Partial Differential Equations
Higher Analysis II, summer term 2012
Dr. Dorothee Knees, Dr. Marita Thomas

Exercise sheet 2
Exercise 2.1: Schrödinger equation. A quatummechanical particle is governed by the complex-valued Schrödinger equation:

$$
\begin{equation*}
\mathrm{i} \frac{\partial}{\partial t} \Psi=-\alpha \Delta \Psi+V(x) \Psi . \tag{1}
\end{equation*}
$$

with a constant $\alpha>0$. The unknown function $\Psi: \mathbb{R} \times \mathbb{R}^{3}$ is called wave function.
a) Free particle: Let the potential $V=0$ in (1). We look for solutions Ψ of the form $\Psi(t, x)=\gamma \exp \left(-a(t)|x|^{2}+\sum_{i=1}^{d} b_{i}(t) x_{i}+c(t)\right)$ for $t \in(0, \infty)$ and $x=\left(x_{1}, \ldots, x_{d}\right) \in$ \mathbb{R}^{d}. Derive ordinary differential equations

$$
\begin{equation*}
\dot{a}=f(a, b, c), \quad \dot{b}_{i}=g_{i}(a, b, c), \quad \dot{c}=h(a, b, c) \tag{2}
\end{equation*}
$$

for $a, b_{i}, c: \mathbb{R} \rightarrow \mathbb{C}$ with $i \in\{1, \ldots, d\}$, such that Ψ solves (1).
b) Provide a general solution of the ODE system (2).
c) Particle in a one-dimensional box: Let the potential

$$
V(x):= \begin{cases}0 & \text { if } 0 \leq x \leq L, \\ \infty & \text { otherwise. }\end{cases}
$$

Provide continuous solutions of (1). Hint: separation of variables.
Exercise 2.2: Prove the following statement:
Let $\Omega \subset \mathbb{R}^{3}$ and $F \in \mathrm{C}([0, T] \times \Omega)$. Assume that

$$
\int_{\omega} F(t, x) \mathrm{d} x=0 \text { for all } t \in[0, T] \text { and every Lebesgue-measurable subset } \omega \subset \Omega \text {. }
$$

This implies that $F(t, x)=0$ for all $(t, x) \in[0, T] \times \Omega$.
Exercise 2.3: Determine the solution $u=u(t, x)$ of the following Cauchy problem with the method of characteristics:

$$
\begin{aligned}
\frac{\partial u}{\partial t}+x^{2} \frac{\partial u}{\partial x} & =0 & & \text { in }(0, \infty) \times \mathbb{R}, \\
u(0, x) & =u_{0}(x) & & \text { in } \mathbb{R} .
\end{aligned}
$$

Exercise 2.4 (written): Differentiating the determinant. Let X and Y be Banach spaces. A mapping $f: X \rightarrow Y$ is differentiable at $A \in X$ if there is $f^{\prime}(A) \in \mathcal{L}(X, Y)$ such that

$$
\begin{equation*}
f(A+H)=f(A)+f^{\prime}(A) H+o(H) \tag{3}
\end{equation*}
$$

where $o(H)=\|H\|_{X} \varepsilon(H)$ with $\lim _{H \rightarrow 0} \varepsilon(H)=0$ in Y. Here, $\mathcal{L}(X, Y)$ denotes the space of linear functionals $L: X \rightarrow Y$. The element $f^{\prime}(A) \in \mathcal{L}(X, Y)$ is called the Fréchet derivative of f in the point $A \in X$.
a) Fréchet derivative of the determinant: Let $X=Y=\mathbb{R}^{3 \times 3}$ and $f(A)=\operatorname{det} A$ for all $A \in \mathbb{R}^{3 \times 3}$. Show that

$$
\begin{equation*}
A \text { invertible } \quad \Rightarrow \quad f^{\prime}(A) H=\operatorname{det} A \operatorname{tr}\left(A^{-1} H\right) \tag{4}
\end{equation*}
$$

Hint: Start from (3), exploit (and verify) the relation

$$
\operatorname{det}(\operatorname{Id}+E)=1+\operatorname{tr} E+\{\text { monomials of degree } \geq 2\} \quad \text { for any } E \in \mathbb{R}^{3 \times 3}
$$

Here Id denotes the identity matrix in $\mathbb{R}^{3 \times 3}$.
b) Show the following statement:

Let $t \mapsto A(t) \in \mathbb{R}^{3 \times 3}$ be continuously differentiable and $A(t)$ invertible. Then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{det} A(t)=\operatorname{det} A(t) \operatorname{tr}\left(A^{-1} \frac{\mathrm{~d}}{\mathrm{~d} t} A(t)\right) \tag{5}
\end{equation*}
$$

c) Consider a motion $\Phi:[0, \infty) \times \Omega_{0} \rightarrow \mathbb{R}^{3},(t, x) \mapsto \Phi(t, x)$ satisfying:
($\Phi 1$) $\Phi(0, x)=x_{0}$,
(Ф2) $\quad \Phi \in \mathrm{C}^{1}\left([0, \infty) \times \mathbb{R}^{3}\right)$,
($\Phi 3$) the mapping $\Phi(t, \cdot): \Omega_{0} \rightarrow \Omega_{t}$ is invertible for all $t>0$,
($\Phi 4$) the Jacobian $\operatorname{det} \nabla_{x} \Phi(t, x)$ is positive for all $(t, x) \in[0, \infty) \times \Omega_{0}$.
Moreover, assume that the corresponding velocity field $v=\frac{\mathrm{d}}{\mathrm{d} t} \Phi(t, x)$ is continuously differentiable wrt. (t, x). Prove Euler's expansion formula:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{det} \nabla \Phi(t, x)=\left.\operatorname{det} \nabla \Phi(t, x) \operatorname{div}_{y} v(t, y)\right|_{y=\Phi(t, x)} \tag{6}
\end{equation*}
$$

For this, use (and verify) the relation $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for all $A, B \in \mathbb{R}^{3 \times 3}$.

Ex. 2.4 is to be delivered in written form by teams of two persons each in the exercise lesson on $23 / 04 / 2012$. It will be discussed in the subsequent week.

NEW room for the tutorial: RUD 25, 1.011

