Exercises 3

Exercise 9

Let X be a Banach space and $I: X \rightarrow \mathbb{R}_{\infty}$ a functional on X. Assume that the sublevel sets $S_{\alpha}=\{u \in X ; I(u) \leq \alpha\}$ are sequentially compact for every $\alpha \in \mathbb{R}$.
Show that the direct problem has a solution.

Exercise 10: Criterium for weak convergence

Let X be a Banach space, $u^{*} \in X$ and $\left(u_{n}\right)_{n \in \mathbb{N}} \subset X$. Assume that the following holds true:
(a) $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $X: \sup _{n}\left\|u_{n}\right\|_{X} \leq c$.
(b) $\ell\left(u_{n}\right) \rightarrow \ell\left(u^{*}\right)$ for $\ell \in S$, where $S \subset X^{\prime}$ and the linear hull of S (finite linear combinations of elements from S) is dense in X^{\prime}.

Show that $u_{n} \rightharpoonup u^{*}$ in X.

Exercise 11: Weak convergence of oscillating functions

Let $X=L^{p}((0,1))$ with $p \in(1, \infty)$ and let $u \in X$. The function \widetilde{u} is defined by the periodic extension of u to \mathbb{R}. Consider the sequence $\left(u_{n}\right)_{n \in \mathbb{N}} \subset X$, which is defined via

$$
u_{n}(x)=\widetilde{u}(n x), \quad x \in(0,1) .
$$

Show that $u_{n} \rightharpoonup u^{*}$ in X with $u^{*}(x)=\int_{0}^{1} u(\xi) \mathrm{d} \xi$ for all $x \in(0,1)$.
Hint: Use exercise 10 with $S=\left\{1_{[0, \alpha]}, 0 \leq \alpha \leq 1\right\}$, where $1_{[0, \alpha]}$ is the indicator function of the set $[0, \alpha]$, i.e. $1_{[0, \alpha]}(x)=1$ if $x \in[0, \alpha]$ and 0 otherwise.

Exercise 12: Weakly continuous integral functionals in L^{2} are affine

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous with $|g(u)| \leq C\left(1+u^{2}\right)$ and let the functional $I: L^{2}((0,1)) \rightarrow$ \mathbb{R} be defined through $I(u)=\int_{0}^{1} g(u(x)) \mathrm{d} x$. Show that the following statements are equivalent:
(i) I is weakly continuous.
(ii) I is affine, i.e. $I(u)=I(0)+\langle y, u\rangle$ with a suitable $y \in L^{2}((0,1), \mathbb{R})$.

Hint: Use exercise 11 and proove first that $I(u)=g\left(\int_{0}^{1} u \mathrm{~d} x\right)$ for all u. Next consider sequences u_{n} with $u_{n}(x) \in\{\alpha, \beta\}$ and show that g is convex and concave.

