Exercises and Examples

Exercise 1:

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain and $X=W_{0}^{1,2}(\Omega, \mathbb{R})$. For $z \in X$ and $\ell \in C^{1}\left([0, T] ; X^{\prime}\right)$ we define the energy via

$$
\mathcal{E}(t, z)=\frac{1}{2} \int_{\Omega}|\nabla z(x)|^{2} \mathrm{~d} x+\int_{\Omega} \chi_{[-1,1]}(z(x)) \mathrm{d} x-\langle\ell(t), z\rangle_{X^{\prime}, X} .
$$

The dissipation potential is given by

$$
\mathcal{R}(\zeta)=\int_{\Omega} \mu|\zeta(x)| \mathrm{d} x
$$

Verify the conditions (A0)-(A3) introduced in the lecture.

Exercise 2: Unidirectional processes

Within the global energetic formulation it is possible to model unidirectional processes. This means that a certain state variable e.g. can increase only, but not decrease. This behavior can be modeled by a suitable choice of the dissipation potential.
Example: Again the gliding mass problem (see the figure below):

Energy: $\mathcal{E}(t, z)=\frac{\kappa}{2}(\ell(t)-z)^{2}$ for $z \in \mathbb{R}=X$.
Dissipation: for some reason, the mass can move to the right, only. Hence $\partial_{t} z(t) \geq 0$ for almost every t and

$$
\mathcal{R}(\zeta)= \begin{cases}\mu \zeta & \text { if } \zeta \geq 0 \\ \infty & \text { otherwise }\end{cases}
$$

$\kappa, \mu>0$ given constants.
Verify the conditions (A0)-(A3) and show that the solutions of the global energetic model formulated with these functionals \mathcal{E} and \mathcal{R} satisfy $\partial_{t} z(t) \geq 0$ a.e. in Ω.
Derive the formulation of the problem as a differential inclusion.

Exercise 3: Quadratic energies

Let $X=V \times Z$, where V is a real, reflexive and separable Banach space and Z is a separable Hilbert space. Let V^{\prime} be the dual of V, while we identify Z with its dual. Assume that $A \in \operatorname{Lin}\left(X, X^{\prime}\right)$ is a linear, bounded operator having the property

$$
\left\langle A q_{1}, q_{2}\right\rangle_{X^{\prime}, X}=\left\langle A q_{2}, q_{1}\right\rangle_{X^{\prime}, X}
$$

for all $q_{i} \in X$ and being X-coercive, i.e. there exists a constant $\alpha>0$ such that for all $q \in X$:

$$
\langle A q, q\rangle_{X^{\prime}, X} \geq \alpha\|q\|^{2}
$$

Given $\ell \in C^{1}\left([0, T] ; V^{\prime}\right)$ let the energy and the dissipation potential be defined as follows for $q=(v, z) \in V \times Z=X$:

$$
\begin{aligned}
\mathcal{E}(t, q) & =\frac{1}{2}\langle A q, q\rangle_{X^{\prime}, X}-\langle\ell(t), v\rangle_{V^{\prime}, V} \\
\mathcal{R}(q) & =\widetilde{\mathcal{R}}(z),
\end{aligned}
$$

where $\widetilde{\mathcal{R}}: z \rightarrow[0, \infty]$ is assumed to be convex, strongly lower semicontinuous and positively homogeneous of degree 1 .
(a) Verify that conditions (A0)-(A3) are satisfied.
(Hint concerning (A3) (compatibility condition): given sequences $q_{n} \rightharpoonup q_{*}, t_{n} \rightarrow t_{*}$ with $q_{n} \in S\left(t_{n}\right)$ it could be quite interesting to investigate the test-sequences $\xi_{n}=\xi+q_{n}-q_{*}$ for arbitrary $\xi \in X$ and to take into account the quadratic structure of \mathcal{E}.)
(b) Assume that in addition to the above A has the particular structure

$$
A=\left(\begin{array}{cc}
C & -C B \tag{1}\\
-B^{*} C & B^{*} C B+L
\end{array}\right)
$$

where $C \in \operatorname{Lin}\left(V, V^{\prime}\right), B \in \operatorname{Lin}\left(Z, V^{\prime}\right)$ and $L \in \operatorname{Lin}(Z, Z)$.
Show that if C is V-coercive and L is Z-coercive, then A is X-coercive.
Derive the differential inclusion formulation for the rate independent process associated with \mathcal{E} and \mathcal{R} and the operator given in (1).

Exercise 4: An application of Exercise 3

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain, $V=W_{0}^{1,2}(\Omega, \mathbb{R})$ and $Z=L^{2}\left(\Omega, \mathbb{R}^{d}\right)$. We define the energy and dissipation potential as

$$
\begin{aligned}
\mathcal{E}(t, u, z) & =\int_{\Omega} \frac{1}{2}|\nabla u(x)-z(x)|^{2}+\frac{\kappa}{2}|z(x)|^{2} \mathrm{~d} x-\int_{\Omega} f(t, x) u(x) \mathrm{d} x \\
\mathcal{R}(u, z) & =\int_{\Omega} \mu|z(x)| \mathrm{d} x
\end{aligned}
$$

for given $f \in C^{1}\left([0, T] ; L^{2}(\Omega)\right)$ and constants $\kappa, \mu>0$.
Show with the help of Exercise 3 (in particular 3(b)) that the rate independent process defined via \mathcal{E} and \mathcal{R} has a solution and derive the corresponding formulation as a differential inclusion.
This is the typical structure of elasto-plastic models if one interprets u as a kind of displacements and z as a vector of internal variables, here the plastic strains. Of course, in true elasto-plasticity, one has to deal with vector valued functions u.

