Exercises 2

Exercise 4: Scheeffer's example

Show that $u(x) \equiv 0$ is a critical point of the functional $I: M \rightarrow \mathbb{R}$ with

$$
I(u)=\int_{0}^{1}\left(u^{\prime}(x)\right)^{2}+\left(u^{\prime}(x)\right)^{3} \mathrm{~d} x,
$$

where $M=\left\{u \in \mathrm{C}^{1}([0,1]) \mid u(0)=0, u(1)=0\right\}$.
Show that u satisfies the necessary condition for weak local minimizers and that the necessary condition for strong local minimizers is violated. (Hint in the latter case: find a suitable "zig-zag"-function). Is u a weak local minimizer?

Exercise 5: Legendre-Hadamard condition and convexity

Let $m=d=2$ and $f_{c}(A)=c A: A+\operatorname{det} A$ with $c \in \mathbb{R}$ and $A \in \mathbb{R}^{2 \times 2}$.
(a) Find all $c \in \mathbb{R}$, for which f_{c} satisfies the Legendre-Hadamard condition in 0 .
(b) Show that for the numbers c from (a) the Legendre-Hadamard condition is satisfied in every $A \in \mathbb{R}^{2 \times 2}$.
(c) Find all $c \in \mathbb{R}$ for which $f_{c}: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ is convex.
(d) Find $c>0$ and $u \in C^{1}\left(\bar{\Omega} ; \mathbb{R}^{2}\right)$ for which $\int_{\Omega} f_{c}(\nabla u(x)) \mathrm{d} x<0, \Omega=(-1,1)^{2}$.

Exercise 6: Convexity

Let $V=\mathbb{R}^{m \times d}$ and $f: V \rightarrow \mathbb{R}$.
(a) Show that f is convex if and only if for every $A \in V$ there exists $\Sigma \in V$ such that for all $B \in V$ we have $f(B) \geq f(A)+\Sigma:(B-A)$.
(b) Assume that $f \in C^{1}(V)$. Show that (b1), (b2) and (b3) are equivalent.
(b1) f is convex,
(b2) $\forall A, B \in V: \quad f(B) \geq f(A)+\partial_{A} f(A):(B-A)$,
(b3) $\forall A_{1}, A_{2} \in V: \quad\left(\partial_{A} f\left(A_{1}\right)-\partial_{A} f\left(A_{2}\right)\right):\left(A_{1}-A_{2}\right) \geq 0$.
(c) Let $f \in C^{2}(V)$. Show that f is convex if and only if for all $A \in V$ the Hessian $\partial_{A}^{2} f(A)$ is positive semi-definite, i.e. $\mathrm{D}_{A}^{2} f(A)[B, B] \geq 0$ for all $B \in V$.

Exercise 7: Convexity and continuity

(a) Show that every convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz.

Hint: Choose an interval $B_{R}\left(x_{0}\right)=\left(x_{0}-R, x_{0}+R\right)$ and define $s_{2 R}=\sup \{f(x) \mid x \in$ $\left.B_{2 R}\left(x_{0}\right)\right\}$ and $i_{2 R}=\inf \left\{f(x) \mid x \in B_{2 R}\left(x_{0}\right)\right\}$. Using suitable tangents one can prove the following estimate for $x_{1}, x_{2} \in B_{R}\left(x_{0}\right):\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq \frac{\left\|x_{1}-x_{2}\right\|}{R}\left(s_{2 R}-i_{2 R}\right)$.
(b) Let V be a finite dimensional normed vector space. Show that every convex function $f: V \rightarrow \mathbb{R}$ is locally Lipschitz.
(c) Construct a convex function $f: \mathbb{R} \rightarrow \mathbb{R}_{\infty}=\mathbb{R} \cup\{\infty\}$ which is not continuous.
(d) Construct a convex function $f: \mathbb{R} \rightarrow \mathbb{R}_{\infty}$ which is continuous and which takes values in \mathbb{R} and in $\{\infty\}$.
(e) Find a Banach space X and a convex functional $I: X \rightarrow[0, \infty]$ which is nowhere continuous.

Exercise 8: Jensen's inequality

Let V be a finite dimensional vector space and let $f: V \rightarrow \mathbb{R}$ be convex.
(a) Show that $f\left(q_{1} u_{1}+\ldots+q_{n} u_{n}\right) \leq \sum_{i=1}^{n} q_{i} f\left(u_{i}\right)$ for all $u_{i} \in V$ and all $q_{i} \geq 0$ with $q_{1}+\ldots+q_{n}=1$.
(b) Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain, $V=\mathbb{R}$ and let $u: \Omega \rightarrow \mathbb{R}$ be a piecewise constant function (finitely many values). Show that

$$
f\left(\frac{1}{\operatorname{vol}(\Omega)} \int_{\Omega} u(x) \mathrm{d} x\right) \leq \frac{1}{\operatorname{vol}(\Omega)} \int_{\Omega} f(u(x)) \mathrm{d} x
$$

(c) Show that (b) is also valid for $u \in C^{0}(\bar{\Omega})$ and for $u \in L^{1}(\Omega)$.

