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Introduction
The acronym FPS stands for Formal Power
Series. It refers to an algorithm for com-
puting coefficients of univariate hyperge-
ometric type functions in a closed-form.
The algorithm (see [3, 4]) is implemented
in Maple (convert/FormalPowerSeries in
Maple 2022) and Maxima, and the cor-
responding packages are accessible from
http://www.mathematik.uni-kassel.de/
~bteguia/FPS_webpage/FPS.htm. We present
how combining FPS with an algorithm for guess-
ing univariate holonomic functions enables one
to find the explicit formula of a full sequence
from its truncation.

Method
• Let (an)n∈N be C-finite. There exists a rational function f such that f(x) =

∑∞
n=0 an x

n.

• One can recover an explicit representation of f as a rational function from a truncation∑N
n=0 an x

n, N ∈ N, by means of Padé approximants.

• For sequences of rational numbers (therefore integers), one can use convert/ratpoly or
Gfun:-listtoratpoly (see [1]).

Proposition 1 (Application of Theorem 13 in [4]). For a rational function f(x) whose denominator
roots can be computed explicitly, FPS finds the following formula with interlaced hypergeometric
term coefficients

f(x) =

M∑
i=1

( ∞∑
n=0

ami n xmi n + · · ·+
∞∑

n=0

ami n+mi−1x
mi n+mi−1

)
, (1)

0 < mi ∈ N, 1 ≤ i ≤M ∈ N, and thus gives an explicit formula for an, n ∈ N.

What FPS does
Given a D-finite function f ,

1. compute a holonomic DE satisfied by f(x);

2. convert the holonomic DE into a holo-
nomic RE;

3. use mfoldHyper (see [4]) to compute a ba-
sis of all interlaced hypergeometric term
solutions of the obtained RE;

4. use linear algebra and some initial coeffi-
cients to compute the linear combination
that corresponds to the power series of
f(x).

Sequence 1: A307717
Let us consider the sequence A307717 from
https://oeis.org/A307717. We denote it by
(an)n∈N. an counts the number of palindromic
squares, k2, of length n + 1 such that k is also
palindromic. For instance, there are only two
palindromic squares of length 3 whose root is
also palindromic. 112 = 121 and 222 = 484.
Thus, a2 = 2. We use the 33 first terms of the
sequence to guess its ordinary generating func-
tion fa(x) given by

fa(x) = −

2x16 − x14 − 5x12 + 5x10 + 12x8

− 5x6 − 11x4 + 2x2 + 4

−x16 + 4x12 − 6x8 + 4x4 − 1
.

(2)

Sequence 2: A226782
Now let (bn)n∈N be A226782 from https://
oeis.org/A226782. bn = 0 if n+1 is even, and
the inverse of 4 in the ring Z/(n+ 1)Z∗ if n+ 1
is odd. The first few terms 0, 0, 1, 0, 4, 0, 2, 0,
7, 0, 3, 0, 10, 0, 4, 0, 13 suffice to determine its
generating function

fb(x) = −
−x8 + 4x4 + x2

−x8 + 2x4 − 1
. (3)

Like for A307717, A226782 has a zero sub-
sequence at odd indices (we start sequences at
index 0). These type of sequences are particu-
larly addressed in [2]. Our method overcomes
the presence of zeros in the present situations.

Results: Compute FPS(f ,x,n) (f = fa, and f = fb) in Maple or Maxima
Theorem 2. The sequence (an)n∈N representing A307717 from OEIS has the explicit formula

a0 = 4

a2n+1 = 0, n ≥ 0 (4)

a2n =

(
(−1)

n
+ 3

)
n3 −

(
9 (−1)

n
+ 15

)
n2 +

(
65 (−1)

n
+ 111

)
n + 21 (−1)

n
+ 171

96
, n ≥ 1 (5)

Theorem 3. The sequence (bn)n∈N representing A226782 from OEIS has the explicit formula

b0 = 0

b2n+1 = 0, n ≥ 0 (6)

b2n =
(−1)

n
n

2
+

(−1)
n

4
+ n +

3

4
, n ≥ 1 (7)

Conclusion
• We recommend our FPS implementation to the community of computer algebraists or scien-

tists interested in finding explicit formulas for (integer) sequences. Combining it with guessing
strategies enables one to discover or recover explicit formulas. Of course, questions and com-
ments are welcome.

• It is not guaranteed that FPS always gives the best possible formula in the sense of compactness.
Indeed, many linear combinations can be valid in its last step. We choose from the set of
solutions to a linear system encoding the initial conditions. Currently, FPS prioritizes solutions
involving only rational numbers and thus avoiding algebraic extensions.

• More on Guessing: for non-P -recursive (therefore non-hypergeometric type) sequences, it is
interesting to think of how to find their recursions automatically from finitely many of their
first terms. This research direction is a current investigation of the first author, and preliminary
results appear at this same ISSAC’22 as a software demonstration.
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