Partial Differential Equations
Higher Analysis II, summer term 2012
Dr. Dorothee Knees, Dr. Marita Thomas
04/06/2012
Exercise sheet 7
Exercise 7.1: For $u=u(x, y)$ consider the PDE

$$
\frac{4(y-x)^{2}}{(x+y)^{2}+(y-x)^{2}} u_{x x}+\frac{8(y-x)(x+y)}{(x+y)^{2}+(y-x)^{2}} u_{x y}+\frac{4(y+x)^{2}}{(x+y)^{2}+(y-x)^{2}} u_{y y}+u_{x}+3 u_{y}=0 \quad \text { in } \mathbb{R}^{2} \backslash\{(0,0)\} .
$$

Analyze the type of the PDE, transform the main part into its canonical form and determine the transformation to use.

Exercise 7.2 Polygons: Consider the Dirichlet problem

$$
\begin{equation*}
\Delta u=f \text { in } \Omega \subset \mathbb{R}^{2}, \quad u=g \text { on } \partial \Omega \tag{1}
\end{equation*}
$$

with $f \in \mathrm{C}(\bar{\Omega})$ and $g \in \mathrm{C}(\partial \Omega)$.
a) Let $\Omega \subset \mathbb{R}^{2}$ be a polygon with the k corner points y_{1}, \ldots, y_{k}. Let α_{j} denote the interior angle enclosed by the two edges meeting in $y_{j}, j \in\{1, \ldots, k\}$. For $u \in \mathrm{C}^{2}(\bar{\Omega})$ verify the following representation formula

$$
\begin{align*}
\sigma(x) u(x) & =\int_{\Omega} K_{2}(y-x) \Delta u(y) \mathrm{d} y-\int_{\partial \Omega}\left(K_{2}(y-x) \frac{\partial u}{\partial n}-u(y) \frac{\partial K_{2}(y-x)}{\partial n}\right) \mathrm{d} n_{y} \tag{2a}\\
\text { with } \quad \sigma(x) & = \begin{cases}1 & \text { if } x \in \Omega, \\
1 / 2 & \text { if } x \in \partial \Omega \backslash\left\{y_{1}, \ldots, y_{k}\right\} \\
\alpha_{j} /(2 \pi) & \text { if } x \in\left\{y_{1}, \ldots, y_{k}\right\}\end{cases} \tag{2b}
\end{align*}
$$

and $K_{2}(x)=\frac{1}{2 \pi} \ln |x|$. Hint: To check for y_{j}, start from 2nd Green's formula (Formula (4.2) in the lecture) on $\Omega_{\varepsilon}=\Omega \backslash S_{\varepsilon}\left(y_{j}\right)$ with $S_{\varepsilon}\left(y_{j}\right)$ being the segment of the ball of radius ε around y_{j}.
b) Show that, for a polygon with a reentrant corner, there does not always exist a solution $u \in \mathrm{C}^{2}(\bar{\Omega})$ of (1). Hint: You may consider the open polygon $\Omega \subset \mathbb{R}^{2}$ with the corner points $\{(-1,-1),(0,-1),(0,0),(1,0),(1,1),(-1,1)\}$ and u of the form $u(r, \varphi)=r^{a} \sin (a \varphi)$; then f and g have to be determined suitably.

Exercise 7.3 Poisson's formula for a disc: Let $\Omega=B_{R}(0) \subset \mathbb{R}^{2}, g \in \mathrm{C}(\partial \Omega)$ and

$$
\begin{equation*}
u(x)=\int_{|y|=R} P(x, y) g(y) \mathrm{d} a_{y} \quad \text { with } P(x, y)=\frac{R^{2}-|x|^{2}}{2 \pi R|x-y|^{2}} . \tag{3}
\end{equation*}
$$

a) Show that (3) defines a function $u \in \mathrm{C}^{2}(\Omega)$ satisfying $\Delta u=0$ in Ω.
b) Show that $u \in \mathrm{C}(\bar{\Omega})$ and $u=g$ on $\partial \Omega$. Hint: Verify $\int_{\partial \Omega} P(x, y) \mathrm{d} a_{y}=1$ for all $x \in \Omega$.

Exercise 7.4 (written) Step 6 in the proof of the Cauchy Kovalevskaya Theorem: Let $\boldsymbol{p}=\left(p_{0}, p_{1}, \ldots, p_{d}\right)$ be an analytical solution of the first order system

$$
\begin{aligned}
& \partial_{x_{d}} \boldsymbol{p}(x)=\left(\begin{array}{c}
p_{d}(x) \\
0 \\
\vdots \\
0 \\
-\frac{b(x, \boldsymbol{p}(x))}{A_{d d}(x, \boldsymbol{p}(x))}
\end{array}\right)+\left(\begin{array}{c}
0 \\
\partial_{x_{1}} p_{d} \\
\vdots \\
-\frac{1}{A_{d d}(x, \boldsymbol{p}(x))} \sum_{i, j \neq d} A_{i j}(x, \boldsymbol{p}(x)) \partial_{x_{i}} p_{j}(x)
\end{array}\right), \\
& \boldsymbol{p}\left(x^{\prime}, 0\right)=\left(g_{0}\left(x^{\prime}\right), \partial_{\left.x_{1} g_{0}, \ldots, \partial_{x_{d-1}} g_{0}, g_{1}\left(x^{\prime}\right)\right)^{\top}, \quad x^{\prime} \in \mathbb{R}^{d-1} .}\right.
\end{aligned}
$$

Show that $u(x)=p_{0}(x)$ is a solution of the second order Cauchy problem

$$
\begin{aligned}
& A_{d d}(x, u, D u) \partial_{x_{d d}}^{2} u+\sum_{i, j \neq d} A_{i j}(x, u, D u) \partial_{x_{i}} \partial_{x_{j}} u+b(x, u, D u)=0 \quad \text { in } \mathbb{R}^{d} \backslash C, \\
& u=g_{0} \quad \text { on } C, \quad \frac{\partial u}{\partial n}=g_{1} \quad \text { on } C .
\end{aligned}
$$

Exercise 7.5 (written) Maximum principle for functions with mean value property: Let $\Omega \subset \mathbb{R}^{d}$ be an open, bounded domain. Let $u \in \mathrm{C}(\bar{\Omega})$ such that for all $x_{0} \in \Omega$, for all $r>0$ with $B_{r}\left(x_{0}\right) \subset \Omega$:

$$
\begin{equation*}
u\left(x_{0}\right)=\frac{1}{\omega_{d} r^{d-1}} \int_{\partial B_{r}\left(x_{0}\right)} u(z) \mathrm{d} a_{z}, \tag{4}
\end{equation*}
$$

where $\omega_{d}=\int_{\partial B_{1}(0)} 1 \mathrm{~d} a$ and $B_{r}\left(x_{0}\right)$ denotes the open ball of radius r around the point $x_{0} \in \Omega$. Moreover, let $M=\sup \{u(x), x \in \Omega\}$.
a) Assume that $u\left(x_{0}\right)=M$ for a particular $x_{0} \in \Omega$. Conclude that $u(y)=M$ for every $y \in B_{r}\left(x_{0}\right) \subset \Omega$.
b) Conclude that u is constant in Ω if u attains its maximum in some $x_{0} \in \Omega$. Hint: argue by contradiction. For this, you may use a continuous path that connects x_{0} with a point $x_{1} \in \Omega$ with $u\left(x_{1}\right)<M$.
c) Let u be non-constant. Conclude that u attains its maximum and minimum on $\partial \Omega$.
d) Let $u \in \mathrm{C}^{2}(\Omega) \cap \mathrm{C}(\bar{\Omega})$ such that

$$
\begin{align*}
\Delta u & =f \text { in } \Omega \tag{5}\\
u & =0 \text { on } \partial \Omega . \tag{6}
\end{align*}
$$

Conclude from the maximum principle that this Dirichlet problem admits at most one solution.
e) Let $u \in \mathrm{C}^{2}(\Omega) \cap \mathrm{C}(\bar{\Omega})$ solve (5) with $f=0$ together with the boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial n}+h u=0 \text { on } \partial \Omega, \tag{7}
\end{equation*}
$$

where n is the outer unit normal vector to Ω. Assume that $h \in \mathrm{C}(\partial \Omega)$ satisfies $h \geq \kappa>0$ on $\partial \Omega$. Conclude that $u=0$.

Ex. 7.4 and 7.5 are to be delivered in written form by teams of two persons each in the exercise lesson on $04 / 06 / 2012$. They will be discussed in the subsequent week.

