Exercise sheet 4

Exercise 4.1:

a) Let $[a, b] \subset \mathbb{R}$ and $f \in \mathrm{C}([a, b])$. Show that $\int_{a}^{b} f v^{\prime} \mathrm{d} x=0$ for all $v \in \mathrm{C}^{1}([a, b])$ with $v(a)=v(b)=0$ implies that f is constant on $[a, b]$.
Hint: construct a test function v with $v^{\prime}(x)=f(x)-\gamma$ for some constant γ.
b) Let $\Omega \subset \mathbb{R}^{d}$ be a bounded, open domain. Let $\mathbf{k} \in \mathbb{R}^{d}$. Consider the functions

$$
\begin{aligned}
& \Phi_{\mathbf{k}}(x):= \begin{cases}\cos \left(\frac{\mathbf{k} \cdot x}{\varepsilon}\right) c_{\varepsilon} \mathrm{e}^{-\frac{\varepsilon^{2}}{\varepsilon^{2}-\left|x-x_{0}\right|^{2}}} & \text { if } x \in B_{\varepsilon}\left(x_{0}\right), \\
0 & \text { otherwise },\end{cases} \\
& \Psi_{\mathbf{k}}(x):= \begin{cases}\sin \left(\frac{\mathbf{k} \cdot x}{\varepsilon}\right) c_{\varepsilon} \mathrm{e}^{-\frac{\varepsilon^{2}}{\varepsilon^{2}-\left|x-x_{0}\right|^{2}}} & \text { if } x \in B_{\varepsilon}\left(x_{0}\right), \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

where $B_{\varepsilon}\left(x_{0}\right):=\left\{x \subset \mathbb{R}^{d},\left|x-x_{0}\right|<\varepsilon\right\}$. Verify that $\Phi_{\mathbf{k}}, \Psi_{\mathbf{k}} \in \mathrm{C}_{0}^{\infty}(\Omega)$ for $x_{0} \in \Omega$ and $\overline{B_{\varepsilon}\left(x_{0}\right)} \subset \Omega$.
c) Prove the Lemma of Du Bois-Reymond: Let $\Omega \subset \mathbb{R}^{d}$ be a bounded, open domain. Let $f \in L_{l o c}^{1}(\Omega)$, i.e. $f \in L^{1}(C)$ for every bounded interior subset $C \subset \Omega$. Then,

$$
f=0 \text { a.e. in } \Omega \quad \Leftrightarrow \quad \int_{\Omega} f v \mathrm{~d} x=0 \text { for all } v \in \mathrm{C}_{0}^{\infty}(\Omega) .
$$

Hint: Argue via a Fourier expansion.
Exercise 4.2: We consider the following Cauchy problem of the Burgers' equation:

$$
\begin{align*}
u_{t}+u u_{x} & =0 \quad \text { in }(0, \infty) \times \mathbb{R} \tag{1a}\\
u(0, x) & = \begin{cases}u_{l} & \text { if } x<0 \\
u_{r} & \text { if } x>0\end{cases} \tag{1b}
\end{align*}
$$

where $u_{l}>u_{r}$.
a) Construct a weak solution $u:(0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ of (1) which satisfies the RankineHugoniot condition.
b) Verify that u obtained in a) indeed is a weak solution of (1).

Exercise 4.3: Consider the Burgers' equation (1a) together with the initial condition

$$
u(0, x)=u_{0}(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } 0 \leq x \leq 2 \\ 2 & \text { if } x>2\end{cases}
$$

and construct a solution which satisfies the Rankine-Hugoniot condition.

Exercise 4.4 Vanishing viscosity solutions (written): We consider the following Cauchy problem:

$$
\begin{align*}
u_{t}+a u_{x} & =\varepsilon u_{x x} \text { in }(0, \infty) \times \mathbb{R}, \tag{2a}\\
u(0, x) & =u_{0}(x)= \begin{cases}u_{l} & \text { if } x \leq 0, \\
u_{r} & \text { if } x>0 .\end{cases} \tag{2b}
\end{align*}
$$

a) For $\varepsilon=0$, equation (2a) is the linear advection equation; determine a weak solution that satisfies the Rankine-Hugoniot condition.
b) For each $\varepsilon>0$, assume that $u^{\varepsilon}:(0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies (2). Perform the change of variables $\xi=x-a t, v^{\varepsilon}(t, \xi)=u^{\varepsilon}(t, x)$ and determine the corresponding Cauchy problem for $v^{\varepsilon}:(0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$.
c) Show that

$$
\begin{equation*}
v^{\varepsilon}(t, \xi):=(4 \pi \varepsilon t)^{-1 / 2} \int_{\mathbb{R}} \mathrm{e}^{-\frac{(\xi-y)^{2}}{4 \varepsilon t}} u_{0}(y) \mathrm{d} y \tag{3}
\end{equation*}
$$

indeed solves the Cauchy problem derived in b) and reconstruct the solution u^{ε} of (2). Note that $\int_{0}^{\infty} \mathrm{e}^{-a^{2} z^{2}} \mathrm{~d} z=\sqrt{\pi} /(2 a)$ for $a>0$.
d) For $\varepsilon \rightarrow 0$, show that the solutions u^{ε} converge pointwise to $u_{0}(x-a t)$ in points $(t, x) \in(0, \infty) \times \mathbb{R}$ where the solution of a) is continuous.

Ex. 3.5 is to be delivered in written form by teams of two persons each in the exercise lesson on $07 / 05 / 2012$. It will be discussed in the subsequent week.

Exam dates: July 24+25, 2012, September 27+28, 2012.

