 −wn||. (12)

A digital filter is used for the selection of the time step, as discussed in [10]. The next
time step is computed with

∆tn+1 =
( ε
rn

)β1 ( ε

rn−1

)β2 ( ∆tn

∆tn−1

)−α2

∆tn, (13)

where ε is determined with ε = c TOLt, and p · β1 = p · β2 = α2 = 1
4

with p being the
order of the embedded method of the ESDIRK or ROW-scheme. c is included as a safety
margin, a typical value is 0.9.

The controller needs to be started with the classic controller:

∆tn+1 =

(
ε

rn

) 1
p

∆tn. (14)

Step size rejections may be reduced by basing the test on the requested change ρn instead
on the error estimate. Also, discontinuities in the step size change ratio ∆tn+1

∆tn
are removed

by applying a smooth limiter. Thus, the new step size is determined via ∆tn+1 = ρ̂n ∆tn,
where ρn is given by

ρn =
( ε
rn

)β1 ( ε

rn−1

)β2 (
ρn−1

)−α2 , (15)

and the smooth limiter gives ρ̂n with κ = 2:

ρ̂n = 1 + κ arctan

(
ρn − 1

κ

)
. (16)

3 NON-LINEAR SYSTEMS OF EQUATIONS

The implicit Runge-Kutta schemes lead to a nonlinear system of equations of the form

u = ũ + α∆t f̂ (u) , (17)

where u ∈ R is the unknown vector, α is a parameter, and ũ is a given vector. The func-
tion f̂ (u) performs the temporal and spatial discretisation of the computational domain.
This problem is solved by the Newton-Raphson method, which effectively solves the root
problem

F (u) = 0. (18)

An inexact Newton method is employed, thus the following procedure is followed re-
peatedly until the convergence criteria are satisfied:∣∣∣∣∣∣∣∣∂F (u)

∂ u

∣∣∣
k

∆u + F (uk)

∣∣∣∣∣∣∣∣ 6 ηk ||F (uk)||

uk+1 = uk + ∆ u, k = 0, 1, 2, 3, ..., (19)
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The linear system of the Newton method is solved by a Krylov subspace solver such as
GMRES. Eisenstat and Walker’s method [11] is used to determine the cut-off criterion ηk
of the GMRES method with the parameters

ηk
A = γ

||F (uk)||2

||F (uk−1)||2
, (20)

and

ηk
B =


ηmax, k = 0,
min

(
ηmax, ηk

A
)
, k > 0, γ ηk−1

2 6 0.1
min

(
ηmax, max

(
ηk
A, γ ηk−1

2
))

k > 0, γ ηk−1
2 > 0.1

, (21)

wherein γ = 0.9. In order to avoid over solving of the final step of Newton method, the
norm of the current nonlinear residual ||F (uk)|| is compared to the nonlinear residual
norm at which the iterations would stop

τt = τa + τr ||F (uk)|| , (22)

for an absolute τa and a relative τr convergence criterion. ηk is bounded from below by a

constant multiple of
τt

||F (uk)||
. The cut-off criterion ηk is determined with

ηn = min

(
ηmax, max

(
ηk
B,

0.5 τt
||F(uk)||

))
. (23)

The matrix-vector products required by GMRES are estimated via a second order finite
difference scheme

∂ F (u)

∂ u
v ≈ F (u + εv)− F (u− εv)

2 ε
, (24)

where the finite difference step ε is determined with

ε =

√
1 + ||u||
||v||

3

√
εmach

2
, (25)

with εmach being the machine precision [12]. A first order approximation can also be used
in order to decrease computational costs. However, preliminary computations showed
that a second order approximation was necessary in order to increase the robustness of
the method when applied to the Rosenbrock schemes.

An ILU preconditioner is used in order to decrease the condition number of the system
matrix, and thus accelerating the convergence of GMRES.

4 RESULTS FOR A NON-LINEAR CONVECTION-DIFFUSION PROB-
LEM

This first test case consists of a generalised non-linear convection-diffusion equation:

ut = β un · ∇u+ α∇ · (um∇u) , x ∈ Ω := (0, 1)× (0, 1) , (26)
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where u (x, y, 0) is given by
u (x, y, 0) = u0 (x, y) . (27)

The strength of the diffusion is determined by the parameter α ∈ R. The strength and
the direction of the convection is determined with

β = β̃

(
sin (γ)
cos (γ)

)
, (28)

where β̃ ∈ R is a user specified parameter, and γ determines the angle of the direction of
the convection. The degree of non linearity is determined with the parameters m and n.
The initial solution used for this test case is shown in Figure 1(a). The initial solution is
one in the complete domain, except on the square [0.1, 0.3] × [0.1, 0.3], where the initial
value is 1.1. The values for α, β and γ are set to α = 1, β = 200 and γ = 0.35π. The
reference solution at the end of the simulation is shown graphically in Figure 1(b) for
n = m = 1.

A non-uniform mesh is used for the computations shown in this section (50× 50). As
shown in Figure 1, the mesh is refined close to x = 0.5 and y = 0.5 resulting in cells
with a high aspect ratio. The maximum aspect ratio of the non-uniform mesh is 9.8. The
condition number of L is relatively low for a uniform mesh. Hence, preconditioning is not
necessary. Therefore, there is no obvious advantage of a constant system matrix L for a
uniform mesh.
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(a) Initial solution
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(b) Reference solution at time t =
0.002.

Figure 1: Initial solution and reference solution for a non-linear convection-diffusion simulation.
The reference solution has been obtained with ESDIRK5 and ∆t = 10−7.

4.1 Effect of the Newton-Krylov method on accuracy and efficiency

The effect of the use of the Newton-Krylov method for the ESDIRK and Rosenbrock
schemes is investigated. The results of simulations are shown in Figure 2. The ROW-
schemes show a gain in efficiency compared to ESDIRK for the range of time step sizes. A
small difference in accuracy is observed between the ESDIRK and ROW-schemes, where
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the ESDIRK schemes show a slightly higher accuracy. RODASP has the greatest potential
for use in a flow solver, since the computational time is reduced by approximately factor
2.5 compared to ESDIRK4.
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Figure 2: Fixed time step study performed with the Newton-Krylov method for the non-linear
convection-diffusion problem

4.2 Effect of adaptive time step control on accuracy and efficiency

The effect of the use of the adaptive time step selection on accuracy and efficiency for
the non-linear convection-diffusion case is shown in Figure 3. A difference in accuracy is
observed between the different schemes for equal adaptive tolerance settings. Therefore
it is necessary to perform a tolerance calibration in order to get the same accuracies for
the different methods for a given tolerance [10].

Comparing the computational efficiency of ESDIRK and Rosenbrock shows a gain
in efficiency for the Rosenbrock schemes. RODASP is the most computationally efficient
scheme in comparison with the other time integration schemes for which the computational
time reduced by a factor 3 to 4 compared to ESDIRK4.

5 RESULTS FOR A UNIFORM FLOW PAST A CIRCULAR CYLINDER

Following the previous non-linear convection-diffusion test case, the question remains
how the ROW-scheme compares to the ESDIRK scheme in terms of computational ef-
ficiency and stability when applied to viscous flows. The second test case consists of a
two-dimensional flow around a cylinder. The circular cylinder is held fixed in a uniform
flow field, resulting in a vortex-street behind the cylinder. When the initial transient has
disappeared, an unsteady periodic flow is present. This test case has been used in [13]
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Figure 3: Comparison of efficiency and accuracy with adaptive time step control applied

and [1] to study the order of the ESDIRK schemes in comparison with BDF2.

5.1 Description of the flow past a circular cylinder

The cylinder with diameter D is located on a fixed position in a uniform flow field with
Mach number M∞ = 0.3 and Reynolds number Re∞ = 1.0·103, simulating a laminar flow.
The radius of the cylinder is used as the characteristic length to determine the Reynolds
number.

The computational domain consists of 2.5D upstream of the centre of the cylinder,
4.5D above and below the cylinder centre, and 16.5D downstream of the centre of the
cylinder. The mesh is refined in twelve steps to obtain a highly refined region close to
the cylinder and in the wake downstream, resulting in a mesh with 10 608 cells. Close
to the cylinder five extra layers of body conformal cells are generated resulting in an
accurate representation of the boundary layer. The smallest cells which are located in the
boundary layer, are of size 6.6 ·10−5D. The maximum aspect ratio of the cells in the mesh
is 6.3D, and the minimum aspect ratio is 1.0D. Refinement in the wake is performed,
since the vortex street needs to be resolved accurately to obtain a good accuracy for the
simulations. The generated mesh in shown in Figure 4.

5.2 Effect of the Newton-Krylov method on accuracy and efficiency

A fixed time step study has been performed for the ESDIRK and Rosenbrock time
integration schemes. A non-linear multi grid solver [14] and Jacobian-free Newton-Krylov
solver are used to solve the implicit stages of the ESDIRK scheme, and GMRES for the
stages of the Rosenbrock scheme.
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(a) Computational mesh (b) Computational mesh near the
cylinder

Figure 4: Computational mesh used for the uniform flow around a circular cylinder case

The accuracy of the other computations performed with a Rosenbrock scheme lie close
to the computations performed with an ESDIRK scheme. The order of the fourth order
schemes reduces for small time steps, which is caused by the iterative error originating
from the use of the Newton-Krylov and GMRES solvers.

A gain in computational efficiency is observed for the ROW-schemes in comparison
with ESDIRK. The JFNK solver shows a significant increase in computational efficiency
compared to the multi grid solver. The performance of RODASP is close to ESDIRK4.
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Figure 5: Computational work and accuracy for a fixed time step study

5.3 Effect of adaptive time step control on accuracy and computational sta-
bility for a uniform flow around a cylinder

Figure 6 shows the results of the numerical study comparing the accuracy and efficiency
of ESDIRK and Rosenbrock when an adaptive time step control algorithm is employed.
A large difference in accuracy for the same tolerance setting is observed when Rosenbrock
and ESDIRK are compared. For the ROW-schemes, the accuracy of the solution is
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more than one magnitude higher compared to ESDIRK3 and ESDIRK4. This difference
in accuracy is comparable to the convection-diffusion case, indicating the possibility to
perform a tolerance calibration and reuse the found coefficients for different problems.
Also, a significant gain in efficiency is observed for the Rosenbrock schemes in comparison
with ESDIRK.
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Figure 6: Computational work and accuracy with adaptive time step selection

6 CONCLUSIONS

The computational efficiency and accuracy of ROW-schemes are compared with ES-
DIRK schemes for a non-linear convection-diffusion problem, and a laminar 2D flow
around a cylinder. The numerical studies focused on the effects of using a fixed time
or adaptive time step control algorithm on efficiency and accuracy of the simulations.

The main observation is that the ROW-schemes ROS34PRW and RODASP outperform
the ESDIRK schemes in terms of computational efficiency. A difference in accuracy is
observed when an adaptive time steps control method is used indicating that a tolerance
calibration is necessary.
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