Partial Differential Equations
Higher Analysis II, summer term 2012
Dr. Dorothee Knees, Dr. Marita Thomas
11/06/2012

Exercise sheet 9

Exercise 9.1: Convolution of distributions

Let $S, T \in \mathcal{D}^{\prime}(\mathbb{R})$ and assume that the convolution $S * T$ exists. Prove that for all $k \in \mathbb{N}$ it holds

$$
x^{k}(S * T)=\sum_{j=0}^{k}\binom{k}{j}\left(x^{j} S\right) *\left(x^{k-j} T\right)
$$

Exercise 9.2: Harmonic oscillator

The Cauchy problem for the harmonic oscillator is

$$
\begin{align*}
\partial_{t}^{2} u(t)+a^{2} u(t) & =f(t) \quad \text { for } t>0 \tag{1}\\
u(0) & =u_{0} \tag{2}\\
\partial_{t} u(0) & =u_{1} \tag{3}
\end{align*}
$$

Construct solutions using fundamental solutions via the following steps:
(a) Use Exercise 8.3 in order to construct a fundamental solution for the operator L with $L(u)=\partial_{t}^{2} u+a^{2} u$ on the whole R.
(b) Assume that u is a solution of (1)-(3). For $t \in \mathbb{R}$ define $\widetilde{u}(t):=H(t) u(t), \widetilde{f}(t):=$ $H(t) f(t)$, where $H: \mathbb{R} \rightarrow\{0,1\}$ with $H(t)=0$ if $t \leq 0$ and $H(t)=1$ for $t>0$ is the Heaviside-function. Derive the ordinary differential equation on \mathbb{R}, which is solved by \widetilde{u} in the distributional sense.
(c) Use (a) to construct a solution for the differential equation derived in (b) and reduce it to a solution formula for the original problem (1)-(3). Provide sufficient conditions on f such that everything in (c) is rigorous.

Exercise 9.3: Some properties of the fundamental solution of the heat equation

We recall that the fundamental solution for the heat equation operator on $\mathbb{R} \times \mathbb{R}^{d}$ is

$$
\begin{equation*}
\Phi_{d}(t, x)=\frac{H(t)}{(2 \sqrt{\pi t})^{d}} \exp \left(-\frac{|x|^{2}}{4 t}\right) \tag{4}
\end{equation*}
$$

which means that $\left(\partial_{t}-\triangle_{x}\right) \Phi_{d}=\delta_{0}$ in $\mathcal{D}^{\prime}\left(\mathbb{R} \times \mathbb{R}^{d}\right)$. Here, $H: \mathbb{R} \rightarrow\{0,1\}$ with $H(t)=0$ if $t \leq 0$ and $H(t)=1$ for $t>0$ is the Heaviside-function.
(a) Prove that for all $t>0$ it holds $\int_{\mathbb{R}^{d}} \Phi_{d}(t, x) \mathrm{d} x=1$,
(b) Sketch the functions $x \mapsto \Phi_{1}(t, x)$ for different (small/large) values of $t>0$. Prove that for all $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ it holds

$$
\lim _{t \searrow 0} T_{\Phi_{d}(t,)}[\varphi]=\lim _{t \searrow 0} \int_{\mathbb{R}^{d}} \Phi_{d}(t, x) \varphi(x) \mathrm{d} x=\varphi(0)=\delta_{0}[\varphi] .
$$

Exercise 9.4: $W^{k, p}(\Omega)$ is a Banach space

Let $\Omega \subset \mathbb{R}^{d}$ be an open domain. Prove that for $k \in \mathbb{N}$ and $p \in[1, \infty]$ the space $W^{k, p}(\Omega)$ as defined in the lecture is a Banach space.

Exercise 9.5: Initial value problem for the heat equation (written)

Consider the initial value problem for the heat equation on \mathbb{R}^{d} :

$$
\begin{align*}
\partial_{t} u(t, x)-\triangle_{x} u(t, x) & =f(t, x) & & x \in \mathbb{R}^{d}, t>0 \tag{5}\\
u(0+, x) & =g(x) & & x \in \mathbb{R}^{d} . \tag{6}
\end{align*}
$$

The goal is to construct an explicit solution formula for (5)-(6) and to investigate the properties of the solution.
(a) Assume that u is a (classical) solution of (5)-(6). Extend u and f to values $t<0$ by defining $\widetilde{u}(t, x):=H(t) u(t, x), \widetilde{f}(t, x)=H(t) f(t, x)$. Derive the PDE on $\mathbb{R} \times \mathbb{R}^{d}$, which is satisfied by \widetilde{u} in the distributional sense, and write down an explicit formula for its solution. Formulate sufficient conditions on f, g such that the solution formula indeed defines an element from $\mathcal{D}^{\prime}\left(\mathbb{R} \times \mathbb{R}^{d}\right)$.
(b) For $f \in C^{0}\left([0, \infty) \times \mathbb{R}^{d}\right)$ and $g \in C^{0}\left(\mathbb{R}^{d}\right)$, both with compact support, let

$$
u_{0}:=T_{\Phi_{d}} *\left(g \delta_{t=0}+T_{\tilde{f}}\right)
$$

where $\widetilde{f}(t, x)=H(t) f(t, x)$ and $g \delta_{t=0} \in \mathcal{D}^{\prime}\left(\mathbb{R} \times \mathbb{R}^{d}\right)$ is defined as $g \delta_{t=0}[\varphi]:=$ $\int_{\mathbb{R}^{d}} g(x) \varphi(0, x) \mathrm{d} x$ for $\varphi \in \mathcal{D}\left(\mathbb{R} \times \mathbb{R}^{d}\right)$. Show that $u_{0} \in \mathcal{D}^{\prime}\left(\mathbb{R} \times \mathbb{R}^{d}\right)$.
Prove that there exists $w \in L_{\mathrm{loc}}^{1}\left((0, \infty) \times \mathbb{R}^{d}\right)$ such that for all $\varphi \in \mathcal{D}\left((0, \infty) \times \mathbb{R}^{d}\right)$ it holds

$$
\widetilde{u}[\varphi]=T_{w}[\varphi],
$$

and derive an explicit formula for w.
(c) For $g \in C^{0}\left(\mathbb{R}^{d}\right)$ with compact support, $t>0$ and $x \in \mathbb{R}^{d}$ define with Φ_{d} from (4):

$$
w(t, x):=\int_{\mathbb{R}^{d}} \Phi_{d}(t, x-y) g(y) \mathrm{d} y
$$

Prove that $w \in C^{\infty}\left((0, \infty) \times \mathbb{R}^{d}\right)$, that w satisfies the heat equation (5) with $f=0$ and that for all $x \in \mathbb{R}^{d}$ it holds $\lim _{t \searrow 0}|w(t, x)-g(x)|=0$.
Hints: $\int_{\mathbb{R}} e^{-t^{2}} \mathrm{~d} t=\sqrt{\pi}$; without proof one may use that Φ_{d} from (4) belongs to $C^{\infty}((0, \infty) \times$ $\left.\mathbb{R}^{d}\right)$. As always, T_{f} denotes the regular distribution induced by $f \in L_{\text {loc }}^{1}$.

Ex. 9.5 is to be delivered in written form by teams of two persons each in the exercise lesson on $18 / 06 / 2012$. It will be discussed in the subsequent week.

