

Exercises 2

Exercise 4: Scheeffer's example

Show that $u(x) \equiv 0$ is a critical point of the functional $I: M \to \mathbb{R}$ with

$$I(u) = \int_0^1 (u'(x))^2 + (u'(x))^3 dx,$$

where $M = \{ u \in C^1([0, 1]) \mid u(0) = 0, u(1) = 0 \}.$

Show that u satisfies the necessary condition for weak local minimizers and that the necessary condition for strong local minimizers is violated. (Hint in the latter case: find a suitable "zig-zag"-function). Is u a weak local minimizer?

Exercise 5: LEGENDRE-HADAMARD condition and convexity

Let m = d = 2 and $f_c(A) = cA : A + \det A$ with $c \in \mathbb{R}$ and $A \in \mathbb{R}^{2 \times 2}$.

- (a) Find all $c \in \mathbb{R}$, for which f_c satisfies the LEGENDRE-HADAMARD condition in 0.
- (b) Show that for the numbers c from (a) the LEGENDRE-HADAMARD condition is satisfied in every $A \in \mathbb{R}^{2 \times 2}$.
- (c) Find all $c \in \mathbb{R}$ for which $f_c : \mathbb{R}^{2 \times 2} \to \mathbb{R}$ is convex.
- (d) Find c > 0 and $u \in C^1(\overline{\Omega}; \mathbb{R}^2)$ for which $\int_{\Omega} f_c(\nabla u(x)) dx < 0, \Omega = (-1, 1)^2$.

Exercise 6: Convexity

Let $V = \mathbb{R}^{m \times d}$ and $f : V \to \mathbb{R}$.

- (a) Show that f is convex if and only if for every $A \in V$ there exists $\Sigma \in V$ such that for all $B \in V$ we have $f(B) \ge f(A) + \Sigma : (B A)$.
- (b) Assume that $f \in C^1(V)$. Show that (b1), (b2) and (b3) are equivalent.
 - (b1) f is convex,
 - (b2) $\forall A, B \in V : f(B) \ge f(A) + \partial_A f(A) : (B A),$
 - (b3) $\forall A_1, A_2 \in V$: $(\partial_A f(A_1) \partial_A f(A_2)) : (A_1 A_2) \ge 0.$
- (c) Let $f \in C^2(V)$. Show that f is convex if and only if for all $A \in V$ the Hessian $\partial_A^2 f(A)$ is positive semi-definite, i.e. $D_A^2 f(A)[B,B] \ge 0$ for all $B \in V$.

Exercise 7: Convexity and continuity

(a) Show that every convex function $f : \mathbb{R} \to \mathbb{R}$ is locally Lipschitz.

Hint: Choose an interval $B_R(x_0) = (x_0 - R, x_0 + R)$ and define $s_{2R} = \sup\{f(x) | x \in B_{2R}(x_0)\}$ and $i_{2R} = \inf\{f(x) | x \in B_{2R}(x_0)\}$. Using suitable tangents one can prove the following estimate for $x_1, x_2 \in B_R(x_0)$: $|f(x_1) - f(x_2)| \leq \frac{\|x_1 - x_2\|}{R}(s_{2R} - i_{2R})$.

- (b) Let V be a finite dimensional normed vector space. Show that every convex function $f: V \to \mathbb{R}$ is locally Lipschitz.
- (c) Construct a convex function $f : \mathbb{R} \to \mathbb{R}_{\infty} = \mathbb{R} \cup \{\infty\}$ which is not continuous.
- (d) Construct a convex function $f : \mathbb{R} \to \mathbb{R}_{\infty}$ which is continuous and which takes values in \mathbb{R} and in $\{\infty\}$.
- (e) Find a BANACH space X and a convex functional $I: X \to [0, \infty]$ which is nowhere continuous.

Exercise 8: JENSEN's inequality

Let V be a finite dimensional vector space and let $f: V \to \mathbb{R}$ be convex.

- (a) Show that $f(q_1u_1 + \ldots + q_nu_n) \leq \sum_{i=1}^n q_i f(u_i)$ for all $u_i \in V$ and all $q_i \geq 0$ with $q_1 + \ldots + q_n = 1$.
- (b) Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, $V = \mathbb{R}$ and let $u : \Omega \to \mathbb{R}$ be a piecewise constant function (finitely many values). Show that

$$f\left(\frac{1}{\operatorname{vol}(\Omega)}\int_{\Omega}u(x)\mathrm{d}x\right)\leq\frac{1}{\operatorname{vol}(\Omega)}\int_{\Omega}f(u(x))\mathrm{d}x.$$

(c) Show that (b) is also valid for $u \in C^0(\overline{\Omega})$ and for $u \in L^1(\Omega)$.