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Abstract

Linear recurrence equations with constant coefficients define the power series coefficients of rational
functions. However, one usually prefers to have an explicit formula for the sequence of coefficients,
provided that such a formula is “simple” enough. Simplicity is related to the compactness of the
formula due to the presence of algebraic numbers: “the smaller, the simpler”. This poster showcases the
capacity of recent updates on the Formal Power Series (FPS) algorithm, implemented in Maxima and
Maple (convert/FormalPowerSeries), to find simple formulas for sequences like those from https://

oeis.org/A307717, https://oeis.org/A226782, or https://oeis.org/A226784 by computing power
series representations of their correctly guessed generating functions. We designed the algorithm for
the more general context of univariate P -recursive sequences. Our implementations are available at
http://www.mathematik.uni-kassel.de/~bteguia/FPS_webpage/FPS.htm.
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1 Introduction

Let K be a field of characteristic zero, usually a finite extension field of the rationals. We call power
series representation for a function f(x) =

∑∞
n=0 anx

n, an ∈ K, a formula for the (n + 1)st summand anx
n

that one can use to compute any truncation of the power series of f . The latter coincide with the Taylor
expansion of f when f is analytic at the origin, and thus the representation could also be defined at any
point x0 ∈ K where f is analytic. In the univariate case, a function f is called holonomic or D-finite, if
it satisfies a linear differential equation with polynomial coefficients (holonomic DE). From [6], we have
a general strategy to search for power series representations symbolically. Given a holonomic function
f(x) =

∑∞
n=0 anx

n, as an expression in the variable x,

1. compute a holonomic DE satisfied by f(x);

2. convert the holonomic DE into a linear recurrence equation with polynomial coefficients (holonomic
RE);

3. solve the holonomic RE for the coefficients an.

The two last steps are equivalent to finding power series solutions of linear ordinary differential equations.
One cannot always solve the resulting recurrence equation.
For m ∈ N, a term an is called m-fold hypergeometric if the ratio an+m/an ∈ K(n). When m is not
specified, m-fold hypergeometric denotes all such terms for arbitrary positive integers m. We say that a
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function is of hypergeometric type if its power series coefficients are evaluations of m-fold hypergeometric
terms. The definition extends to Laurent-Puiseux series, but in this paper we only consider power series
with non-negative integer exponents. Numerous holonomic functions, including rational functions, are
of hypergeometric type. The computation of m-fold hypergeometric term solutions of holonomic REs is
effective (see [9, 11, 14]). On this poster, we use the algorithm mfoldHyper (available in Maple 2022 as
LREtools-mhypergeomsols), developed in [14] for the efficient computation of hypergeometric type power
series (see also [13, 12]). It is worth mentioning that mfoldHyper extends the algorithms by Petkovšek and
Mark van Hoeij (see [7, 15, 1]) and has a much better performance than some previous approaches in the
same direction (see [8, 3]). Our Formal Power Series (FPS) algorithm uses mfoldHyper to compute a basis
for all m-fold hypergeometric term solutions on the third step given above, and uses linear algebra with a
truncated series expansion of f to deduce a power series representation for f . For more details about the
algorithm, we refer the reader to [14, 11].

Example 1. The FPS algorithm computes the following power series representation for 1
((x2−p)(x3−q)) for

arbitrary constants p and q.

(1 )

∞∑
n =0

−
(
q p−1−

n
2 − q−

1
3
−n

3 p
)
xn

p3 − q2

+
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n =0

−
(
p

3
2 − q

)
p−n−

3
2x2n+1

p3 − q2


+
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n =0

−q−1−np
(
q

2
3 − p

)
x3n

p3 − q2

+

 ∞∑
n=0

(
q

2
3 − p

)
q−n−

2
3x3n+1

p3 − q2

 .

For software reason, the formula is not identical with the one obtained with Maple 2022, although correct;
however, the output is still much more compact compared to previous Maple versions. Our implementation
is available for Maple and Maxima users at http: // www. mathematik. uni-kassel. de/ ~ bteguia/ FPS_
webpage/ FPS. htm . The authors welcome any comments for the improvement of the package.

The latter example presents a typical situation of what happens when it comes to computing explicit
formulas for power series coefficients of rational functions that generate some sequences from N. J. A.
Sloane https://oeis.org. FPS splits the formula modulo some integers, which allows to also deal with the
situation of many zeros (see [5]) in the sequence with no specific care about them. The Padé approximation
is often the best choice to guess the rational function that generates a sequence [2]. In our next examples,
we use the implementation in the Gfun package (ratpoly) ([10]) to find the generating functions, and FPS
to compute the desired formulas.

2 Some Explicit Formulas

In what follows, we compute power series representations of rational functions generating some sequences
from https://oeis.org. The resulting representations give explicit formulas for the (n + 1)st terms (we
start sequences at 0) of the corresponding sequences. We do not give detailed proofs that the guessed
rational function is the correct one; however, the formula obtained using FPS is correct by the correctness
of the FPS algorithm. Throughout this section an will denote the (n + 1)st term of the sequence for each
example.

Example 2. Let us consider the sequence A307717 from https: // oeis. org/ A307717 . an counts the
number of palindromic squares, k2, of length n + 1 such that k is also palindromic.
We use the 33 first terms of the sequence. That is the minimal required by the guess in the next step.
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> L:=[4 , 0 , 2 , 0 , 5 , 0 , 3 , 0 , 8 , 0 , 5 , 0 , 13 , 0 , 9 , 0 , 22 , 0 ,
16 , 0 , 37 , 0 , 27 , 0 , 60 , 0 , 43 , 0 , 93 , 0 , 65 , 0 , 1 3 8 ] :

We guess the generating function.

> f := gfun :− l i s t t o r a t p o l y (L , x ) [ 1 ]

(2 )f := −2x16 − x14 − 5x12 + 5x10 + 12x8 − 5x6 − 11x4 + 2x2 + 4

−x16 + 4x12 − 6x8 + 4x4 − 1

We compute the power series representation using FPS. The input is the expression f , its variable x, and
a summation variable n chosen by the user.

> FPS( f , x , n )

(3 )2 +

( ∞∑
n=0

(
(−1)n n3

96
− 3 (−1)n n2

32
+

65 (−1)n n

96
+

7 (−1)n

32
+

n3

32
− 5n2

32
+

37n

32
+

57

32

)
x2n

)
Theorem 3. The sequence A307717 from https: // oeis. org/ A307717 has the explicit formula

a0 = 4

a2n+1 = 0, n ≥ 0 (4)

a2n =
((−1)n + 3)n3 − (9 (−1)n + 15)n2 + (65 (−1)n + 111)n + 21 (−1)n + 171

96
, n ≥ 1, (5)

where an is its (n + 1)st term.

Proof. It is enough to prove that the generating function (2) is the correct one. From the connection to
the sequence from https://oeis.org/A218035 whose generating function, denote it by g(x), is known,
one verifies that f in (2) and g are linked by the relation f(x) = g(x2)/x2, which holds.

We noticed that the latter example is also investigated in the recent paper [4] about guessing. There the
authors also provide a different formula for A307717.

Example 4. Our second sequence is A226782 from https: // oeis. org/ A226782 . an = 0 if n + 1 is
even, and the inverse of 4 in the ring Z/(n+ 1)Z∗ if n+ 1 is odd. We proceed as before and find an explicit
formula for an.

> L:=[0 , 0 , 1 , 0 , 4 , 0 , 2 , 0 , 7 , 0 , 3 , 0 , 10 , 0 , 4 , 0 , 1 3 ] :

> f := gfun :− l i s t t o r a t p o l y (L , x ) [ 1 ]

(6 )f := −−x
8 + 4x4 + x2

−x8 + 2x4 − 1

> FPS( f , x , n )

(7 )−1 +

( ∞∑
n=0

(
(−1)n n

2
+

(−1)n

4
+ n +

3

4

)
x2n

)
In this example, the representation can be rewritten without the extra −1 since the series part evaluates to
1 at n = 0.
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Theorem 5. The sequence A226782 from https: // oeis. org/ A226782 has the explicit formula

a0 = 0

a2n+1 = 0, n ≥ 0 (8)

a2n =
(−1)n n

2
+

(−1)n

4
+ n +

3

4
, n ≥ 1, (9)

where an is its (n + 1)st term.

Proof. One verifies that the generating function given in https://oeis.org/A226782 is a shift of f in (6),
as we start the sequence at 0 instead of 1.

3 Conclusion

This poster aims to recommend our FPS implementation to the community of computer algebraists or sci-
entists interested in finding explicit formulas for sequences. Combining it with guessing strategies enables
one to discover or recover explicit formulas. Of course, limitations may always exist, at least in prac-
tice, when implementing the theory; however, as research goes on, FPS also keeps improving to produce
explicit formulas for larger classes of functions in the future. We mention that previous versions of the
convert/FormalPowerSeries package could not compute the representations presented here. However,
this is now possible with Maple 2022, which incorporates our implementation thanks to Jürgen Gerhard
from Maplesoft.
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