Partial Differential Equations
Higher Analysis II, summer term 12
Dr. Dorothee Knees, Dr. Marita Thomas
16/04/2012
Exercise sheet 1
Exercise 1.1: Determine general solutions $u=u(x, y)$ of the following PDEs:
a) $\frac{\partial u}{\partial x}=1$,
b) $\frac{\partial^{2} u}{\partial y^{2}}=1$,
c) $\frac{\partial^{2} u}{\partial x \partial y}=1$,
d) $3 \frac{\partial u}{\partial y}+\frac{\partial^{2} u}{\partial x \partial y}=0$.

Exercise 1.2: Check whether the following PDEs are semilinear, quasilinear or fully nonlinear and determine their order:
a) Nonlinear Poisson equation: $-\Delta u=f(u)$,
b) $p$-Laplace equation: $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0$ with $p \in(1, \infty)$,
c) Navier-Stokes system:

$$
u_{t}+u \cdot \nabla u-\nu \Delta u=-\nabla p, \quad \operatorname{div} u=0
$$

where $u=\left(u_{1}, u_{2}, u_{3}\right)$ is a velocity field, $p$ is a scalar pressure field, and $\nu$ is a material constant.

Exercise 1.3: Separation of variables. Consider the following PDEs:

$$
\text { (i) } u_{t t}-a^{2} u_{x x}=0, \quad \text { (ii) } u_{t t}+u_{x x}=0, \quad \text { (iii) } u_{t}=u_{x x}
$$

a) Construct solutions for the above PDEs via separation of variables, i.e. solutions have the form $u(t, x)=T(t) X(x)$ for real valued twice differentiable functions $T, X$. (Hint: Insert this ansatz into the PDE, separate the variables on each side of the ' $=$ ' and argue that both sides have to be constant.)
b) For the heat equation (iii) determine all the solutions of a), which additionally satisfy $X(0)=X(1)=0$. Then, construct a solution of (iii), which satisfies the following boundary and initial conditions:

$$
u(t, 0)=u(t, 1)=0, u(0, x)=33.3 \sin (15 \pi x)
$$

c) For the wave equation (i) determine all the solutions of (a), which additionally satisfy $X(0)=X(l)=0$ with given $l>0$. Show that $u\left(t+\frac{2 n l}{a}, x\right)=u(t, x)$ with $n \in \mathbb{Z}$.

## Exercise 1.4 (written): One dimensional wave equation.

a) Determine solutions $u=u(t, x)$ of the spatially one dimensional wave equation using the coordinate transformation $\xi_{1}=x-a t, \xi_{2}=x+a t$ :

$$
\begin{equation*}
u_{t t}-a^{2} u_{x x}=0 \tag{1}
\end{equation*}
$$

Solutions $u$ describe the oscillation of an infinitely long string.
b) Under which conditions is $u(t, x):=f(x+a t)+g(x-a t)$ a general solution of (1)? Determine the functions $f, g$ in such a way that the initial conditions

$$
\begin{equation*}
u(0, x)=u_{0}(x), \quad u_{t}(0, x)=u_{1}(x) \tag{2}
\end{equation*}
$$

are satisfied. This representation of the solution is the so-called d'Alembert's formula.
c) Plucked string: For the initial deflection

$$
u_{0}(x):= \begin{cases}2-2|x| & \text { if }|x| \leq 1 \\ 0 & \text { if }|x|>1\end{cases}
$$

and the initial velocity $u_{1}(x)=0$ the oscillation $u(t, x)$ is to be visualized graphically at time $t=0, t=1 / 2, t=1$ and $t=3 / 2$ for two different velocities $a$.

First exercise lesson: Monday, April 16, 2012, 11-13h, room RUD25, 4.007.
Ex. 1.4 is to be delivered in written form by teams of two persons each in the exercise lesson on $16 / 04 / 2012$. It will be discussed in the subsequent week.

