Partial Differential Equations
Higher Analysis II, summer term 2012
Dr. Dorothee Knees, Dr. Marita Thomas
04/06/2012

Exercise sheet 8

Exercise 8.1: Distributional derivatives

(a) For $a \in C^{\infty}(\mathbb{R})$ and $T \in \mathcal{D}^{\prime}(\mathbb{R})$ define $a T: \mathcal{D}(\mathbb{R}) \rightarrow \mathbb{R}$ via

$$
\forall \varphi \in \mathcal{D}(\mathbb{R}): \quad(a T)[\varphi]:=T[a \varphi]
$$

Verify that $a T \in \mathcal{D}^{\prime}(\mathbb{R})$ and prove the product rule $D_{x}(a T)=\left(D_{x} a\right) T+a D_{x} T$.
(b) Calculate the distributional derivative of $f(x)=\ln |x|, x \in \mathbb{R}$.
(c) Calculate the first derivative of the regular distribution induced by

$$
f_{\lambda}(x):=\left\{\begin{array}{ll}
0 & \text { for } x \leq 0 \\
x^{\lambda} & \text { for } x>0
\end{array}, \quad \lambda \in(-1,0)\right.
$$

"Hint": $\forall c \in \mathbb{R}$ and $\varphi \in \mathcal{D}(\mathbb{R}): \varphi^{\prime}(x)=(\varphi(x)+c)^{\prime}$.
(d) For $\Omega=\mathbb{R}^{2}$ calculate $\triangle_{x} \ln |x|$ in the distributional sense.

Exercise 8.2: Distributions

Prove that for every $T \in \mathcal{D}^{\prime}(\Omega)$ the following estimate is valid:

$$
\begin{aligned}
& \forall K \subset \Omega, K \text { compact, } \exists C=C(K, T)>0, \exists k=k(K, T) \in \mathbb{N} \text { such that } \\
& \forall \varphi \in \mathcal{D}_{K}(\Omega):|T[\varphi]| \leq C \sum_{|\alpha| \leq k} \sup _{K}\left|D^{\alpha} \varphi(x)\right|
\end{aligned}
$$

Here, $\mathcal{D}_{K}(\Omega)=\{\varphi \in \mathcal{D}(\Omega)$; $\operatorname{supp} \varphi \subset K\}$. HINT: Prove the estimate by contradiction and consider a sequence $\left\{\varphi_{j}, j \in \mathbb{N}\right\} \subset \mathcal{D}(\Omega)$, which satisfies

$$
\left|T\left[\varphi_{j}\right]\right|>j \sum_{|\alpha| \leq j} \sup _{K}\left|D^{\alpha} \varphi_{j}\right| .
$$

Exercise 8.3: Fundamental solutions for linear ODEs

For constant coefficients $a_{i} \in \mathbb{R}, 1 \leq i \leq m-1$, consider the scalar, one-dimensional differential operator

$$
L(D):=D_{x}^{m}+a_{m-1} D_{x}^{m-1}+\ldots+a_{1} D_{x}+a_{0} .
$$

Prove: If u_{0} is a solution of the initial value problem

$$
\begin{gathered}
L(D) u_{0}(x)=0, \quad x>0 \\
u_{0}(0)=0, \cdots, D_{x}^{m-2} u_{0}(0)=0, \quad D_{x}^{m-1} u_{0}(0)=1
\end{gathered}
$$

then the distribution generated by the function $g(x):=H(x) u_{0}(x)$, where H denotes the Heaviside-function, is a fundamental solution (in the distributional sense) for the equation $L(D) u(x)=f(x), x \in \mathbb{R}$.

Exercise 8.4: Green's function for the strip $\Omega=\mathbb{R} \times(0, \pi)$ (written)
(a) For $\alpha>0$ consider the ODE $-u^{\prime \prime}+\alpha^{2} u=f$ on \mathbb{R} (one-dimensional elliptic problem). Show that for $f \in B C^{0}(\mathbb{R})$ (bounded and continuous functions on \mathbb{R}) the unique bounded classical solution is given by

$$
u(x)=\int_{y \in \mathbb{R}} G_{\alpha}(x-y) f(y) \mathrm{d} y \quad \text { with } \quad G_{\alpha}(z)=\frac{1}{2 \alpha} \exp (-\alpha|z|)
$$

(b) To solve the Dirichlet-Problem $\Delta u=f$ in $\Omega=\mathbb{R} \times(0, \pi)$ decompose u and f in FOURIER series with respect to the x_{2} coordinate $\left(u\left(x_{1}, x_{2}\right)=\sum_{k=1}^{\infty} u_{k}\left(x_{1}\right) \sin \left(k x_{2}\right)\right)$. Derive solution formulas for the coefficients u_{k} and construct a series representation of the Green's function G. (Formal calculations are sufficient, no justification of the interchange of limits is required).
(c) Find an explicit formula for the Green's function. Hint: Use trigonometric identities and the identity $\sum_{n=1}^{\infty} \frac{p^{n}}{n} \cos (n \alpha)=-\ln \sqrt{1-2 p \cos \alpha+p^{2}}$.

Ex. 8.4 is to be delivered in written form by teams of two persons each in the exercise lesson on $11 / 06 / 2012$. It will be discussed in the subsequent week.

