

Partial Differential Equations Higher Analysis II, summer term 2012 Dr. Dorothee Knees, Dr. Marita Thomas 18/06/2012

Exercise sheet 10

Exercise 10.1: Weak derivatives

Let $\Omega = B_1(0) \subset \mathbb{R}^d$ with $d \geq 2$ and u(x) = 1/|x|. For which p do we have $u \in L^p(\Omega)$ and for which q does the classical gradient $\nabla_{cl} u$ lie in $L^q(\Omega)$? Show that for these values the weak gradient coincides with $\nabla_{cl} u$.

Exercise 10.2

(a) **Fundamental Theorem of Differentiation and Integration.** Let $I \subset \mathbb{R}$ be an open intervall. If $u \in W^{1,1}(I)$, then for almost all $x_1, x_2 \in I$ it holds

$$u(x_2) - u(x_1) = \int_{x_1}^{x_2} u'(x) \, \mathrm{d}x$$

(b) An embedding inequality. Let $(a, b) \subset \mathbb{R}$ be a bounded intervall. Let $p \in (1, \infty)$ and $\alpha = 1 - \frac{1}{p}$. Show that there exists a constant C > 0 such that for all $u \in C^1([a, b])$ and all $x_0 \in [a, b]$ it holds

$$||u||_{C^{0,\alpha}([a,b])} \le |u(x_0)| + C ||Du||_{L^p(a,b)}$$

and derive the embedding inequality

$$\exists \widetilde{C} > 0 \text{ such that for all } u \in W^{1,p}(a,b): \|u\|_{C^{0,\alpha}([a,b])} \leq \widetilde{C} \|u\|_{W^{1,p}(a,b)}.$$

Exercise 10.3: POINCARÉ-FRIEDRICHS' inequality I

A domain $\Omega \subset \mathbb{R}^d$ is said to satisfy the POINCARÉ-FRIEDRICHS' inequality, if there exists a constant C > 0 such that it holds

for all
$$u \in C_0^{\infty}(\Omega)$$
: $C \|u\|_{L^2(\Omega)} \le \|\nabla u\|_{L^2(\Omega)}$. (1)

- (a) Show that (1) holds if and only if the same inequality is valid for all $u \in H_0^1(\Omega)$.
- (b) Show that every open and bounded domain satisfies a POINCARÉ-FRIEDRICHS' inequality and that for unbounded domains both cases can occur.

Exercise 10.4: POINCARÉ-FRIEDRICHS' inequality II

Prove the following version of the POINCARÉ-FRIEDRICHS' inequality:

Let $\Omega \subset \mathbb{R}^d$ be a bounded Lipschitz domain and $V \subset H^1(\Omega)$ a closed subspace with the property $u \in V$ and $\|\nabla u\|_{L^2(\Omega)} = 0$ implies u = 0.

Then there exists a constant $c_{PF} > 0$ such that for all $u \in V$ it holds

$$\left\|\nabla u\right\|_{L^{2}(\Omega)} \geq c_{PF} \left\|u\right\|_{H^{1}(\Omega)}.$$

HINT: Prove the inequality by contradiction assuming that for all $n \in \mathbb{N} \exists u_n \in V \setminus \{0\}$ such that $\|\nabla u_n\|_{L^2(\Omega)} \leq \frac{1}{n} \|u_n\|_{W^{1,p}(\Omega)}$. Use the part (c) of the embedding Theorem 6.4 and remember that $H^1(\Omega)$ is reflexive. (See also Exercise 8.2 for a comparable argument).

(please turn)

Exercise 10.5 (written): $W_0^{1,p}(\mathbb{R}^d) = W^{1,p}(\mathbb{R}^d)$ Let $p \in [1, \infty)$.

- (a) Prove the product rule: For $\eta \in C_0^{\infty}(\mathbb{R}^d)$ and $u \in W^{1,p}(\mathbb{R}^d)$ we have $\eta u \in W^{1,p}(\mathbb{R}^d)$ and $D^{\alpha}(\eta u) = u D^{\alpha} \eta + \eta D^{\alpha} u$ for $|\alpha| = 1$, $\alpha \in \mathbb{N}_0^d$ multi-index.
- (b) Let $\varrho \in C_0^{\infty}(\mathbb{R}^d)$ with $\operatorname{supp} \varrho \subset B_1(0), 0 \leq \varrho(x) \leq 1$ and $\int_{\mathbb{R}^d} \varrho(x) \, \mathrm{d}x = 1$. For $\varepsilon > 0$ we set $\varrho_{\varepsilon}(x) := \frac{1}{\varepsilon^d} \varrho(\frac{x}{\varepsilon})$. For $v \in W^{1,p}(\mathbb{R}^d)$ with compact support we define

$$v_{\varepsilon}(x) := (\varrho_{\varepsilon} * v)(x) = \int_{\mathbb{R}^d} \varrho_{\varepsilon}(x - y)v(y) \, dy, \ x \in \mathbb{R}^d.$$

Prove: For all $\varepsilon > 0$ we have $v_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^d)$ and $\lim_{\varepsilon \to 0} \|v_{\varepsilon} - v\|_{W^{1,p}(\Omega)} = 0$. This implies in particular that $v \in W_0^{1,p}(\mathbb{R}^d)$.

Hint: Without proof one may use that for all $f \in L^p(\Omega)$: $\lim_{\varepsilon \to 0} \|\varrho_{\varepsilon} * f - f\|_{L^p(\mathbb{R}^d)} = 0$.

(c) Prove that $W^{1,p}(\mathbb{R}^d) = W_0^{1,p}(\mathbb{R}^d).$

Hint: Let $u \in W^{1,p}(\mathbb{R}^d)$. Choose a suitable sequence of cut-off functions $(\eta_n)_{n \in \mathbb{N}}$ with increasing supports such that $\eta_n u$ converges to u in $W^{1,p}(\mathbb{R}^d)$.

Ex. 10.5 is to be delivered in written form by teams of two persons each in the exercise lesson on 25/06/2012. It will be discussed in the subsequent week.