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Regularity results for transmission problems for the
Laplace and Lamé operators on polygonal or polyhedral
domains

Dorothee Knees*

Abstract

Boundary value problems for the Laplace and Lamé operators with piecewise constant material
coefficients are investigated on polygonal or polyhedral domains. Because of geometric peculiarities
and non-smooth material constants the solutions and especially the derivatives have a singular behavior
in a neighborhood of corners, edges and crossing points. For 3D problems for the Lamé operator it is
not clear if the displacement fields are bounded. In this paper we derive sufficient conditions on the
material constants and geometry which guarantee that weak solutions of the BVPs are bounded and
piecewise continuous. We further give a short overview over known results.

1 Introduction

In this paper we consider boundary transmission problems for the Laplace and Lamé operators on po-
lygonal or polyhedral domains. It is well known that harmonic and linear elastic fields have a singular
behavior near geometrical peculiarities such as corners, edges, crossing points or crossing edges. The
singular behavior can be characterized by an asymptotic expansion for weak solutions « in a neighborhood
of a corner point S. For 3D polyhedral domains the expansion has the following form:

Let u € H'(Q) := {u € L*(Q) : ’U,‘QI € H'(Q;)} be a weak solution for the Laplace or Lamé equations

with piecewise constant coefficients on ©; C R?; Q = U;€Q;, ©; polyhedral. Then u can be decomposed in
the following way in a neighborhood of a corner point S [3]:

S S S
N~ U = Ureg + 1) Uedge T 7" Ucorner-

Here, tyeg

0 € H?7¢(Q;) for a small ¢ > 0, n° is a cut-off function. Further

Ucorner = Z Cj pﬁj Wj (ln P 0, (p)a (1'1)
—%<Re 6j<%—a

where (p, 0, @) are spherical coordinates. Finally

Uedge = Z Z o, (2e,p) T Vj o(InTe, ).

edges e 0<Re a;j <l-¢

Here we sum over all edges e which contain S, r. is the distance to edge e. The regularity of a weak
solution is determined by the smallest real parts of the singular exponents 3, j .. If there are no edge
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2 2 FORMULATION OF THE PROBLEM

exponents ;. in the strip Re a €]0, %] and no corner exponents J3; in the strip Re g €] — %, 0[ then we

have the following regularity result for weak solutions: nsu‘Q_ € H%J“E(Qi) which is embedded in C(€2;).

The main goal of this paper is to describe classes of transmission problems for which weak solutions
admit an asymptotic expansion as in (1.1) where no edge exponents are situated in the strip Re o €]0, 1]
and no corner exponents in the strip Re g €] — %, 0]. These classes consist of transmission problems with
an arbitrary number of subdomains where the material parameters are distributed quasi-monotonely and
where some additional geometric conditions are satisfied. In the two dimensional case there are examples
which show that if these conditions are violated there can be stronger singularities, [8], whereas in the
three dimensional case such examples are unknown for the Lamé operator.

The paper is organized as follows: In sections 2 and 3 we give the basic definitions and recall asymptotic
expansions for weak solutions, [10, 3, 24]. In section 4, a homotopy argument based on Rouché’s Theorem
for operator-valued functions is presented which we will use in section 5 to prove the main result formu-
lated in Theorem 5.1. In this Theorem we describe in detail the assumptions on the material parameters
(quasi-monotonicity) and the geometry which guarantee that there are no corner exponents in the strip
Re g €] — %, 0[. For boundary value problems which satisfy these conditions we then get the regularity
U‘Ql € C(Q;). The main idea of the proof is to carry over known estimates of the exponents for problems
with constant parameters to problems with piecewise constant parameters by a homotopy argument.

A short overview of known estimates of the singular exponents will also be given in section 5. There is
a variety of estimates for the Laplace transmission operator on 2D domains [2, 14, 24, 25, 19] which we
summarize in table 1. In contrast to the Laplace operator, there are only few results for transmission
problems of the Lamé system in the literature. Estimates for one subdomain were derived in [7, 22, 12, 26].
The results presented in this paper are a generalization of those in [24], where estimates for boundary
transmission problems on two subdomains with a plane interface were developed.

2 Formulation of the Problem

2.1 Domains

In this paper we will consider polygonal or polyhedral domains Q C RY, N = 2,3, which are divided into
polygonal or polyhedral subdomains. In order to include domains with cracks and other non-Lipschitz
domains, we first introduce the notion of generalized polyhedrons and composites. In section 2.2 the
corresponding Sobolev-spaces and needed trace theorems will be specified.

2.1.1 Generalized polyhedrons

Let Q C RV, N = 2,3, be bounded and let the cone property be satisfied:

Definition 2.1. [29, Def. 2.2] Q C RN satisfies the cone property if for every z € ) there exists an open
spherical cone C(z) with vertex in x which is congruent to a fized cone Cy and C(z) C Q.

We further assume that 9€2 is the union of oriented N — 1 dimensional plane surfaces, that means:
There is a finite number of pairs (T';, 7;) with T'; C 9Q such that

1. 00 = Uifi,
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Figure 1: Generalized polyhedrons

2. Every T'; is an open connected polygonal subset of a N — 1 dimensional hyperplane, I'; has a
Lipschitz boundary. 7; is a unit normal vector on I'; for which we assume: Vzy € T'; 3§(z9) > 0
such that V0 < § < d(zg) there holds: zg — d7i; € Q.

3. Vi, j: lfFlﬂF] #* 0 and 7; Zﬁj, then T; =Fj.

4. If S := (int Q)\Q # 0 (i. e. if Q has cracks) then there exist (T;,, 7, ), ..., (I';, 71;,) where the Ty, are
pairwise disjoint and S = Ulgjglf‘_ij.
Further there exist (Fkl,ﬁkl), RN (Fklaﬁkl) with Fk]. = Fij and ’ﬁ:k]. = —T_iij for 1 <7<,

Domains which satisfy these conditions will be called generalized polyhedrons.

These conditions can be interpreted as follows: 0f2 is divided into plane faces I';. To each T'; is associated
a normal vector 7; which is directed to the exterior of € if a part of I'; is contained in the exterior
boundary of Q. If Q has a crack S then S shall be covered twice by the (I';, ;) such that one can identify
left and right crack sides (with the corresponding normal vectors). Two different parts I'; and I'; may
only intersect if 7; = —#; (this can happen at a crack only).

Example 2.1. Every standard polyhedron and polyhedrons with cracks are generalized polyhedrons. In
fig. 1 generalized polyhedrons are plotted which have no Lipschitz boundary.
2.1.2 Composites

We now introduce composed polyhedral domains where we will study transmission problems.
Let Q C RY be a generalized polyhedron. We assume that € is divided into a finite number of generalized

Yij,1
Q; Q -
Yig,k -

Q;

Yi,l

Figure 2: Examples for composites, 2D and 3D
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V5,5 Yi,2
Y4 4
I = U Yi,s»
7.773 Q s—=1
S ; s
V5.6 752 Vi1 " Lij = i1,
Yia| T
I =J 7
Qj s=1
Yij
Y3,7 Yi4

Figure 3: Example for a composite with crack, 2D

polyhedra €; in the following way:

0=

C=
2|

=1

where Q; N Q; = 0 for i # 7, Q; C Q and if S; := int(Q;)\Q; # 0 then S; C 9Q. Such domains will be
called composites, fig. 2.

To describe the boundary 92 we introduce the notation, fig. 3:

If mesy—_1 (0Q2N0KY;) # 0 then we divide the common boundary into oriented parts (v, ;, 7;;), 1 < I < n(i),
such that:

7, is an open subset of a N — 1 dimensional hyperplane, ;; has a polygonal Lipschitz boundary and
¥iy C 0;NOQ; 7 is normal to 7;; and for T; := U?:(ll) i, there holds: mesy_;(T';) = mesy_1(99;NNON).
Further the pairs (;, 7;,) satisfy 2. and 3. in section 2.1.1 and in addition:

4. If S; := (int Q;)\Q; # 0 (i. e.if Q; has cracks) then there exist (Vi 7, )s-- -+ (i, 7i1,) Where the
Vi, are pairwise disjoint and S; = Ui <i<kVil, -
Further there exist (v, fi,s;), .- (Vi Ti,s; ) With 76, = Yiy; and 7 5, = =iy, for 1 < j < k.

For the interfaces we use the following notation:

If mesy_1(09Q; N 0Q;\0Q) # 0 then we divide the interface of ©;, 2, into plane faces v;;;, 1 <1 < n(ij):
7ij is an open subset of a N — 1 dimensional hyperplane and has a polygonal Lipschitz boundary:
Yiji N Yije = 0 for I # k and for T = Ulnz(zf) ¥ij.1 there holds: mesy_(I';;) = mesy_1(0€; N 02;\090).
For 7;; 1 € G we denote by 7;; ;. the exterior normal vector of +y;; ;, with respect to €2;, by 7; . the exterior
normal vector of v;;, with respect to ;.

Finally we collect the parts of 9Q in the set F := {(yi;,7iy), 1 <i < M,1<1I<n()} =t DUN,
where D, N are disjoint and characterize the Dirichlet- and the Neumann-boundary respectively. G :=
{7ij k> 1,7, k} describes the interface.

By & we denote the set of geometrical singularities which consist of corners and edges.



2.2  Spaces 5

2.2 Spaces

The following Sobolev spaces will be used:
Let I € Ny, © C RV be an open, connected domain.

HY(Q) :={u e L*Q): D € L*(Q), 0 < |a| <1}.

Here, D%u is the distributional derivative of u , o is a multi-index. (H'(Q), Il () is a separable Hilbert
space with the usual norm and inner product, [29]. If Q is a composite, we set

H(Q) = {u € L*(Q) : |, € H' ()},

We shortly write u; for ’U,‘Q For Q C RY, open, D(Q) is the set of infinitely differentiable functions in

RY with compact support in Q, D(Q) = {u‘Q tu € D(RN)}
We further need the following trace spaces for [ = 1,2,...: Let Q2 be a composite, v € GU F.

=l

2 ™,

H'"%(y) := D(¥)

where the norm is defined by the Sobolev-Slobodetskij norm

ID”‘ — Du(y)|’
oy = Wl + 30 [ PO
la|<l-1

Finally
~ 1 1
H'=>(y) = {u € H>(h(y)) : suppu C 7},
where h(7) is that N — 1 dimensional hyperplane which contains 7. Since 7 has a Lipschitz boundary
H'™2(y) = {u], : u € H'2(h(y))}, [29, Thm. 3.6].
For [ =1 we deﬁne the following dual spaces:

H™2(y) = (H3(y)),  H (7)== (H3(y))"

For v € I;T%(fy),h € Hfé(*y) we denote by (h,v,), = (h,v)(H,l(’y) i)

For generalized polyhedrons we have the following trace theorems:

the dual pairing.

Theorem 2.1. Let @ C RN be a generalized polyhedron , (T';,7;) as in sect. 2.1.1, m € N.

1. Let 0 <1l < m —1. There ezists a unique linear and continuous mapping

l
VéFi,ﬁi) PHT) - H Hm_j_%(r

with the following property:
If Q C RY is an open Lipschz'tz domain with Q C Q, T'; C 9Q and 7i; as exterior normal vector,

then for all u € H™(Q) o€ D(Q)

ol
9 —»l
on;

8u
7éri,ﬁi)(u) { ‘F ’ an
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2. There exists a linear, continuous extension operator

Fir, ) I:Im_%(f‘i) — {ve H™(Q) : supp(v‘{m) cT;}

~ 1

such that 7?1“1',77,') o Fir, i) (u) = u for all u € H™™2(Ty).
This Theorem is proved in [6] for generalized polyhedrons with Lipschitz boundaries and can easily

be extended to those without Lipschitz boundaries.

For the definition of the normal derivative for H'-functions we introduce analogous to [6] the space

EQ) := {u € HYQ) : Au € L?(Q)}. This space is a Banach space regarding the norm |jul|p :=

1wl g1y + 1Aull 12(q)- If @ is a bounded Lipschitz domain, then D(€2) is dense in E(£2). For composites
2 we set

£(Q) = {u e H'(Q): uly,

€ E(Qi)}.

Theorem 2.2 (Normal derivative). [6] Let Q C R" be a generalized polyhedron, (I';,7;) as in sect.
2.1.1. Then there exists a unique linear, continuous operator

0

on;

E(Q) — H *(I)

with the following property:
If Q C RN is an open Lipschitz-domain with Q@ C Q, T'; C 082 and 7; the exterior normal vector, then

for all w € H'(Q) with u
following Green’s formula is valid for all u € E(Q), v € H'(Q) with v‘(r_ =

o € D(Q) the classical normal derivative and 6%1_ coincide. Furthermore the

€ fNI%(FZ) for all i:

ou
Auv dx -I—/ VuVo dz = == U)T; s 2.1
/ i R (2.1
where (-, )1, is the dual pairing (-, '>(H—%(F-) by’

Remark 2.1. An analogous Green’s formula holds for composites.

2.3 Boundary transmission problems

We now introduce the variational formulation of boundary transmission problems for the Laplace and
Lamé operators. Let Q C RV be a bounded composite. In order to describe admissible Dirichlet data we
define the following space for [ =1,2,...:

Bl_% = {FD . FD = (Ul‘,lel,...,ul D ’uQ"YQDl"”’uM‘

D “ e
Mon(1) ’YM,n(M)’ ’

wi € H'(Q) N E(Q) },

—Uu
Yij,k J

oy Ug ’Yij,lc) :

which is a subspace of H(v- LA)ED Hl*%(% k) X HW L€G Hl*%(%j k). By Ui‘vD we mean the restriction
A ELLIN ’ i7, ’ 4.5

of u; to 71% if fyi’?j is part of the Dirichlet boundary.

Remark 2.2. If F € B3 then there are satisfied some compatibility conditions between the data on the
Dirichlet boundaries and the Dirichlet data on the interfaces. These conditions were studied in [6, 24].
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For the right hand sides we assume condition (D)

fi € ( ( z))aglkeHz(%k)for%kED hl]kEHz('Yz]k)for’)’zgkeg
ngGH (7zk)for7zk€N h kEH (71]k)f0r72jk€g
(D) For the Dirichlet data g & and h Sk We further assume:

Fp = (...,gl’k,...,hgk,.. ) € B>.

Finally
Vi={ue H(Q): VvGD:u‘,Y:O;VWEN:u‘ Ijlé( ); Vi € G ul‘

~ 1
iy Wil € H2(9)}

2.3.1 Laplace operator

We are now ready to define the boundary transmission problem for the Laplace operator. Thereby
we reduce problems with nonhomogeneous Dirichlet data by a standard procedure to problems with
homogeneous Dirichlet data.

Definition 2.2 (Variational solution). Let Q@ C RN be a composite, p1,...,pun € R, let the data
satisfy (D). u € H'(Q) is a variational solution of the boundary transmission problem for the Laplace
operator if there exists w € V such that u = w + § where § € £(Q) satisfies the Dirichlet conditions (i.e.

Vv, €D g\w = gz'[,)lv V9yijk €G: gi\%_j,k - gj hi[]).’k) and w s a solution of

Yij,k
M
a(w,v) = Y (fiuv) @y man + D, (90v) ot > (B k)
i=1 'yz.N].E,/\f Yij k€9
AG;Tdr — ’, : ILvev. 2.2
+Zm/ oo =3 (G hon,  for (2.2)
Here,
9gi 9g; d9;
<aﬁl‘,’l)>3gi = Z <aﬁl 7v>’yi,k + Z <8ﬁ—.?:v>%j,k
‘ (Vi ks Ti, k) EN, Lk Yij e €G, ik
Vi, k CO; Vij ke COQ
and

M
a(u,v) = Z,ul/g Vu,; Vu; dz. (2.3)
=1 i

Lemma 2.1. If condition (D) holds and if in addition f; € L*($%;) for all 1 < i < M, then a variational
solution u is in E(Q) and solves

—pilu; = fi in €, (2.4)

“Z‘%k = Qil,.)ka Yik € D, (2.5)

aar—sz e =90k Mk EN, (2.6)

Yilyiw — Yl = hg,k’ Vijk € G, (2.7)

“la?a’—tjk yige T H 8iu ik - hzz}r,k’ Yijk € G, (2.8)
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Proof. Let u be a variational solution. Then w := u — § € V and satisfies (2.2) for all v € V, in particular
for all v; € D(RY) with suppv; C €;. Using Green’s formula (2.1) we obtain:

—/ piu; — gi)Av; dz =/ (fi + piNgi)vi dz
for all v; € D(€;). Thus —p; A(u;—§;) = fi+piAg; in the distributional sense and due to the assumptions
on f;, g; we may conclude that u; € F(€Q;) with —u; Au; = f;, finally u € £(Q).

Now let (7v;,7;) € N. For all v; € W (i, 7)== {v € H' () : supp(v‘m_) C %1} there holds (Green’s
formula):

. O(u; — gi
/ V(ui = Gi)Vv; dz = / A(u; — gi)vi dz + <%avi>7i,za
Z’

which leads to . 9a
) ) Gi

Vv’i S W(Qiafyi,l) : ( = avi>’7i,[ = <gz]?§ - 8ﬁ'll’vi>%’l

(A

3

and finally (with Thm. 2.1)

P H™ 2
aﬁl ! gl,l aﬁzyl m (71 l)
Analogous considerations show the validity of (2.7) and (2.8). O

In the sequel we assume p; > 0 for all . Problem (2.4)-(2.8) then describes an elliptic boundary
transmission problem (Def. see [23, 15]).

One can prove existence and uniqueness of variational solutions in the usual way using the Lemma of
Lax/Milgram. Note that the Poincaré/Friedrichs inequality is valid on generalized polyhedrons (One
can prove this inequality using embedding theorems for Sobolev spaces. These theorems are true for
generalized polyhedrons, [17]).

2.3.2 Lamé operator

Before we formulate the boundary value problem for the Lamé operator we introduce some notation:
By u: Q — RN we denote the displacement field, A, x € R are the Lamé constants. The stress tensor for
linear elastic isotropic and homogeneous materials is given via Hooke’s law by o(u) = A tre(u) + 2ue(u),
where e(u) = 3 (Vu + (Vu)T) is the linearized strain tensor. For quadratic matrices A, B we denote by
A: B = tr(AT B) the inner product.

In order to define the normal stresses on the boundary we introduce for Q C RY (open domain)

Flame(Q) := {u € H'(Q) : divo(u) € L*(Q)}.
Erame(Q) := {u € H'(Q) : ’U,‘Q € Erame(Q;)} if Q is a composite.

The same arguments as for the Laplace operator show

Theorem 2.3 (Normal stresses). Let Q C R" be a generalized polyhedron, (T';,7i;) as in sect. 2.1.1.
Then there exists a unique linear, continuous operator

Ty : Bpame() — H2(T)

with the following property: . )
If Q C RN is an open Lipschitz-domain with Q C Q, T'; C 9Q and 7i; the exterior normal vector, then for



all u € HY(Q) with u‘ﬁ € D(ﬁ) the classical normal stress J(u)ﬁi‘r_

the following Green’s formula is valid for all u € Epume(Q), v € HY(Q) with v‘

and T;(u) coincide. Furthermore

)EHZ( i) for all i:

/Qdiv (o(u))v dz -I—/Qa(u) ce(v) dz = %:<O’(U)ﬁi,’l)>[‘i.

Definition 2.3 (Variational solution). Let Q@ C RY be a composite and the data satisfy (D). u €
H () is a variational solution of the boundary transmission problem for the Lamé operator if there exists
w €V such that u = w + g where § € Epame(Y) satisfies the Dirichlet conditions and w is a solution of

M
a(w,v) = Y {fiv)an@yy.m@y + D G vt D (B v,
1=1 'Yi,leN Yij, keg

M
+ Z/ (,LAZA§Z + (Ai + i) grad div g;)vdz

M
- Z<Uz‘(§i)ﬁiav>aﬁi for all veV.
i=1

Here, a(-,-) is the bilinear form

M
a(u,v) = ;/ﬂz oi(u;) : e(v;) de, (2.9)

the pairings (), have the same meaning as in Definition 2.2.

If condition (D) holds and if in addition f; € L?(€2;) for all i then a variational solution u is in
ELame () and solves

—(,uiAui + (Ai + ;) grad div ul) =f; in £;, (2.10)
Uz‘,Yk =9/} Yik € D, (2.11)

o ()i, = g% Yik €N, (2.12)

il UG, = hg’k, Yijk €9, (2.13)

o (i) fiij e + 05 (ug) ik = hiy s Vijk € G, (2.14)

A sufficient condition for the ellipticity of this boundary transmission problem is p; > 0, A; + p; > 0 for
all 4, [27], which we assume in the sequel.

Existence and uniqueness of variational solutions can be proved using the Lax/Milgram Lemma. Note
that Korn’s inequality is valid on generalized polyhedrons which are the union of a finite number of
disjoint generalized polyhedrons with Lipschitz boundary.

3 Regularity and asymptotic expansion of weak solutions

The regularity of weak solutions is mainly influenced by the presence of geometric singularities such
as edges, corners, crossing points. The asymptotic expansion of a solution in a neighborhood of these
geometric singularities can be described with the help of eigenvalues and eigenfunctions of operator
bundles which are related to model problems for edges or corners.
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Figure 4: Model problem, 2D

3.1 Two dimensional domains

Let Q C R? be a composite. For a corner point S let ©;,...,€,, be those subdomains of  which meet
in S. By C; we denote the infinite cone with tip in S which coincides with €; in a neighborhood of S.
Let the numbering be such that we have in polar coordinates: C; = {z : 0 < r, ¢; 1 < ¢ < ¢;} where
o < oo < pm < po+2m, C% = {x: $o < ¢ < $m}, fig. 4. The model problem for the Laplace or Lamé
operator in the cone C° reads now:

Au=f, =zeC?,

where A is given by (2.4)-(2.8) resp. (2. 10) (2 14) Rewriting the model problem in polar coordinates
and applying the Mellin transform, Mg](«a foo “g(r)dr, (rd,) — a, we get the following
nonlinear eigenvalue problem: Find v # 0 and a € (C such that

A(a)v(av ‘70) =0, ¢pe€ (¢0a ¢m)

Example 3.1. For the transmission problem of the Laplace operator the corresponding eigenvalue prob-
lem reads: Find a € C,v # 0 such that:

—,ul(ozvZ v) = 0 ¢i1<p<gi,1<i<m, (3.1)
vip1(di) —vi(di) = 0 1<i<m—1 (3.2)
Bt (8) = paollds) = 0 1<i<m—1, (3.3)
v1(0) = vy (ém) = 0 for Dirichlet conditions, (3.4)
v1(0) = v, (¢m) = 0 for Neumann conditions, (3.5)
v1(0) = v, (¢pm) = 0 for mixed conditons. (3.6)

In the case of an interior crossing point S we have to replace the boundary conditions by transmission
conditions for ¢ = ¢,,. Since the parameters p; are supposed to be positive, the operator corresponding
to the eigenvalue problem is elliptic with parameter, for the definition see for example [1, 21]. The
eigenvalue problem for the Lamé operator is given in [13]. The corresponding operator is elliptic with
parameter as well.

Example 3.2. In figure 5 are plotted the positive eigenvalues for the Neumann problem for the Laplace
operator on a domain with a crack (¢; = 7, ¢2 = § + ¢, ¢3 =27) for 0 < ¢ < %”



3.1 Two dimensional domains 11

VAV AVAVAVANVE

Figure 5: Positive eigenvalues for a Neumann problem

The operators A(a) have the following property:
Lemma 3.1. [1, 5] For every a € C the operator

.A(Of) : HH2(¢i—17¢i) - L2(¢07¢m) X CQdma
i=1

(Laplace: d = 1, Lamé: d = 2) is Fredholm, the pencil {A(a),a € C} is a Fredholm operator pencil
(i.e. Fredholm for every a € C and invertible for at least one o). The spectrum of A(-) consists only of
eigenvalues which are isolated points in C and which have no accumulation points in C. Further there
exist p,6 > 0 such that there are no eigenvalues in the domain {a € C: |a| > p, |Re a| < ¢ |[Im «f }, fig.
6.

Let a be an eigenvalue of A(:). By {®qk,1 < p < I(a),0 < kK < My, — 1} we denote a canonical
system of Jordan chains where @, , ¢ are the eigenfunctions and ®, ,, ., & > 0, the associated eigenfunc-
tions; I() is the geometric multiplicity of «, }°, Mo, the algebraic multiplicity of a (see e.g. [12]). For
d:= (o, pu, k) we finally set

"\ (Inr)?
0s(r0) = 3 00 7> 0. 6 € (906 (3.7

q=0
With these notations we are ready to describe an asymptotic expansion for a weak solution:

Theorem 3.1. [3] Let the right hand sides of (2.4)-(2.8) resp. (2.10)-(2.14) be such that
Fp € B%, fi € L*(Qy),
gl € H7 (i) for vip € N,
hix € H7 (vij) for vij € G.

If for a corner or crossing point S the corresponding operator pencil As(a) has no eigenvalues on the
line Re a = 1 (except for a = 1 where the geometric and algebraic multiplicities have to coincide), then
a weak solution u € H'(Q) admits the following asymptotic expansion in a neighborhood of S:

ﬁSU = Upeg + 775 Z Cérav(S(Ta (P)
0€EAg
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Im «

Figure 6: Regions without eigenvalues (grey)

Here Ureg‘g, € H?*(Q;). Further n° is a cut-off functzon wzth = 1 in a neighborhood of S, Ag =
{6 = (a, p, k) :+ «a eigenvalue of A(a), 0 < Reaa <1, 1< (a) < Mg} 5 is a constant (stress
intensity factor) and vs are the singular functions given by ( 7).

3.2 Three dimensional domains

In three dimensional polyhedral domains singularities can arise because of corners and edges. Corre-
spondingly we have to investigate model problems which are defined in a neighborhood of corners and
crossing points and model problems which are related to the edges.

3.2.1 Corner singularities

The eigenvalue problem for corners or crossing points can be deduced analogous to the two dimensional
case:

Let S be a crossing point, Qy,...,€,;, the subdomains of 2 which contain S. Let I; be the infinite
cone with tip in S which coincides with €; in a neighborhood of S; K is the cone which coincides with
Q in a neighborhood of S. Note, that if S is an interior crossing point then K% = R?. We further denote
by G; := K; N S?, G := K% N S? the intersections of K; resp. K with the unit sphere S?; ’Yzl',l =i, N S?
for v;; € F, resp. *yl’.j’l = Y50 N S? for viji € G. The exterior parts of the boundary of G are divided in
Dirichlet (I'pj;) and Neumann boundaries (I'yey) in the same way as the exterior parts of the boundary
of 9. Further we introduce spherical coordinates (p, 6, ¢) with respect to S. We denote by G; and G,
both C [0, 7] x [0,27], the regions of the parameters (6, ¢) such that G; = {z € S%2: r =1, (0,¢) € él}
and G = {z € 8*: r =1, (A, ) € G}. For the definition of the eigenvalue problem which corresponds to
corner S we set

V:={uc H(G): U‘FD_ = 0}.
This space is equipped with the norm

1 2
2 . 2
[lull -—/G|U dw+/é‘m6¢u

+ |Bpul® dw, dw = sin 0dfdp.
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For the Laplace operator the eigenvalue problem reads: Find o € C, u € V\{O} such that

ac(a,u,v) = (o +a) Z/ 13w Uydw
~ Z”l/ 0,00, + Jpuidym)dw = 0 forall v e V. (3.8)

Before we introduce the eigenvalue problem of the Lamé operator we first give some abbreviations([16]):

cos @ sin 6 cos ¢ cos 0 —sinyp/sinf
A:= |[sinpsinf | B:= | sinpcosf | C:= | cosp/sinb
cos —sinf 0

Further we define the following bilinear forms on V x V — C:

m 3
a(u,v) = Z Z / al(.;,)chAjAhuﬁkdw for all u,v € V, (3.9)
s=1i,jkn=1"Cs
m 3
b(u,v) := Z / al(.;.,)ch(BjAh Bulm + CjA— 8%_ k) dw for all u,v € V, (3.10)
s=1i,j,k,n=1"Gs 96 8<p
“ > (s) Ou; vy, Ou; Ovy,
s=11i,j,k,h=1"Cs
+ Cth%aav; J hgui aa—Q::)dw for all u,v € V. (3.12)

Here, u; denotes the i-th component of the vector u ( ) Further a( ,)gh = 2pug0k;i0n+
AsOpp0;; are the elastic stiffness coefficients for the Lamé operator on subdomain Gs.
The eigenvalue problem for the Lamé operator reads: Find a € C, u € V\{0} such that

ac(o;u,v) = —ala+ Da(u,v) — (a + 1)b(u,v) + ab(v,u) + c(u,v) =0 forallv € V. (3.13)

The bilinear forms (3.8) and (3.13) can formally be achieved in the following way: Inserting the ansatz
U = p®u(6, ¢) into equations (2.4)-(2.8) resp. (2.10)-(2.14) on the cone K° with zero right hand sides
results in an eigenvalue problem for o and u. After multiplication by (0, ¢) and integration by parts,
one obtains equation (3.8) resp. (3.13).

Since the bilinear forms (3.8) and (3.13) are continuous there exists for every a € C a unique continuous
linear operator A.(a) : V — V' such that

(Ac(a)u,v>(‘~/,"~/) = ac(o,u,v) for all u,v € V.

Lemma 3.2. /3, 18] The bilinear form a. for the Laplace resp. the Lamé operator has the following
properties:

1. VB <deR Jegs,Ag5 > 0, such that Va € C with Re a € [3, 0] and |a| > Ag s there holds:

Hu||§{1((G)’a) < s Re ac(a,u,u) YuceV. (3.14)

2 2 2 2
Here we have set [[u]3p1((gy ) = o2 lull2a(g) + lul? g
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2. The operator pencil {Aq(a), a0 € C} is a Fredholm operator pencil. The spectrum consists only of
eigenvalues of Ac(-). These eigenvalues have finite algebraic multiplicity. There is only a finite
number of eigenvalues in any strip of the form Re a € [3,0].

3. If ag is an eigenvalue, then the same is true for —1—ag and the geometric and algebraic multiplicities
of both coincide.

Proof. Estimate (3.14) can be shown for transmission problems in the same way as in the proof of
Prop. 8.4 in [3]. We only need the coercitivity of the bilinear form a in (2.3) resp. (2.9). For the
Fredholm property of A, we follow the arguments in [3]: According to the first statement of this lemma
there exists ag € C such that A.(ag) : V — V' is invertible. For any a € C there holds: A.(a) =
Aclag) + (Ae(a) — Ag(ag)). We now prove that A.(a) — Ac(ag) : V — V' is compact. As a consequence,
Ac(a) then is Fredholm.

We begin with the Laplace operator: Let (u,)nen C V be bounded. Since the embedding V — L2(G) is
compact, there exists u* € L?(G) and a subsequence (uy, )gen for which u,, — u* in L?(2). Therefore

[(Ac(a) = Ac(ao)) (un, = un)l[y = up |ac(a; tiny, = tny, v) = ac(@o, tny, = tn, v)
v ‘7:

< (o, 0) lttn, = i 2

thus (Ae(@) — Ac(ag))(un,) converges in V.
For the Lamé operator we prove with the same arguments as for the Laplace operator that the operators
M :V — V' defined by (Mu,v)(f,,’f/) = a(u,v) (from equation (3.9)), and T : V — V', defined by
(Tu, v)(‘;, 7 = b(v,u), are compact operators. With similar arguments to those in the proof of Schauder’s
Theorem (compact operators and adjoint operators, [28, Satz I11.4.4]) one then proves, that the operator
B :V — V', which is defined by (Bu,v)ay’{/,) = b(u,v), is also compact. Thus A.(a) — A:() is a
compact operator.
The properties of the spectrum of Fredholm operator pencils are described in [5].

The eigenvalues of the bundle A.(c) which correspond to the Laplace operator are given by oy + =

2
G C S%. The eigenfunctions of a4+ and oy _ coincide, there are no associated eigenfunctions, see also

Lemma 5.1.

—14 1/% + Ag, where Ay > 0 are the eigenvalues of the transmission Laplace-Beltrami operator on

For the Lamé operator, assertion 3. is a conclusion of Theorem 1.2.2 in [13] together with the inequality
~ 1 )
Vue V\{0}, BeR: ac(—§ +iB,u,u) > 0.
This inequality can be shown with similar calculations to those in [13], pp. 108. O

Let a be an eigenvalue of A, and {¥, 4, 1 < p < I(a),0 < kK < Mg, — 1} a canonical system of
Jordan chains. With v = (a, u, k) we set

—~ (Inp)
q!

w'y,C(Pa 0,p) = ‘I’a,u,nfq(ea ©). (3.15)

q=0
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Figure 7: Model problem of a crossing point s on an edge

3.2.2 Edge singularities

For the edge singularities we investigate the following model problem: Let s be a point on an edge far
from corners or crossing points. We use local Cartesian coordinates (x,y,2z) with origin in s such that
the edge is part of the z axis, see fig 7. We denote by Q1,...,Q,, those subdomains of {2 which contain
s. Let further D; be the dihedron which coincides with €; in a neighborhood of s. In the (z,y) plane we
introduce polar coordinates (r, ¢). Then the dihedrons are given by

D; = {(xayaz) : (xay) € Cs,iaz € R},

where
Coi={(z,9) €ER? : 1 >0,¢i-1 < ¢ < ¢;}.

Here the numbering of the subdomains is such that ¢y < ... < ¢, < o + 27. Finally D = {(z,y, 2) :
r >0, < ¢ < b, z € R}. Writing the principal part of the operators (2.4)-(2.8) resp. (2.10)-(2.14)
in this coordinate system gives the following model problem

Au=f, z € D’

Fourier transform of the model problem with respect to z, 9, — i&, results in a boundary transmission
problem with parameter ¢ on the two dimensional cone Cy := {(z,y) : ¥ > 0, ¢g < ¢ < P }:

A(é.’DvaDy),&’(gvl‘ay) = f(faway)v (f,y) € Cs-

This problem can be investigated with the method for two dimensional domains: As a new model problem
we consider the principal part A° of A(¢, D,, Dy) on the two dimensional cone Cj:

.AO(DI,Dy)’LL:f, (Qf,y) € Cs.
Note that A° is independent of ¢.

Example 3.3. We set a(z,y) := (uz(2,y),uy(z,y)), (#,y) € Csi = {(z,9) : 7 >0, di1 < ¢ < i}
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Then for the Lamé operator this model problem reads:

— (s + (s + ) grad div (@) = 0, (z,9) € Oy (3.16)
u; = 0 Dirichlet conditions, (3.17)

oi(u;)7n; = 0 Neumann conditions, (3.18)

—pilu, = 0, (z,y) € C, (3.19)

u, = 0 Dirichlet conditions, (3.20)

Ou = 0 Neumann conditions (3.21)

o
together with the transmission conditions which are decoupled as well. The equations for @ correspond
to those for plane strain where €13 = €93 = £33 = 0.

Polar coordinates (r, ¢) for (z,y) and Mellin transform with respect to r lead to an operator bundle
A¢(a) whose eigenvalues and eigenfunctions occur in the asymptotic expansion. The bundle A, has the
properties given in Lemma 3.1.

Let a be an eigenvalue of A., {®q 4k, 1 < p < I(@),0 < & < My} a canonical system of Jordan
chains. For § = (o, u, k) we set

K 1 q
1)5’6(7’, (P) = Z ( I;T) @a,u,ﬁ—q((;o)a r> 07 NS (¢07 ¢m) (322)
q=0 '

Remark 3.1. It follows directly from (3.16)-(3.21) that the spectrum of A, for the Lamé operator
consists of the corner eigenvalues of the two dimensional Lamé operator and those of the two dimensional
Laplace operator.

3.2.3 Asymptotic expansion of a weak solution

We are now ready to describe asymptotic expansions of weak solutions.

Theorem 3.2. [3] Let Q@ C R3 be a composite. For the right hand sides we assume
Fp € B3, f, € L2(),
91y € H?(vig) for ik €N,
hix € H? (vijy)  for vijx € G.

Let further u € H'(Q) be a solution of (2.4)-(2.8), resp. (2.10)-(2.14). For a crossing point S we denote
by n° a cut off function with n = 1 in a neighborhood of S. Eg is the set of all edges crossing at S.
Let 0 < s < 1 such that there are no eigenvalues of the corner operator pencil A.(8) on the line Re f =
—% + s and no eigenvalues of the pencils Ac(a), e € Eg, on the line Re a = s.

Then a weak solution u € H' () has the following asymptotic expansion:

nSu = Upeg + n® Z CB,Mpﬁw%c +n° Z Z RelegM)revse. (3.23)
YEAS e€Es 6€A,
Here ureg‘Ql_ € H'5(Q;). Further Ag = {y = (B,u, k) : B = eigenvalue of A.(3), Re B €] — %, —% + s[,
1< p<IB),0 <k < Mgyt Ae = {0 = (o, 1, k) = o = eigenvalue of the edge pencil Ac(a), Re o €
10,8, 1 < p < I(),0 <k < Moy b, € € Es. ¢y are constants, co € HS ™R Y(R) and R, is a smoothing
operator, see [3, 22]. Finally p denotes the distance to the corner S, r. the distance to edge e. v, are
the singular functions given by (3.22), w, . the singular functions in (3.15).
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Remark 3.2. The eigenfunctions and associated functions ¥, , , of the corner pencil A, are solutions
of elliptic boundary transmission problems on non smooth two dimensional domains. These functions
can also be splitted into singular functions and a smooth remainder.

Remark 3.3. If S is a point on an edge and no corner or crossing point then the sum Z’yEAs vanishes
in the expansion (3.23).

Corollary 3.1. If for all corners and edges of €2 there holds that there are no eigenvalues of the corre-

sponding operator pencils in the strip Re 8 €] — %,8] for corners and Re a €]0, % + €] for edges with a

small ¢ > 0, then we have for a weak solution with right hand sides as in Theorem 3.2: u‘Q € H%“(QZ)
The Sobolev embedding theorem then shows U‘Q, € C().

In chapter 5 we will deduce sufficient conditions on the geometry and parameters which guarantee
that the strips in Corollary 3.1 are free of eigenvalues. For this we need a homotopy argument which will
be presented in the next section.

4 A homotopy method

The homotopy method is used to carry over estimates for the eigenvalues of “easy” problems to more
complicate problems. To do that we use a version of Rouché’s Theorem for analytic operator valued
functions. Further we need Lemma 3.1 and Lemma 3.2 which describe domains in the complex plane
where no eigenvalues of the pencils A, or A, are situated.

Let D C C be a domain, i.e. open and connected. We consider analytic Fredholm operator pencils
A:D — L(X,Y), X,Y Banach spaces. Let I' C D be a closed simply connected curve, piecewise smooth,
where the surrounded domain @ is contained in D. The algebraic multiplicity m(T, A) of A with respect
to the contour I' is

m(T, A) := Z m(ao, A).

The sum extends over all eigenvalues g in the interior of the enclosed domain, m(«ag,.4) denotes the
algebraic multiplicity of the eigenvalue «q. Since the pencil A is supposed to be a Fredholm pencil,
m(T,.A) is finite, [5].

Theorem 4.1 (Rouché’s Theorem). [5, Thm 9.2] Let H be a separable Hilbert space, D C C open
and connected and v C D a simply connected piecewise smooth curve where the corresponding included
domain Q is contained in D. Let further S1,Sy : D — L(H) be analytic operator valued functions such
that Sy is normal with respect to I, that means:

1. Si(a) is invertible for all « € T,

2. Si(a) is a Fredholm operator for all o € Q.
If for every a € T

HSl(a)flSQ(a)H <1

in the operator norm, then Si+ Ss is also normal with respect to I' and the algebraic multiplicities of Sy
and S1 + Sy coincide.
If in addition Si(c) is invertible for all o € Q then the same is true for S1 + Ss.

As a corollary we get



18 5 ESTIMATES OF THE EIGENVALUES

Theorem 4.2. Let Hy, Hy be separable Hilbert spaces, ' C C a simply connected piecewise smooth curve
with corresponding interior domain Q).
For t € [0,1] we consider a family of analytic Fredholm operator pencils of the form

Ay C— L(H1,Hy) : a— Ai(a) = (1 —t)Ag(a) + 1AL ()

where Ay, Ay : C — L(Hy, H2) are analytic Fredholm operator pencils. We assume for all t € [0,1] that
the pencils Ay(«) are invertible for all o € ' except a finite number of a; € I'y1 < i < 1. For these a; we
assume:

a; is an eigenvalue of Ay(-) for all t € [0, 1] with algebraic multiplicity m(«a;) which is independent of t.
Then the operators Ay(-), t € [0, 1], have the same algebraic multiplicities with respect to T'.

If there exists to € [0,1] such that A () is invertible for every o € @Q then this is true for all Ay,
t €10,1].

Proof (sketch). [9] In a first step one shows the Theorem for the case H; = Hy and when no eigenvalues
are situated on the contour I'. To do that one proves the following assertion:

For every ty € [0,1] exists a d(tg) > 0 such that for all ¢t € K(ty) := {t € [0,1] : |t — to| < d(to)} and for
all @ € T: || Ay (@) 7' (Ai(a) — Ay (@)|| < 1. Here, ||-|| denotes the operator norm.

Applying Rouchés Theorem to S; := A, S2 1= Ay — Ay, t € K(iy), it follows that the algebraic
multiplicity with respect to I' of A, is constant for ¢t € K(¢y) and finally also for ¢ € [0, 1].

In the second step one shows that due to the assumptions on the eigenvalues on I' there exists a small
neighborhood Uj; for every a; which contains no further eigenvalues of A;(-),¢ € [0,1]. We define a new
curve I which coincides with T’ outside U; and which is contained in ) N U; near the eigenvalues in such
a way that T does not contain eigenvalues of the A;. The proof for the case Hy = Ho is finished by
applying the results of the first step to the contour [. The case H, # Hy is a simple consequence. O

With the help of Lemma 3.1 and Lemma 3.2 one can extend Theorem 4.2 for operator pencils A, A, of
section 3.2.2 to infinite strips of the form {a@ € C: Re a € [a,b]}, —o0 < a < b < oo. To show that a
given operator pencil A, or A, has no eigenvalues in the strip Re « €]a, b[ it suffices to find the eigenvalues
and their algebraic multiplicities on the lines Re a € {a, b} and to construct an operator family A; as in
Theorem 4.2 where Ay = A, resp. Ay = A, and where the distribution of the eigenvalues is known for
t = 1. This method will be used in the next section to derive new estimates for the eigenvalues.

5 Estimates of the eigenvalues

In this chapter we first give an overview over existing estimates for the width of the strips in Theorems
3.1 and 3.2. The main goal is to describe a class of boundary transmission problems for which the strip
Re « €]0, 3] in the two-dimensional case and the strips Re S, €] — 3,0] for corners and Re a. €]0, 3] for
edges in the three dimensional case are free of eigenvalues. Here a quasi-monotone distribution of the
material parameters is an essential assumption which leads together with some geometric conditions to
the estimates.

5.1 Two dimensional domains

For transmission problems for the Laplace operator on two dimensional domains there exist many esti-
mates for the smallest positive eigenvalue of the operator pencil given by (3.1)-(3.5). General estimates
without any restriction on the geometry or the parameters were developed by Costabel/Dauge/Nicaise
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in [2] and by Kiihn, [14], who also developed recursion formulas (with respect to the number of subdo-
mains) for equations whose roots are the eigenvalues. It turns out that there are no general bounds for
the smallest positive eigenvalue in the case of more than two subdomains with pure Dirichlet (DD) or
Neumann (NN) conditions or more than three subdomains in the case of interior crossing points. This is
illustrated in the next example.

Example 5.1. Kellogg’s example [8] shows that it is possible to get arbitrary small positive eigenvalues
for the Laplace operator. Consider a domain as in fig. 8 with parameters p; = pu3 =1, po = g = h. The
eigenvalues which correspond to the interior crossing point are given by a = 2k, k € Z, and the solutions
of the equation cos(ar) =1 — —8h . For h — 0 or h — oo the smallest positive eigenvalue tends to 0,

(14+h)?
see also fig 8.

k

/’LQ:h Mlzl a3

Mgzl M4:h,

10 20 30 40 50

h
Figure 8: Kellogg’s example: Domain and eigenvalues

Under the assumption of a quasi-monotone distribution of the material parameters (Def. 5.1 below)
one can prove further estimates for the Laplace operator for an arbitrary number of subdomains. This was
done in [25] without any additional condition on the geometry and in [9] under an additional geometrical
assumption. Further estimates were derived in [19] where the author studies the influence of the open-
ing angles of the subdomains in detail. The estimates for the 2D Laplace operator are collected in table 1.

For the Lamé operator, numerical examples indicate that analogous estimates are valid. While for
one subdomain the position of the eigenvalues is well known, the situation is more difficult for several
subdomains. In this paper we introduce a generalized quasi-monotonicity condition for pairs (A;, ;).
Under this assumption and an additional geometric condition, which is exactly the same as in the case
of the Laplace operator, we prove estimates for an arbitrary number of subdomains. These results are
a generalization of those in [24], where estimates for two subdomains are given. The estimates for the
Lamé operator are collected in table 2.

Estimates for arbitrary elliptic problems on one (n dimensional) subdomain with conical points and pure
Dirichlet or Neumann conditions are developed in [11].

5.1.1 Quasi-monotonicity and geometric conditions

Let Q C R? be a composite (see sect. 1). For a corner or crossing point S let Qy,..., €, be those subdo-
mains which contain S. C; denotes the cone with vertex in S which coincides with €; in a neighborhood of
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S. Let the numbering of the subdomains be such that in polar coordinates C; = {z : 0 < r,¢;—1 < ¢ < ¢;}
where ¢ < ... < ¢ < o + 27, C% = {z: ¢pg < ¢ < by, }. Finally we set I';j = 0C; N OCy, fig. 4.
Quasi-monotonicity was first defined for transmission problems for the Laplace operator, [4]. We now
generalize the definition to pairs (A, p;) of Lamé constants. Here and in the sequel we denote by DD the
case of pure Dirichlet conditions on C¥, NN the case of pure Neumann conditions and by DN the case of
mixed boundary conditions.

Definition 5.1 (Quasi-monotonicity). [//

1. If S is an exterior crossing point with pure Neumann conditions or mized conditions, or if S is

an interior crossing point, then the distribution of the parameters i, ..., hm, Ay, Am 1S quUasi-
monotone with respect to the crossing point S if there exists a unique j € {1,...,m} such that
p1 <K 2 2 o oand A <L KA 2> 02 A

In the case of mized boundary conditions we require that €; is the subdomain at the Dirichlet
boundary.

2. If S is an exterior crossing point with pure Dirichlet conditions, then the distribution of the param-
ELers 1y .-y fhm, Ay« -5 Am 18 quasi-monotone with respect to the crossing point S if there exists a
unique j € {1,...,m} such that

P =2 < oS oand A 2> .00 2 A <LK Ay

For the Laplace operator ignore the \’s and replace < by < resp. > by >.

Example 5.2. In the case of the Laplace-operator and an interior crossing point where three subdomains
meet, the parameters u; are always quasi-monotone. The parameters in Kellogg’s example are not quasi-
monotone.

The following geometric conditions are closely related to the definition of quasi-monotonicity:

GC 1 Let S be an exterior crossing point with pure Dirichlet conditions (DD) or pure Neumann

conditions (NN). Let the parameters i1, ..., fim, A1, - - ., Ay be quasi-monotone with j as that index
for which we have the maximum in the case NN resp. the minimum in the case DD. The condition
reads

It e R*\{0} : € C;j and 7}t < 0, 7%t < 0.
Here we denote by 7{, 7%, the exterior normal vectors on C; resp. Cp,, see figure 9.
GC 2 Let S be an interior crossing point; let the parameters 1, ..., tym, A\, - - ., A be quasi-monotone,

j the index where we have the maximum and k the index where we have the minimum. Then the
condition is

E|t_‘6 RQ\{O} : fE Cj and — {E Cp.

Remark 5.1. If condition GC 1 holds for an exterior crossing point S then the opening angle of the
domain is < 27 in a neighborhood of S, so S is not a crack tip.
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Figure 9: Examples for GC1, GC2

5.1.2 Estimates for the Laplace-operator, 2D

It is easy to verify that the eigenvalues of the operator bundles which describe the corner singularities for
the Laplace-operator on two-dimensional domains are real and that there are no associated eigenfunctions
for non vanishing eigenvalues, [9]. Thus the asymptotic expansion of a solution u in H'(Q) has the
following simple form:

I(e)
S S e!
n u = Ureg + n Z Z CQ’MT ’Ua’u
0<a<l pu=1

with the same notation as in Theorem 3.1. v, , are the eigenfunctions to the eigenvalues «, there are no
logarithmic terms.

In table 1 estimates of the smallest positive eigenvalue are listed. We use the following notations: m is
the number of subdomains which meet at crossing point S; @ is the opening angle of the whole domain
at S, 0 < ® < 2m; @) is the opening angle of subdomain C;. We assume ®; > 0 and have ), ®! = &.
Further & = maxi<i<m{®;} is the maximal opening angle of the subdomains. By ag we denote the
smallest positive eigenvalue.

The estimates in the last row can be proved by a homotopy method. Since the arguments are the same
as in the 3D case we omit the details here and refer to the proof of Theorem 5.1.

In contrast to the case of one subdomain we get the estimate oy > % in the case DN for two or more
subdomains also for ®,, = m. The reason is that one can prove the estimate for two subdomains directly.
For more than two subdomains, the proof is based on a homotopy argument (see the proof of Theorem
5.1) which carries over the known estimate for two subdomains to the case of m > 2 subdomains.

The estimates are sharp in the sense that for every estimate in table 1 there exists an example for which
the smallest eigenvalue is arbitrarily close to the bound given there. If the conditions in table 1 are
violated, there are examples for which the smallest positive eigenvalue is lower than the bounds given in
the table.

Further estimates which take into account the parameters and opening angles more precisely were derived
in [14] for two subdomains and in [19] for an arbitrary number of subdomains. For the special case of an
interior crossing point, which is the intersection of two straight lines, Petzoldt [25] proved o > % under

the only assumption that the parameters are distributed quasimonotonely.
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Table 1: Estimates for the Laplace operator, 2D

DD or NN interior points DN
— _ T 1 _ x 1
m =1 @ =3 23 =5 > 1
m = 2 quasi-mon., ® < 7
ag> &> >1 ay > = a > &
0= 2% 200 ~ 14 0 9 0 D)
(Costabel/Dauge/Nicaise [2]) 9]
— 1
m =3 — oy > % > 1 _
m >3 quasi-monotonicity: (Petzoldt [25])
oy > % oy > % oy > %
m > 3 || quasi-monotonicity + geom. cond. GC 1,2, [9]: | quasi-mon., ® < =, [9]:
oy > % oy > % oy > %

5.1.3 Estimates for the Lamé-operator, 2D

In contrast to the Laplace-operator the eigenvalues of the operator bundles related to the Lamé-operator
can also be non real and associated eigenfunctions can exist. Thus the asymptotic expansion in Theorem
3.1 cannot be simplified in general. The estimates are collected in table 2, where we use the following
notations: m is the number of subdomains which meet at crossing point S. ® is the opening angle of the
whole domain at S, 0 < ® < 27 and g is an eigenvalue with smallest positive real part.

The estimates for m > 2 subdomains can be shown by a homotopy method which uses the same arguments
as in the proof of Theorem 5.1 for 3D corner singularities, thus we omit the details here.

5.2 Three dimensional domains

The singularities for 3D polyhedral domains can be divided into edge and corner singularities, see Theorem
3.2. The eigenvalues of the operator bundles which are related to the edges are in the case of the
Laplace-operator completely given by the eigenvalues of the corner bundles of the Laplace-operator in
the corresponding two-dimensional domain. In the case of the Lamé-operator the eigenvalues are given
by those for the two dimensional Lamé-operator and those of the two dimensional Laplace-operator on
the corresponding 2D domain, see Remark 3.1. Therefore, we consider only corner singularities in this
section.

5.2.1 Laplace-operator, 3D

The following properties of the eigenvalues of the corner bundles for the 3D Laplace are well known:
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Table 2: Estimates for the Lamé operator, 2D

DD NN interior points DN

m =1 [22]
0<d<m Reay>1 Reag>1 Rea0>%
b=m ap =1 ap =1 Re ap =
T< P2 Rea0>% Reag>% Rea0>i
¢ =2m 04(]:% 040=% Reaozi
m = 2, [24] (A1 — A2) (1 — p2) =0, quasi-monotonicity

GC 1: GC 1: S <

Rea0>% Reag>% Rea0>% Reag>%
m > 3, [9] quasi-monotonicity

GC 1: GC 1: GC 2: o<

Rea0>% Reag>% Rea0>% Rea0>%

Lemma 5.1. The eigenvalues of the bundle given by (3.8) are real, there are no associated eigenfunc-
tions. In the cases DD and DN there are no eigenvalues in [—1,0]. In the case NN and in the case
of interior crossing points there are no eigenvalues in the interval (—1,0). —1 and 0 are eigenvalues
with geometric multiplicity=algebraic multiplicity=1. The eigenfunctions to the eigenvalue a = 0 are the
constant functions.

Proof. The Lemma is a direct consequence of the properties of the eigenvalues of the Laplace-Beltrami
operator. 0

Corollary 5.1. Let u € H'(Q) be a solution of (2.4)-(2.8) with right hand sides as in Theorem 3.2.
Then there exists € > 0 such that

NoU = Upeg +1° Z Z Re(ce™ ) r* ®e.q s (5.1)
e€fs OLSE(O,%+5)
1<u<(ac)

where u,ﬂeg‘ﬂl € H%"'E(Qi), ®c.q 15 eigenfunction to the eigenvalue o of the operator bundle correspond-
ing to edge e, there are no logarithmic terms.
5.3 Lamé-operator, 3D

For the Lamé-operator there is no result like Lemma 5.1. Estimates of the real parts of the eigenvalues
are only possible for problems under assumptions which are a generalization of the quasi-monotonicity
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and the geometric conditions in section 5.1. It is still an open question whether there exist examples
where the corner bundles have eigenvalues in the strip Re « € (—%, 0), which would result in unbounded
deformation fields.

5.3.1 Estimates for one subdomain

Dirichlet-problem, [18]: Let S? := {x € R3 : |z| = 1} and G C S? be a domain. For the Dirichlet-problem
on cones of the form C = {z € R? : 1 € G} there holds: The strip Re @ € [—1,0] does not contain any
eigenvalues of the corresponding corner operator bundle.

Note that the domains described by C can also be non-Lipschitz domains.

Neumann-problem, [11]: Let ¢ be a positively homogeneous function of degree one, piecewise smooth

in R2\{0}. Consider cones of the form C = {x € R® : 23 = ¢(x1,22)}. The corresponding corner pencil
has no eigenvalues in the strip Re o € (—1,0). @ = 0 and a = —1 are the only eigenvalues on the lines
Re @ = —1 resp. Re @ = 0. The geometric and algebraic multiplicities coincide and equal to 3. The
eigenfunctions for & = 0 are given by the constant functions.

Mixed problem, [22]: For the mixed problem we need further restrictions on the geometry. If G 1 holds
(see below), then the corner bundle has no eigenvalues in the strip Re a € [—1,0].

If for example C is convex and |D| =1 or [N| = 1 then the geometric condition is satisfied.

To describe G 1 we introduce the following notation: Let C be a polyhedral cone C R? with vertex in 0.
We assume that the boundary of C can be divided in the following way into plane oriented faces (vy;, 7i;):

n

BC=U7_k,*yiﬂ*yj=V]fori7éj.
=1

7i; is the exterior normal vector on C with respect to ;. We set F = {(v;,7;), 1 <7 < n} = DUN,
D and N disjoint and not empty. We further define the following index sets: D := {k € {1,...,n} :
(ve, k) € DY, N = {k € {1,...,n} : (v, 7x) € N}. Uked Tk is the Dirichlet boundary, U, vk the
Neumann boundary. Finally

Cp = $€R32$=Z>\kﬁk,)\k>0,z>\k>0 ,
keD keD

Cny=RzeR:z= Z)\kﬁk, A = 0, Z)\k>0
keN keN
G 1: C has no cracks and Cp NCxr = 0.
It is an open question whether the estimates in the cases NN and DN still hold when the geomet-
ric conditions are violated.

5.3.2 Estimates for m > 2 subdomains

The estimates in this section we prove only for domains which have no cracks, thus we introduce a slightly
simplified notation in comparison to section 3:
Let C C R® be a polyhedral cone with vertex in 0 and C = U™, Ci, where C; are polyhedral cones
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with vertex in 0, pairwise disjoint. We assume that neither C nor C;;1 < ¢ < m, have cracks; C
and C; need not have Lipschitz-boundaries. We further assume that if mesy_1(0C N 9C;) # 0, then
there exist plane faces v;;, pairwise disjoint, such that mesN_l(Uzl:(ZI) i) = mesy_1(9C; N OC). We set
F ={v41, 1 <i<m}=DUN. The interface between C;,C; is divided into plane pieces ;;; such that
Yij1 C oC; U BCj, and we set G := {*yij,l, 1<4,5 < m}

If conversely v € G then there exist C;,C; with v as a part of the common interface. We set C;(7y) :=
Ci, C2(7y) := Cj and pu] = i, pg = Cj, (the same for X). Finally we denote by 7] the exterior normal
vector to «y with respect to Ci(y); @] := 12',“7 and iy := ﬁj‘y. If v € F we denote by 717 the exterior
normal vector to the cone whose boundary contains 7.

If it is clear to which boundary v we refer, we omit the index y. We are now ready to give the main
theorem of this work.

Theorem 5.1. (> 2 subdomains, Lamé-operator) We assume that the Lamé constants satisfy p; > 0,
Ai + i > 0.

1. Pure Dirichlet conditions, F = D: Let C be an arbitrary polyhedral cone which is divided into sub-

cones C;. Let further t. 1o, 15 € R with t_;f; = 0;; such that the following three conditions are
satisfied:

(a)
(b)
(c)

it <0,
R M) > 0, 2} (s — i) > 0,
fit <0,
tari] (A] = AJ) =0, toni] (u] — p3) >0,

VyeD:

Vyeg:

Vv €D with it =0 :
Vyeg withﬁ'{flzo:
VyeD with@ || t3: 137 <0,

VyeGwithit] | T3:  Bit] (] = X3) >0, & (4] — p3) > 0.

Then there are no eigenvalues of the corresponding corner bundle A, in the strip Re a € [—1,0].

2. Pure Neumann conditions, F = N': Let C be a cone which is given by a function ¢ as in section
5.3.1 and divided into subcones C;. Let further {1,{2,% € R3 with t_;t_; = 0;; such that the following
three conditions are satisfied:

(a)

VyeN:
Vyeg:

it <0,
t_‘lﬁfly(xly o XQY) <0,

VyeN with it =0:
V’yEQwithﬁYﬂzO:
Vo €N with @ || t3 :

(b)
(c)

tri7 <0,
tafif (A} — A3) <0,
t37? < 0,

Vyeg withil | d: (] - XD <0, i (u] - ) <.
Then the only eigenvalues of the corner bundle A, in the strip Re a € [—-1,0] are —1 and 0. The
algebraic and geometric multiplicities coincide and equal to 3. The eigenfunctions of a = 0 are the
constant functions.

3. Mized conditions: Let C be a cone which satisfies condition G1 in section 5.3.1 and which is divided
into subcones C;. Let further ﬂ,{g,t_z), € R? with t_;t_; = d;j such that the following three conditions
are satisfied:
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(a) VyeD: 't <0,
VyeN: 7t >0,
Vyeg: ] (A = A3) >0, fit] (u] — p3) >0,

(b) Yy eDwithi't) =0: i7" <0,
Vv eN with @t =0: tyi? >0,
Vy € G with WH =0: BAl(\] =) >0, Bl (u] — ud) >0,

(c) VyED with@ | t3: 137 <0,
VyeN with @ || i3: 377 >0,
Vv € G with ] || 3 : t3n] (A] — AJ) =0, t37] (u] — pg) > 0.

Then there are no eigenvalues of the corner bundle A, in the strip Re o € [—1,0].

4. Interior crossing points: Let C = R? be divided into polyhedral subcones C;. If there exist t_'l,t_é,t_é €
R? with t_;t_; = 0;j such that

(a) Vy€G: Bl (A = A3) <0, f17] (] — p3) <0,

(b) ¥y eG withitlti=0: il (\] = 13) <0, &it] (u] — n3) <0,

(c) WyeGuithi | Ty: D]\ - A) <0, il (u] - p)) <O,
then the only eigenvalues of the corner bundle A, in the strip Re a € [=1,0] are —1 and 0. The
algebraic and geometric multiplicities coincide and equal to 3. The eigenfunctions of a = 0 are the

constant functions.

n
n

The conditions in the cases DD and NN for two subdomains with a plane interface are exactly the
conditions in [24]. Therefore the proof of Theorem 5.1 is a generalization of the proof in [24]. Rewriting
Theorem 5.1 for two dimensional domains shows that the conditions are satisfied if and only if the
parameters of the two dimensional problem are quasi-monotone and if the conditions GC 1 resp. GC
2 are satisfied. The conditions in Theorem 5.1 can be seen as a generalized quasi-monotonicity with
additional geometric conditions.

Corollary 5.2. If for every corner the assumptions of Theorem 5.1 are satisfied, then for all edges e,
the corresponding edge bundles A.(f) have no eigenvalues in the strip Re 5 € (0, %] Thus ’U,‘Q € C()

(if the data are as in Theorem 3.2).

Proof. From the assumptions about the corners one can easily derive the assumptions of section 5.1.1 for
two dimensional problems. The assertion follows with Remark 3.1. O

The proof of Theorem 5.1 is based on a homotopy argument for an operator family A.; which describes
for t = 1 the given operator pencil A, on m subdomains and for ¢ = 0 an operator pencil on one
subdomain where we know the distribution of the eigenvalues. The conditions G1 in the case DN and
the assumption that C can be described by a function ¢ in the case NN are required to guarantee that
the problems on one subdomain do not have eigenvalues in the strip Re o € (—1,0).

Example 5.3. Consider Fichera’s corner in fig. 10. If all the boundaries which contain crossing point
S are Dirichlet boundaries and if Ay < Ay < A3 and 1 < po < pg then the conditions of Theorem 5.1 1.
are satisfied. If all boundaries are Neumann boundaries, we have to replace < by > to satisfy Theorem
5.1 2. If we consider mixed boundary conditions at S with Dirichlet conditions at the parts of 9; and
093 which contain S, then condition 3. of Theorem 5.1 is satisfied if A3 < A1 < Ao and pz < p1 < 9
(this is the only possible choice in that case).
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Q3

Figure 10: Fichera’s corner with 3 subdomains

5.3.3 Proof of Theorem 5.1

The proof is based on a homotopy argument. We begin with the Dirichlet problem. In a first step we
prove that there are no eigenvalues of the corresponding operator bundle A. on the lines Re o = —1
and Re a = 0. Due to the symmetry of the eigenvalues ( Lemma 3.2) we can restrict ourself to the line
Re @ = 0. In a second step we construct an operator family A, (a) for which we can apply Theorem 4.2.

First step: We prove by contradiction that there are no eigenvalues of the operator-bundle A.(«) on
the line Re a = 0.

Let C be a polyhedral cone with tip in 0 and properties as in Theorem 5.1.1 (Dirichlet problem). Assume
that there is an eigenvalue o with Re a@ = 0 and a corresponding eigenfunction ¥ # 0. Then the function
i := p*¥ (p distance to 0) satisfies for k € {1,2,3}:

Here we have set C; 5 := {# € C; : 6 < |Z < 1} for a given ¢ € (0,1). With (-,-) we denote the inner
product in C3; for A, B € C**? we define A : B = tr(ZtB). Equation (5.2) can be derived by Green’s
formula and the product rule, taking ;4 as a test function. Using Gauss Theorem we get:

Ms

/86 (N [tr (@) + 2 (@) ) nl, ds

l

—_

1=

Ms

/ 2 Re (o (u;)7;; Opti;) ds, (5.4)

i=1 aCi(d
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where 7; denotes the exterior normal vector on C;(d). The integrals over the sets {x € C; : |z| = 1} and
{z € C; : || = §} vanish because of the special form of 4. It remains (ys = {z € y: 0 < |z] < 1}):

’)/Eg s

3 2Re / (07 ()77 Oh] — D) ds
YEG

b 30 [ ot ) i) — 2Re(on )iy, ety s 55)
YyED

Let v € D. Using the Dirichlet conditions we get ‘Z—? = 0 on ~ for all ¢ with fﬁA, = 0. Thus we have
Okt = (ﬁv)k% and therefore:

(0 (1l )iy Opig) = (7iy) k0 (1) = £(y). (5.6)

Local coordinates on the interfaces: Let v € G. We introduce a local Cartesian coordinate system which
is spanned by @y,d»,7, with positive orientation. We set Q. := (d1,d2,7,) and V,@ := VuQ. For
W = Qi we further set E() := (Vi + (V,@)T), S;(i) := X tr E() + 2, E(0). One finally gets
the following relations between the original coordinates and the transformed system:

(i) = QE@)QT, tre(d) = tr B(w), |tre(@))® = |trE(@)?,
e(@)? = |E@@)?, 0i(@) = QSi(@#)Q", 0i(a) : (i) = Si(w) : E(w).

The transmission conditions for & € y are transformed as follows:

Inserting the Dirichlet transmission condition we get

0 = -
(7 ()i O] — ) = (81 (@) 0| s 25 _ 0Ty sy
1 (9n1 (9n1

Inserting the last equation and (5.6) into (5.5) gives:

0 — ZW/ B(@) - S) (@) : B())) ds

YEG
0
. . ow]  Owl
- Zn?ZRe (S (@) |0 ;——o'ly_——r2y>d8
on on
v€G 78 1 1 1

_ 2777/7 o (i) : (i) ds. (5.9)

v€D
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Using again the transmission conditions on y we get the relations, see also [23]:

Eii(w) = Eji(h), 1= 1,2,
p1 B (W) = poEiz(ws), i = 1,2,
2,U,1E33(161) + )\1 tr E(’Lﬁl) = 2,U,QE33(’LBQ) + )\2 tr E(’LBQ)

(A2 + 2p2) Bsg (1) = (2p1 + M) Bss (1) + (M — Aa) > Eii (i)
After short calculations analogous to those in [23] we get from (5.9) and the above relations:

0 = / (1 — p2) (| Bva (1) + | Baz (1) [” + 2| Era (1))
v€EG s

+4£(u1 — 112) (| Bra (i) |* + | Baa (1) )

(A1 — A2) (M1 + 2p2) L2
tr B/
* A2 + 2/9 [br ()
(A1 = A2)(p1 — p2) =
4 E tr B/
+ )\2 i 2,[1,2 Re ( 33(’([)1) T (wl))
(A2 +2u1) (1 — p12) SN2
2 E d
+ ot 2 | B33 ()| ) s
- Z _’7/ oy (i) @ e(iiy) ds
’YED s
_. Zﬁ}/ B (@) ds — Zm/ o (iT,) : (i) ds. (5.10)
vEG e ~ED e

The last equation is the essential equation of this proof. Scalar multiplication of (5.10) with t1 of Theorem

5.1 gives:
Z it /B'y )ds — Z n,ytl/ oy (i) : e(iiy) ds. (5.11)
vEG Vs vED
ﬁ?i‘l#(] n7t1750

Assumption 1.(a) of Theorem 5.1 together with Lemma 5.3 (subsequent to this proof) shows
Vy € G with ii]t; #0: ﬁ}a/ B] («ii]) ds > 0,
Vs
Vv € D with it #0 : ﬁﬁﬂi/ oy (ty) : e(iiy)ds < 0.
s

Thus equation (5.11) is satisfied iff
Vy € G with @]ty #0: B (@]) =0, (5.12)
Vy € D with '8 #0: o,(id,) : (i) = 0. (5.13)

In the same way we conclude for the remaining boundaries and interfaces. Thus we finally get (5.12),
(5.13) for every v € D resp. v € G. Using Lemma 5.3, we get from these equations for all v € G:
1. Case, u] — pg # 0: E(wy) = 0 = E(1) on v and therefore e(u]) = 0 = e(d;) on 7.
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2. Case, ] = ug, A # A\J: tre(@]) =0 = tre(d]) on 7.
For v € D we have ¢(u”) = 0 on 7.

Since @ is a solution of the homogeneous boundary transmission problem we conclude: For every

i =1,...,m the function tre(i;) is a solution of the following problem in cone C;:
(tr e(d;))) = 0 inCy, (5.14)
( z) = 0 on 801 (5.15)

Further tre(ii) = p~'1%8% (follows from the ansatz for @) which finally leads to tre(i;) = 0 on C;. This
follows with the help of Lemma 5.1.

1. Case: If for a sub cone C; there holds e(u;) = 0 on 9C;, then each component ey(@;) of e(u;) is a
solution of:

AEkl(ﬁi) = 0 inCi, (5.16)
5kl(ﬁi) = 0 on 801 (5.17)

Again with Lemma 5.1 there follows £(@;) = 0 in C; and finally #; = const on C;.
2. Case: If y; = p; for two neighboring cones C;,C;, then o;(i;) = 2ue(d;) = 2pe(id;) = o4(d;) on
v =0C; N AC;. Here we used tre(u;) = 0 on C;. Therefore 4 is a solution of

— (it 4+ (N + pi)grad diva) =0 in C; U Cj,

the cone C; UC; can be considered as one cone with the parameters y;, A;. Rejoining all neighboring cones
with p; = p; results in a cone C for which ji # py, for all neighboring cones Cj,. The same considerations
as i ; = const.

Finally we have @ = const on C and together with the Dirichlet conditions: @ = 0 on C. This is a con-
tradiction to the assumption % # 0, thus the line Re @ = 0 does not contain eigenvalues of the operator
pencil which corresponds to the Dirichlet problem. Using the symmetry of the eigenvalues the same is
true for the line Re a = —1.

Second step: Applying the homotopy argument of Theorem 4.2 to the operator family A; given by
pi(t) == (1 — )1 + tui, Ai(t) := (1 — t)A1 + tA; finishes the proof since there are no eigenvalues in
the strip Re @ € [-1,0] for ¢ = 0 and for all ¢ € [0,1] there are no eigenvalues of A; on the lines
Rea=—-1,Re a=0.

Mixed problems: We use the same arguments as for the Dirichlet problem. The essential equation here is

0—2"7/ ds—Zn,y/ oy (ty) : e, ds+Zn7/ () : () ds. (5.18)

YEG vEN Vs

which replaces equation (5.10). By analogous arguments we conclude that there are no eigenvalues on the
lines Re o € {—1,0}. Condition G1 guarantees that the problem with y; = p;, A; = A;j on all subdomains
has no eigenvalues in the strip Re a € [—1,0].

Neumann problem: Here, equation (5.10) is replaced by

0= Zﬁ}ﬂ By ds + Y ﬁv/ o (1) : (i) ds. (5.19)

vEG YEN s
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With similar arguments to the Dirichlet case one proves that o = 0 is the only eigenvalue on the line
Re a = 0 with the constant functions as eigenfunctions. By symmetry, —1 is the only eigenvalue on the
line Re @ = —1. By calculations similar to those in [13, pp. 127] one can prove that there are no asso-
ciated eigenfunctions for the eigenvalue o = 0. Thus the geometric multiplicity = algebraic multiplicity
= 3. The proof finishes with a homotopy argument.

Interior crossing points: The case of one subdomain (i.e. C = R?) is treated in Lemma 5.2 subsequent to
the proof. For the case of m > 2 subdomains we proceed as in the Neumann problem, where equation
(5.19) is replaced by

0=> 7] /% B () ds. (5.20)

YEG

This finishes the proof of Theorem 5.1. O

5.3.4 Two auxiliary Lemmata

Lemma 5.2. The eigenvalue problem corresponding to the equation
AT+ (A + p)grad div @ =0, 2 € R3\{0} (5.21)

(here, O is the “vertex” of the cone) has exactly the eigenvalues oy = 0, k € Z. The eigenvalue ag = 0
has geometric multiplicity = algebraic multiplicity = 3 and has the constant functions as eigenfunctions.

Proof. Let i = 7 be a solution of (5.21). Then tre(i) = ' is a solution of
Atr(e(d)) =0 in R?.

Thus a — 1 = % + \/% + A, where ) is an eigenvalue of the Laplace-Beltrami operator on the whole

sphere S§? and 7is a corresponding eigenvector. The eigenvalues of the Laplace-Beltrami have the form
An =n(n + 1), n € Ny, the geometric multiplicity is given by K, = 2n + 1 [20], there are no associated
eigenfunctions. O

Lemma 5.3. [24] Let py,pua > 0, X\j +p; >0, i =1,2. For z,y € C we set
bz, y) i= (A1 = A) (M + 2u0) [ * + 4(A1 — Xo) (1 — pio) Re (yT) + 2(ha + 2p1) (1 — p12) [y[* -

There holds:

i.) p1 = pe and Ay = Ay = b(z,y) > 0,Vz,y € C.

ii.) p1 > po and Ay > Ay = b(z,y) > 0,Vz,y € Ciy #0.

ii1.) p1 < po and A\ < Ao = b(z,y) <0,Va,y € C.

iw.) p1 < po and Ay < Ao = b(z,y) < 0,Vz,y € Ciy #0.

v.) p1 = pg and Ay # Ao, then b(z,y) =0< x = 0.

The Lemma is proven with similar arguments to those in [24].
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