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On Coupling Schemesfor Heat Transfer in FSI Applications

P. Birken, K. J. Quint, S. Hartmann, A. Meister

In this article, the coupling of the temperature-dependeoimpressible Navier-Stokes equations solved by a com-
pressible finite volume scheme together with the finite eleswution of the heat equation is considered. The
application is focused on the cooling process of a heatedlrhat treated in the field of metal forming technology.
This is done both by loose and strong numerical coupling ousthased on the Backward-Euler scheme, where,
particularly, Gauss-Seidel and fixed-point solvers aresidared.
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1 Introduction

Many industrial applications of metal forming involve a silaneous or subsequent heat treatment. The purpose
of this treatment is to improve the mechanical propertiehsas ductility, hardness, yield strength, or impact
resistance. For this purpose the steel is heated up to ancemaperature (austenitic temperature) and then cooled
with a critical rate. The thermal evolution (cooling ratefides the final material properties and, accordingly, its
prediction is of particular interest. This complicatedgess has to be handled by numerical simulations implying
thermo-mechanical coupling effects in the gas (fluid-medat& part), which is used for cooling the metal spe-
cimen, the heat transport within the solid (solid mechdmeat) and thermo-mechanical coupling effects in the
solid itself. The mechanical effects are out of the scopéefivestigations here. We will treat the heat transfer
from the solid region into the fluid region through a fluidestiure interaction problem.

In our application a metal bar is heated and then cooled aufface by cold compressed air. This results in an
unsteady thermal coupling problem, where the hot steektbatcold air, which is of low to medium speed. The
effect of radiation is neglected for the purpose of gettinp@e clear picture of the numerical methods with a
special focus on the coupling procedure.

Thus, we will look at a model problem, which serves as a stepgione for further work: the compressible Navier-
Stokes-equations as a model for air, coupled along a nonagbwundary with the heat equation as a model for the
temperature distribution in the steel. While a lot of work basn done on the thermal coupling of incompressible
fluids with structure, we are looking at thermal coupling ofanpressible fluid and a structure. Research on
numerical simulation of this problem was so far mainly dni®y problems where hot gas heats the structure, for
example supersonic reentry of vehicles from space or tgeafigas-turbine blades (Hinderks and Radespiel, 2006;
Mehta, 2005). The results are mainly qualitative, desegliiumerical methods and the comparison of numerical
results to experimental data, with the conclusion that &seillts are not always in agreement with experiments
(Hinderks and Radespiel, 2006).

For the fluid-structure interaction, we consider a pamitid approach (Farhat, 2004), where different codes are
used for the subproblems and the coupling is done by a masigrgm which calls by interface functions the
other codes. This allows to use existing software for thepmatilems, by contrast to a monolithic approach,
where a new code is tailored for the coupled equations. Traisl@m is solved numerically using a finite volume
method (FVM) for the fluid and a finite element method (FEM) tloe heat equation as the methods for space-
discretization. Another distinction is made between loosepling and strong coupling approaches. In the first
approach, only one step of each solver is performed in eawhgiep, while the latter approach adds a convergence
criterion and an inner loop. We will consider both loose amndrgy coupling and compare the results on the thermal
coupling problem.
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The method of lines then implies the time-discretizatiohere it is common to apply low order time integration
in both methods, FVM and FEM, respectively and in the cogpsialver.

2 Governing equations and discretization

In the following a thermal coupling problem is consideretigne a fluid domaif2; ¢ R? and a structure domain

O, C R? are given. Within the?,-domain use is made of the temperature-dependent NawkeSequations

for compressible flow consisting of the continuity equatithe balance of momentum and the energy relation to
describe the thermally coupled fluid flow. In tile-domain the transient heat equation is assumed. The domains
meet at an interfacE consisting of a curve iiR?, where we require that temperature and heat flux are contguo
No further coupling conditions of the interface are taketo iccount. For the fluid use is made of the DLR TAU-
Code, see (Gerhold et al., 1997), and for the structuraltparin-house FEM-program TASAFEM for high-order
time-integration is applied, see both (Hartmann, 2006) &rcexample, (Hartmann, 2002).

To comply with the condition that temperature and heat flexcantinuous at the interfadg a so-called Dirichlet-
Neumann-coupling is used. Namely, the boundary condifionthe two solvers are chosen such that we prescribe
Neumann data for one solver and Dirichlet data for the otheltowing the analysis of Giles (1997), temperature
is prescribed for the equation with smaller heat condugtiiamely the fluid and heat flux for the structure.
Convergence of this approach has been proved for a systewupferl Laplace equations, but not for the case
considered here.

2.1 Structure Discretization

The finite element code TASAFEM is a high-order time-intéigraprogram originally based on stiffly accurate,
diagonally implicit Runge-Kutta methods, see (Ellsieped Blartmann, 2001), here extended to the unsteady heat
conduction case. The heat conduction problem is, althougteady, in a first approximation linear. We start from
the balance of energy

p(x)epO(x,t) = — div q(x, t), @)

wherex defines the spatial coordinates arttie time. The dot symbolizes the time derivative and
q(x,t) = —Agrad ©(x,t)

denotes the heat flux vector depending by Fourier’'s law orcdledficient of heat conductiok (which is assumed

to define an isotropic heat conductivity). Furtherm@éz, ¢) is the absolute temperatuyé ) the density andp
denotes the specific heat at constant deformation. On thedaoy, we have Neumann conditions, where the heat
flux q(x,t) -n(x) = q(x,t) is given ond A? with the outer normal vectan(x). Furthermore, initial conditions
O(z,0) = Oy(x) are required.

In view of the classical finite element setting, multiplyig. (1) with a virtual temperature fielt® (x), the weak
formulation reads

pcp©30 dV = — / Agrad © grad 6© dV — / q6© dA. 2)
Qo Qo JOAq
Next, one inserts an ansatz
0" (w,t) =N"(z)O(1) ®)
50" (z) =N"(z) 6@ @)

into Eqg. (2). The temperature gradient reads in matrix roiat

Dy, 0" NT
grad " = { 5. oh } = { N72T }@(t) =B(z)O(t) (5)

with the temperature gradient- nodal temperature mdiix). If we insert ansatz (3) and (4) into the weak
formulation (2), we obtain a system of ordinary differehéiguations

g9(t,©,8) = MO(t) + K(©)O(t) — g(t,u) = 0. (6)
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The heat flux on the coupling boundary is defined by

gt u) = - /d N(tw)da, )

whereu was introduced to denote the dependence on the fluid datgpksresd in the next section.
M= / pepNNT AV K = / AOMBTB dV (8)
QQ QQ

are the matrices concerned. In the case of a constant domeainlumetric distributed heat sources and temperature-
independent material parameters, a Backward-Euler stEp.¢6) reads

M+ At, K] @™ = MO" + q(t, 1, u") 9)
implying the solution of a symmetric, sparse linear systéracuations to obtain the nodal temperatures at time

bt

2.2 Fluid discretization

Concerning the fluid part, the flow is assumed to be governdbdéiwo dimensional temperature-dependent com-
pressible Navier-Stokes equations. The common non-dimesisntegral form of the corresponding conservation

laws reads , ,
' 1
— [ udV + / “(u) njdA = — / Y(u) n;dA, 10
j 2:: SRHOL Reocj; MO (10)

wheren = {ni,ny}’ represents the outwards unit normal vector at the boundaheacontrol volumer. Fur-
thermore,

u = {p7 pU1, PU2, pE}T
is the vector of the conserved variables &fjd f7,j = 1,2 are the convective and viscous fluxes which are given
by

pU; 0
o) — ) PUIV; F 01p Ui\ 1
Filw) = pu2v; + d2;p and f5(w) = ) T2j ’
pHuv; Yo 1’U7'L]+Pr Oz, €

respectively. The quantitydenotes the internal energy, which is givereby £ —1/2 (v% + v%) andH is defined
by H = E + p/p. The pressure is determined by the equation of gtate(y — 1)p (E — 1/2 (v + v3)), where
~ denotes the ratio of specific heats. The temperature is diyeh = (v — 1)MaZ_e, where Ma, denotes the
Mach number at infinity. The elements of the shear stresotems

Tij = w (00, vi + Op,v5) + 5ii A (0,01 + Opyva)

with the viscosity assumed to follow the Sutherland jaw= ©!-5(1 + S)/(© + S), whereS = 110K /6, and
0O, denote the temperature at infinity measured in degree ofiikelMoreover, the relation between the thermal
conductivity and the viscosity is defined by the Stokes’ higpsis to be\ = —2/3u and Re, and Pr, denote the
Reynolds and Prandtl number at infinity, respectively.

In order to solve (10) numerically, we consider a conformtingngulation?;, of the spatial domain is the sense
of Delaunay, see (Friedrich, 1993). Based on this primaig, gve define a discrete control volunag as the
volume of the barycentric subdivision @}, enclosing the node; = {z;1, 7,2} and bounded by the straight line
segmentgfj connecting the midpoint of the edge with the inner paint(see Fig. 1). For a detailed description,
we refer to Meister and Sonar (1998). Utilizing our notiorcoftrol volumes and introducing the cell average on
o; by u;(t) := fai u(x, t)dV/|o;| into the Navier-Stokes equations (10), we obtain the form

( ~ filu >) nidA,
jeN(L)k: 1705 =1

whereN (i) denote the index set of all control volumesneighboring box ;. To overcome the difficulty that the
line integrals are usually not definechifis discontinuous, we introduce the concept of numerical filunctions.
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(a) Triangulatior7;, (b) Boundary lines

Figure 1: General form of a control volume

Concerning the convective part, we make use of the well-knABWSMDV scheme, see (Wada and Liou, 1994).
Furthermore, the viscous fluxes are discretized by ceniffgrehces. Therefore, for each physical quantity
appearing within the viscous flux, the unique linear distfitn with respect to the triangle is calculated by
means of the cell averages of the three adjacent contromesu; satisfyingo; N7 # . In this procedure the cell
averages are considered to be located at the vertices afahgle. Due to this reconstruction the value as well as
the gradient of each quantity can easily be evaluated at itipaimt of the inner line segmedg C 7. Thus, the
semi-discrete form of the governing equations reads

2
1 : N A
o S DM (i ) e (a a )
3

JEN(i) k=1

u;(t) =

where h¢ is the AUDMDV flux andh” corresponds to the discretization of the viscous fluxes.eNloat the
notations,; emphasizes that we increase the order of accuracy for thective part by utilizing a well-known
TVD-like reconstruction technique and, accordingly,denotes the one-sided limit with respect to the bt
the midpoint of the line segmedg. If we write this as an equation for the complete domain, wiaiob

a(t) = o~ h(u, ©). (11)

The underlined vectors represent the respective vectotBeowhole fluid grid and we have included the depen-
dence on the structural temperature on the coupling irdertfarough the vector of the structure temperat@es
The matrixo is a diagonal matrix with the volumes of the correspondirits @ the diagonal.

Similar to TASAFEM the restrictive time-step constraintof explicit discretization technique for the time deriva-
tive is overcome using an Backward-Euler approach. Thesgigcrete form of the governing equations reads

u" ™ =u" + At,oth(u T, O™, (12)

whereu"t! ~ u(t,,1) andt, . ; = t, + At,. Itis easily seen that each time step within the fluid soleguires

the solution of a sparse non-linear system of equations;iwikiperformed by a dual time-stepping approach, see
(Jameson, 2004). The precise choice of the solver for thislinear system is not important here, so instead, a
Newton-Krylov method could be used.

2.3 Coupled equations

If we combine the semidiscrete equations (6) for the dorfiaiand (11) for the domaif,, we obtain a coupled
system of ODEs

u(t) = o 'h(u,0), (13)
MO(t) = —KO(t) — q(t,u),
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where we prescribe the additional algebraic constraittémaperature and heat flux are continuous at the coupling
interfacel’. The application of the Backward-Euler method to the cadiplestem is straightforward. The question
is now, how the coupled system can be solved accurately &ingkefly.

3 Fluid-Structure-Coupling

As described above, we pursue a partitioned approach. Theital difficulty of different programming languages
(FORTRAN for TASAFEM and C++ for TAU) in the partitioned amach is dealt by means of the C++-library
called Component Template Library (CTL), see (Matthied.eP806).

It is assumed that at timg, the fluid datau”, the structure dat®” and a global step-sizAt,, are given. As
described above, the fluid and the structural equationsatretteated implicitly with associated solvers for the
time-stepping procedure. In the coupling context, it iSuis® regard the two solvers as mappings that, for given
fixed datau™ att,,, respectively®”, take an approximation of the boundary datg,at; from the other solver and
provide a new approximation to their datatgt ;, which provides new boundary data for the other solver. The
fluid solver provides a solution to (12) and can be written as

u"t = F(P(@)),
whereas the structure solver provides a solution to (9) ance represented by
©"*! = S(gr(u)).

P is a projection of the temperature onto the boundar§lefand q- provides the boundary heat flux in the
fluid. Using this notation, it is possible to define couplingtirods. The most simple coupling procedures are
loose coupling methods, where no convergence criterioses in the coupling iteration. In particular, there is
Gauss-Seidel coupling

u"t = F(P(O")), (14)
O™ = S(qp(u")), (15)
and Jacobi-coupling, which can be done in parallel:
u'tt = F(P(O"), (16)
©""! = S(qr(u")). 17)
These can be iterated leading to fixed point coupling, herthioGauss-Seidel case:
upl) = F(P(O;"), (18)
Op11 = S(ar(upfl), k=0,1,.... (19)
As a fixed point equation this is given by
P(©) = P(S(qr(F(P(©))))), (20)

which can be used as a convergence criterion for the fixed fieration. Various methods have been proposed to
increase the convergence speed of the fixed point iteragiafebreasing the interface error between subsequent
steps, for example Relaxation (Le Tallec and Mouro, 200dttlEr and Wall, 2008), Interface-GMRES (Michler
et al., 2006) or ROM-coupling (Vierendeels et al., 2007):. the purpose of looking at the qualitative behavior of
loose and strong coupling, it is sufficient to analyze theav@mple methods described here.

4 Numerical Results
4.1 Test case

To analyze the properties of the coupling method, the temihgke is chosen as simple as possible. The reason is
that this comparably simple coupling problem is alreadyooelythe current solution theory, respectively conver-
gence theory of numerical methods. Therefore, we choos# adee where the exact solutions for the uncoupled
problems are known in order to make sure that no additiodal sffects are present, which cannot be controlled.
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Accordingly, the cooling of a flat plate resembling a simplerkwpiece is considered (described in Fig. 2 as solid).
This example has also been studied by other authors (Y&orirend Thornton, 1994) and (Huebner et al., 2001,
p. 465) in conjunction with the cooling of structural pamshiypersonic vehicles. There localized heating was of
special interest. In our case the work piece is initially &mperature 0®(x,0) = 900 K and is cooled by a

constant air stream. The latter is modeled in a first appration as a laminar flow along the plate, see Fig. 2. For

50 50 200 100
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Figure 2: Test case for the coupling method

the work piece the following constant material properties @asumed: mass densjty= 7836 kg/m?, specific
heat capacityp = 443 J/(kgK) and thermal conductivith = 48.9 W/(mK). The inlet is at the left, where the
air enters the domain with an initial velocity of Ma= 0.8 in horizontal direction and a temperature29t3 K.
Then, there are two succeeding regularization regiori) ofim to obtain an unperturbed boundary layer. In the
first region,0 < 2 < 50, symmetry boundary conditions, = 0, ¢ = 0, are applied. In the second region,
50 < x < 100, a constant wall temperature 800 K is specified. Within this region the velocity boundary
layer fully develops. The third part is the solid (work pigoé length200 mm, which exchanges heat with the
fluid, but is assumed insulated otherwiges 0. Therefore, the corresponding Neumann boundary conditoa
applied throughout. Finally, the flow domain is closed by@osel regularization region a0 mm with symmetry
boundary conditions and the outlet.

The grid, see Fig. 3, in the structural part is chosen canemnd equidistant, whereas the thinnest cells in the fluid

(a) Entire mesh (b) Mesh zoom

Figure 3: Full grid (left) and zoom into coupling region (nid

region have an aspect ratio of 1:200 and then become coargatiiection. The points of the primary fluid grid
and the nodes of the structure grid match on the interfacehavoids additional difficulties from interpolation.
Thus, we haveéd660 cells in the fluid region and, x n, = 120 x 9 = 1080 elements with121 x 10 = 1210
nodes in the region of the structure.

To specify reasonable initial conditions within the fluid teagly state solution of the flow with constant wall
temperature is computed. To cope with convergence probenfisst compute a solution with a medium boundary
temperature. In a second step the temperature at the bguisdacreased up to the val@ = 900 K. Due to
the constant boundary temperature we are able to comparegtis with the theoretical solution of Blasius for
the velocity boundary layer and of van Driest for the tempegeboundary layer (Van Driest, 1952) and thereby
verify the quality of our grid and our fluid solver. In the stture, a constant temperatured0 K att = 0 s is
chosen throughout.

4.2 Numerical tests

In Fig. 4 one can see the temporal evolution of the tempegatithe middle of the coupling interface. As expected,
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Figure 4: Temperature evolution at the middle point of ttieriface

the temperature decreases monotonously with a large gtaatithe beginning of the process, which decreases in
the following. Att = 1 s, the temperature has dropped down frep0 K to approximatelyg95 K. This solution

is obtained using fixed point coupling ardt,, = 0.0025 s. Since no exact solution is available, it will be used as
reference solution.

As for strong coupling methods, the fixed point method isaited until the vector 2-norm of the interface residual
(20) has dropped below= 0.1, i.e.|P (©}f]) — P (©;*!)||, < e. As mentioned beford is a projection of
the temperature onto the boundary @nis the iteration number of the fixed point iteration. Excemtthe first
time-step, two iterations are sufficient to fulfill this etiton. In this case, foAt = 0.1 s andAt = 0.05 s, three
iterations are needed.

Next, the Gauss-Seidel coupling is compared with the ier&auss-Seidel (fixed point) coupling for time step
sizesAt of 0.1 s, 0.05 s and0.025 s. To this end, we consider the resulting error at 1 s, using the 2-norm of
the difference of temperatures at the interface to the eafar solution. In Fig. 5(a) one can see the error over the

0.0001 - ‘ 0.0001 ‘ r ‘
Gauss-Seide—— Gauss-Seide——
= fixed point - o fixed point -
ola g
A s
Lo Lo
o o
5 &
S S
) )
e E2
1le-05 1le-05
0.01 0.1 0 20 40 60 80 100
time step sizé\t ins total number of coupling iterations
(a) Relative error over time-steps (b) Relative error over coupling iterations

Figure 5: Relative error behavior

time step size and in Fig. 5(b), compared to the number ofloayjterations. As can be seen, in the investigated
application fixed point coupling does not improve the accyii@at the solution ife = 0.1 is employed as dropping
tolerance. The relative error of the numerical method istrally unaltered but the computational cost is at least
doubled, depending on the specified tolerancéthe fixed point coupling. On the other hand the time step siz
At has, as expected, a significant influence on the accuracy.
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5 Conclusions

The coupling of the temperature-dependent compressibleNgtokes equations using a finite volume code and
the heat equation using finite elements, both based on a Badkiuler time-integration step, are considered. In
the investigated test example the fluid cools the structdfe compare loose to strong coupling methods for this
problem occurring in the field of hot metal forming procesaed it can be seen that for a simple example of a
plain metal specimen and a dropping tolerance ef0.1, loose coupling methods are completely sufficient.
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