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Regularity results for transmission problems for theLaplae and Lam�e operators on polygonal or polyhedraldomainsDorothee Knees�AbstratBoundary value problems for the Laplae and Lam�e operators with pieewise onstant materialoeÆients are investigated on polygonal or polyhedral domains. Beause of geometri peuliaritiesand non-smooth material onstants the solutions and espeially the derivatives have a singular behaviorin a neighborhood of orners, edges and rossing points. For 3D problems for the Lam�e operator it isnot lear if the displaement �elds are bounded. In this paper we derive suÆient onditions on thematerial onstants and geometry whih guarantee that weak solutions of the BVPs are bounded andpieewise ontinuous. We further give a short overview over known results.1 IntrodutionIn this paper we onsider boundary transmission problems for the Laplae and Lam�e operators on po-lygonal or polyhedral domains. It is well known that harmoni and linear elasti �elds have a singularbehavior near geometrial peuliarities suh as orners, edges, rossing points or rossing edges. Thesingular behavior an be haraterized by an asymptoti expansion for weak solutions u in a neighborhoodof a orner point S. For 3D polyhedral domains the expansion has the following form:Let u 2 H1(
) := fu 2 L2(
) : u��
i 2 H1(
i)g be a weak solution for the Laplae or Lam�e equationswith pieewise onstant oeÆients on 
i � R3 ; 
 = [i
i, 
i polyhedral. Then u an be deomposed inthe following way in a neighborhood of a orner point S [3℄:�Su = ureg + �Suedge + �Suorner:Here, ureg��
i 2 H2�"(
i) for a small " > 0, �S is a ut-o� funtion. Furtheruorner = X� 12<Re �j< 12�" j ��jWj(ln�; �; '); (1.1)where (�; �; ') are spherial oordinates. Finallyuedge = Xedges e X0<Re �j;e<1�" d�e(ze; �) r�j;ee Vj;e(ln re; '):Here we sum over all edges e whih ontain S, re is the distane to edge e. The regularity of a weaksolution is determined by the smallest real parts of the singular exponents �j ; �j;e. If there are no edge�Mathematishes Institut A, Universit�at Stuttgart, Pfa�enwaldring 57, 70569 Stuttgart, Germany,kneesde�mathematik.uni-stuttgart.de 1



2 2 FORMULATION OF THE PROBLEMexponents �j;e in the strip Re � 2℄0; 12 ℄ and no orner exponents �j in the strip Re � 2℄� 12 ; 0[ then wehave the following regularity result for weak solutions: �Su��
i 2 H 32+"(
i) whih is embedded in C(
i).The main goal of this paper is to desribe lasses of transmission problems for whih weak solutionsadmit an asymptoti expansion as in (1.1) where no edge exponents are situated in the strip Re � 2℄0; 12 ℄and no orner exponents in the strip Re � 2℄� 12 ; 0℄. These lasses onsist of transmission problems withan arbitrary number of subdomains where the material parameters are distributed quasi-monotonely andwhere some additional geometri onditions are satis�ed. In the two dimensional ase there are exampleswhih show that if these onditions are violated there an be stronger singularities, [8℄, whereas in thethree dimensional ase suh examples are unknown for the Lam�e operator.The paper is organized as follows: In setions 2 and 3 we give the basi de�nitions and reall asymptotiexpansions for weak solutions, [10, 3, 24℄. In setion 4, a homotopy argument based on Rouh�e's Theoremfor operator-valued funtions is presented whih we will use in setion 5 to prove the main result formu-lated in Theorem 5.1. In this Theorem we desribe in detail the assumptions on the material parameters(quasi-monotoniity) and the geometry whih guarantee that there are no orner exponents in the stripRe � 2℄ � 12 ; 0[. For boundary value problems whih satisfy these onditions we then get the regularityu��
i 2 C(
i). The main idea of the proof is to arry over known estimates of the exponents for problemswith onstant parameters to problems with pieewise onstant parameters by a homotopy argument.A short overview of known estimates of the singular exponents will also be given in setion 5. There isa variety of estimates for the Laplae transmission operator on 2D domains [2, 14, 24, 25, 19℄ whih wesummarize in table 1. In ontrast to the Laplae operator, there are only few results for transmissionproblems of the Lam�e system in the literature. Estimates for one subdomain were derived in [7, 22, 12, 26℄.The results presented in this paper are a generalization of those in [24℄, where estimates for boundarytransmission problems on two subdomains with a plane interfae were developed.2 Formulation of the Problem2.1 DomainsIn this paper we will onsider polygonal or polyhedral domains 
 � RN , N = 2; 3, whih are divided intopolygonal or polyhedral subdomains. In order to inlude domains with raks and other non-Lipshitzdomains, we �rst introdue the notion of generalized polyhedrons and omposites. In setion 2.2 theorresponding Sobolev-spaes and needed trae theorems will be spei�ed.2.1.1 Generalized polyhedronsLet 
 � RN , N = 2; 3, be bounded and let the one property be satis�ed:De�nition 2.1. [29, Def. 2.2℄ 
 � RN satis�es the one property if for every x 2 
 there exists an openspherial one C(x) with vertex in x whih is ongruent to a �xed one C0 and C(x) � 
.We further assume that �
 is the union of oriented N � 1 dimensional plane surfaes, that means:There is a �nite number of pairs (�i; ~ni) with �i � �
 suh that1. �
 = [i�i,
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Figure 1: Generalized polyhedrons2. Every �i is an open onneted polygonal subset of a N � 1 dimensional hyperplane, �i has aLipshitz boundary. ~ni is a unit normal vetor on �i for whih we assume: 8x0 2 �i 9 Æ(x0) > 0suh that 8 0 < Æ < Æ(x0) there holds: x0 � Æ~ni 2 
.3. 8i; j : if �i \ �j 6= ; and ~ni = ~nj, then �i = �j.4. If S := (int
)n
 6= ; (i. e. if 
 has raks) then there exist (�i1 ; ~ni1); : : : ; (�il ; ~nil) where the �ij arepairwise disjoint and S = [16j6l�ij .Further there exist (�k1 ; ~nk1); : : : ; (�kl ; ~nkl) with �kj = �ij and ~nkj = �~nij for 1 6 j 6 l.Domains whih satisfy these onditions will be alled generalized polyhedrons.These onditions an be interpreted as follows: �
 is divided into plane faes �i. To eah �i is assoiateda normal vetor ~ni whih is direted to the exterior of 
 if a part of �i is ontained in the exteriorboundary of 
. If 
 has a rak S then S shall be overed twie by the (�i; ~ni) suh that one an identifyleft and right rak sides (with the orresponding normal vetors). Two di�erent parts �i and �j mayonly interset if ~ni = �~nj (this an happen at a rak only).Example 2.1. Every standard polyhedron and polyhedrons with raks are generalized polyhedrons. In�g. 1 generalized polyhedrons are plotted whih have no Lipshitz boundary.2.1.2 CompositesWe now introdue omposed polyhedral domains where we will study transmission problems.Let 
 � RN be a generalized polyhedron. We assume that 
 is divided into a �nite number of generalized
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Figure 2: Examples for omposites, 2D and 3D
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Figure 3: Example for a omposite with rak, 2Dpolyhedra 
i in the following way: 
 = M[i=1
i;where 
i \ 
j = ; for i 6= j; 
i � 
 and if Si := int(
i)n
i 6= ; then Si � �
. Suh domains will bealled omposites, �g. 2.To desribe the boundary �
 we introdue the notation, �g. 3:If mesN�1(�
\�
i) 6= 0 then we divide the ommon boundary into oriented parts (i;l; ~ni;l), 1 6 l 6 n(i),suh that:i;l is an open subset of a N � 1 dimensional hyperplane, i;l has a polygonal Lipshitz boundary andi;l � �
i\�
; ~ni;l is normal to i;l and for �i := Sn(i)l=1 i;l there holds: mesN�1(�i) = mesN�1(�
i\�
).Further the pairs (i;l; ~ni;l) satisfy 2. and 3. in setion 2.1.1 and in addition:4'. If Si := (int
i)n
i 6= ; (i. e. if 
i has raks) then there exist (i;l1 ; ~ni;l1); : : : ; (i;lk ; ~ni;lk) where thei;lj are pairwise disjoint and Si = [16j6ki;lj .Further there exist (i;s1 ; ~ni;s1); : : : ; (i;sk ; ~ni;sk) with i;sj = i;lj and ~ni;sj = �~ni;lj for 1 6 j 6 k.For the interfaes we use the following notation:If mesN�1(�
i \ �
jn�
) 6= 0 then we divide the interfae of 
i;
j into plane faes ij;l; 1 6 l 6 n(ij):ij;l is an open subset of a N � 1 dimensional hyperplane and has a polygonal Lipshitz boundary;ij;l \ ij;k = ; for l 6= k and for �ij := Sn(ij)l=1 ij;l there holds: mesN�1(�ij) = mesN�1(�
i \ �
jn�
).For ij;k 2 G we denote by ~nij;k the exterior normal vetor of ij;k with respet to 
i, by ~nji;k the exteriornormal vetor of ij;k with respet to 
j.Finally we ollet the parts of �
 in the set F := f(i;l; ~ni;l); 1 6 i 6M; 1 6 l 6 n(i)g =: D [ N ,where D;N are disjoint and haraterize the Dirihlet- and the Neumann-boundary respetively. G :=fij;k; i; j; kg desribes the interfae.By S we denote the set of geometrial singularities whih onsist of orners and edges.



2.2 Spaes 52.2 SpaesThe following Sobolev spaes will be used:Let l 2 N0 ; 
 � RN be an open, onneted domain.H l(
) := fu 2 L2(
) : D�u 2 L2(
); 0 6 j�j 6 lg:Here, D�u is the distributional derivative of u , � is a multi-index. (H l(
); k�kHl(
)) is a separable Hilbertspae with the usual norm and inner produt, [29℄. If 
 is a omposite, we setHl(
) := fu 2 L2(
) : u��
i 2 H l(
i)g:We shortly write ui for u��
i . For 
 � RN ; open, D(
) is the set of in�nitely di�erentiable funtions inRN with ompat support in 
, D(
) = fu��
 : u 2 D(RN )g.We further need the following trae spaes for l = 1; 2; : : :: Let 
 be a omposite,  2 G [ F .H l� 12 () := D()k�kHl� 12 () ;where the norm is de�ned by the Sobolev-Slobodetskij normkuk2Hl� 12 () = kuk2Hl�1() + Xj�j6l�1Z� jD�u(x)�D�u(y)j2jx� yjN+1 dxdy:Finally ~H l� 12 () = fu 2 H l� 12 (h()) : suppu � g;where h() is that N � 1 dimensional hyperplane whih ontains . Sine  has a Lipshitz boundaryH l� 12 () = fu�� : u 2 H l� 12 (h())g, [29, Thm. 3.6℄.For l = 1 we de�ne the following dual spaes:H� 12 () := � ~H 12 ()�0; ~H� 12 () := �H 12 ()�0:For v 2 ~H 12 (); h 2 H� 12 () we denote by hh; v; i := hh; vi(H� 12 (); ~H 12 ()) the dual pairing.For generalized polyhedrons we have the following trae theorems:Theorem 2.1. Let 
 � RN be a generalized polyhedron , (�i; ~ni) as in set. 2.1.1, m 2 N.1. Let 0 6 l 6 m� 1. There exists a unique linear and ontinuous mappingl(�i;~ni) : Hm(
)! lYj=0Hm�j� 12 (�i)with the following property:If ~
 � RN is an open Lipshitz-domain with ~
 � 
, �i � � ~
 and ~ni as exterior normal vetor,then for all u 2 Hm(
) with u��~
 2 D(~
):l(�i;~ni)(u) = �u���i ; �u�~ni ���i ; : : : ; �lu�~nli ���i� :



6 2 FORMULATION OF THE PROBLEM2. There exists a linear, ontinuous extension operatorF(�i;~ni) : ~Hm� 12 (�i) �! �v 2 Hm(
) : supp(v���
) � �i	suh that 0(�i;~ni) Æ F(�i;~ni)(u) = u for all u 2 ~Hm� 12 (�i).This Theorem is proved in [6℄ for generalized polyhedrons with Lipshitz boundaries and an easilybe extended to those without Lipshitz boundaries.For the de�nition of the normal derivative for H1-funtions we introdue analogous to [6℄ the spaeE(
) := fu 2 H1(
) : 4u 2 L2(
)g. This spae is a Banah spae regarding the norm kukE :=kukH1(
)+ k4ukL2(
). If 
 is a bounded Lipshitz domain, then D(
) is dense in E(
). For omposites
 we set E(
) := nu 2 H1(
) : u��
i 2 E(
i)o :Theorem 2.2 (Normal derivative). [6℄ Let 
 � Rn be a generalized polyhedron, (�i; ~ni) as in set.2.1.1. Then there exists a unique linear, ontinuous operator��~ni : E(
) �! H� 12 (�i)with the following property:If ~
 � RN is an open Lipshitz-domain with ~
 � 
, �i � � ~
 and ~ni the exterior normal vetor, thenfor all u 2 H1(
) with u��~
 2 D(~
) the lassial normal derivative and ��~ni oinide. Furthermore thefollowing Green's formula is valid for all u 2 E(
); v 2 H1(
) with v��(�i;~ni) 2 ~H 12 (�i) for all i:Z
4uv dx+ Z
rurv dx =X�i h �u�~ni ; vi�i ; (2.1)where h�; �i�i is the dual pairing h�; �i(H� 12 (�i); ~H 12 (�i)).Remark 2.1. An analogous Green's formula holds for omposites.2.3 Boundary transmission problemsWe now introdue the variational formulation of boundary transmission problems for the Laplae andLam�e operators. Let 
 � RN be a bounded omposite. In order to desribe admissible Dirihlet data wede�ne the following spae for l = 1; 2; : : ::Bl� 12 := �FD : FD = �u1��D1;1 ; : : : ; u1��D1;n(1) ; u2��D2;1 ; : : : ; uM ��DM;n(M) ; : : : ;: : : ; ui��ij;k � uj��ij;k� : ui 2 H l(
i) \E(
i)o ;whih is a subspae of Q(i;l;~ni;l)2DH l� 12 (i;k) �Qij;k2G H l� 12 (ij;k): By ui��Di;j we mean the restritionof ui to Di;j if Di;j is part of the Dirihlet boundary.Remark 2.2. If F 2 B 12 then there are satis�ed some ompatibility onditions between the data on theDirihlet boundaries and the Dirihlet data on the interfaes. These onditions were studied in [6, 24℄.



2.3 Boundary transmission problems 7For the right hand sides we assume ondition (D)(D) fi 2 �H1(
i)�0 ; gDi;k 2 H 12 (i;k) for i;k 2 D; hDij;k 2 H 12 (ij;k) for ij;k 2 G;gNi;k 2 H� 12 (i;k) for i;k 2 N ; hNij;k 2 H� 12 (ij;k) for ij;k 2 G:For the Dirihlet data gDi;k and hDij;k we further assume:FD := (: : : ; gDi;k; : : : ; hDij;k; : : :) 2 B 12 .FinallyV := �u 2 H1(
) : 8 2 D : u�� = 0; 8 2 N : u�� 2 ~H 12 (); 8ij 2 G : ui��ij ; uj��ij 2 ~H 12 (ij)	:2.3.1 Laplae operatorWe are now ready to de�ne the boundary transmission problem for the Laplae operator. Therebywe redue problems with nonhomogeneous Dirihlet data by a standard proedure to problems withhomogeneous Dirihlet data.De�nition 2.2 (Variational solution). Let 
 � RN be a omposite, �1; : : : ; �M 2 R, let the datasatisfy (D). u 2 H1(
) is a variational solution of the boundary transmission problem for the Laplaeoperator if there exists w 2 V suh that u = w + ĝ where ĝ 2 E(
) satis�es the Dirihlet onditions (i.e.8i;l 2 D : ĝ��i;l = gDi;l; 8ij;k 2 G : ĝi��ij;k � ĝj��ij;k = hDij;k) and w is a solution ofa(w; v) = MXi=1hfi; vi((H1(
i))0 ;H1(
i)) + XNi;j2NhgNi;j; viNi;j + Xij;k2GhhNij;k; viij;k+ MXi=1 �i Z
i4ĝiv dx� MXi=1 �ih �ĝi�~ni ; vi�
i for all v 2 V: (2.2)Here, h �ĝi�~ni ; vi�
i := X(i;k;~ni;k)2N ;i;k��
i h �ĝi�~ni;k ; vii;k + Xij;k2G;ij;k��
ih �ĝi�~nij;k ; viij;kand a(u; v) = MXi=1 �i Z
i ruirvi dx: (2.3)Lemma 2.1. If ondition (D) holds and if in addition fi 2 L2(
i) for all 1 6 i 6M , then a variationalsolution u is in E(
) and solves ��i4ui = fi in 
i; (2.4)ui��i;k = gDi;k; i;k 2 D; (2.5)�ui�~ni;k ��i;k = gNi;k; i;k 2 N ; (2.6)ui��ij;k � uj��ij;k = hDij;k; ij;k 2 G; (2.7)�i �ui�~nij;k ��ij;k + �j �uj�~nji;k ��ij;k = hNij;k; ij;k 2 G; (2.8)



8 2 FORMULATION OF THE PROBLEMProof. Let u be a variational solution. Then w := u� ĝ 2 V and satis�es (2.2) for all v 2 V , in partiularfor all vi 2 D(RN ) with supp vi � 
i. Using Green's formula (2.1) we obtain:�Z
i �i(ui � ĝi)4vi dx = Z
i(fi + �i4ĝi)vi dxfor all vi 2 D(
i). Thus ��i4(ui�ĝi) = fi+�i4ĝi in the distributional sense and due to the assumptionson fi; ĝi we may onlude that ui 2 E(
i) with ��i4ui = fi, �nally u 2 E(
).Now let (i;l; ~ni;l) 2 N . For all vi 2W (
i; i;l) := fv 2 H1(
i) : supp(v���
i) � i;lg there holds (Green'sformula): Z
i r(ui � ĝi)rvi dx = �Z
i4(ui � ĝi)vi dx+ h�(ui � ĝi)�~ni;l ; viii;l ;whih leads to 8 vi 2W (
i; i;l) : h�(ui � ĝi)�~ni;l ; viii;l = hgNi;l � �ĝi�~ni;l ; viii;land �nally (with Thm. 2.1) �(ui � ĝi)�~ni;l = gNi;l � �ĝi�~ni;l in H� 12 (i;l):Analogous onsiderations show the validity of (2.7) and (2.8). �In the sequel we assume �i > 0 for all i. Problem (2.4)-(2.8) then desribes an ellipti boundarytransmission problem (Def. see [23, 15℄).One an prove existene and uniqueness of variational solutions in the usual way using the Lemma ofLax/Milgram. Note that the Poinar�e/Friedrihs inequality is valid on generalized polyhedrons (Onean prove this inequality using embedding theorems for Sobolev spaes. These theorems are true forgeneralized polyhedrons, [17℄).2.3.2 Lam�e operatorBefore we formulate the boundary value problem for the Lam�e operator we introdue some notation:By u : 
! RN we denote the displaement �eld, �; � 2 R are the Lam�e onstants. The stress tensor forlinear elasti isotropi and homogeneous materials is given via Hooke's law by �(u) = � tr "(u) + 2�"(u),where "(u) = 12�ru+ (ru)T � is the linearized strain tensor. For quadrati matries A;B we denote byA : B = tr(ATB) the inner produt.In order to de�ne the normal stresses on the boundary we introdue for 
 � RN (open domain)ELam�e(
) := fu 2 H1(
) : div�(u) 2 L2(
)g;ELam�e(
) := fu 2 H1(
) : u��
i 2 ELam�e(
i)g if 
 is a omposite.The same arguments as for the Laplae operator showTheorem 2.3 (Normal stresses). Let 
 � Rn be a generalized polyhedron, (�i; ~ni) as in set. 2.1.1.Then there exists a unique linear, ontinuous operatorTi : ELam�e(
) �! H� 12 (�i)with the following property:If ~
 � RN is an open Lipshitz-domain with ~
 � 
, �i � � ~
 and ~ni the exterior normal vetor, then for



9all u 2 H1(
) with u��~
 2 D(~
) the lassial normal stress �(u)~ni���i and Ti(u) oinide. Furthermorethe following Green's formula is valid for all u 2 ELam�e(
); v 2 H1(
) with v��(�i;~ni) 2 ~H 12 (�i) for all i:Z
 div (�(u))v dx+ Z
 �(u) : "(v) dx =X�i h�(u)~ni; vi�i :De�nition 2.3 (Variational solution). Let 
 � RN be a omposite and the data satisfy (D). u 2H1(
) is a variational solution of the boundary transmission problem for the Lam�e operator if there existsw 2 V suh that u = w + ĝ where ĝ 2 ELam�e(
) satis�es the Dirihlet onditions and w is a solution ofa(w; v) = MXi=1hfi; vi((H1(
i))0;H1(
i)) + Xi;l2NhgNi;k; vii;l + Xij;k2GhhNij;k; viij;k+ MXi=1 Z
i ��i4ĝi + (�i + �i) grad div ĝi)v dx� MXi=1h�i(ĝi)~ni; vi�
i for all v 2 V:Here, a(�; �) is the bilinear form a(u; v) = MXi=1 Z
i �i(ui) : "(vi) dx; (2.9)the pairings h�; �ii have the same meaning as in De�nition 2.2.If ondition (D) holds and if in addition fi 2 L2(
i) for all i then a variational solution u is inELam�e(
) and solves ���i4ui + (�i + �i) grad div ui� = fi in 
i; (2.10)ui��i;k = gDi;k; i;k 2 D; (2.11)�i(ui)~ni;k = gNi;k; i;k 2 N ; (2.12)ui��ij;k � uj��ij;k = hDij;k; ij;k 2 G; (2.13)�i(ui)~nij;k + �j(uj)~nji;k = hNij;k; ij;k 2 G; (2.14)A suÆient ondition for the elliptiity of this boundary transmission problem is �i > 0; �i + �i > 0 forall i, [27℄, whih we assume in the sequel.Existene and uniqueness of variational solutions an be proved using the Lax/Milgram Lemma. Notethat Korn's inequality is valid on generalized polyhedrons whih are the union of a �nite number ofdisjoint generalized polyhedrons with Lipshitz boundary.3 Regularity and asymptoti expansion of weak solutionsThe regularity of weak solutions is mainly inuened by the presene of geometri singularities suhas edges, orners, rossing points. The asymptoti expansion of a solution in a neighborhood of thesegeometri singularities an be desribed with the help of eigenvalues and eigenfuntions of operatorbundles whih are related to model problems for edges or orners.



10 3 REGULARITY AND ASYMPTOTIC EXPANSION OF WEAK SOLUTIONSPSfrag replaements C1CiCi;i+1
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�i;i+1
S ~na1~namFigure 4: Model problem, 2D3.1 Two dimensional domainsLet 
 � R2 be a omposite. For a orner point S let 
1; : : : ;
m be those subdomains of 
 whih meetin S. By Ci we denote the in�nite one with tip in S whih oinides with 
i in a neighborhood of S.Let the numbering be suh that we have in polar oordinates: Ci = fx : 0 < r; �i�1 < ' < �ig where�0 < : : : < �m 6 �0+2�, CS := fx : �0 < ' < �mg, �g. 4. The model problem for the Laplae or Lam�eoperator in the one CS reads now: Au = f; x 2 CS ;where A is given by (2.4){(2.8) resp. (2.10){(2.14). Rewriting the model problem in polar oordinatesand applying the Mellin transform, M[g℄(�) = 1p2� R10 r���1g(r) dr, (r�r) ! �, we get the followingnonlinear eigenvalue problem: Find v 6= 0 and � 2 C suh thatA(�)v(�;') = 0; ' 2 (�0; �m):Example 3.1. For the transmission problem of the Laplae operator the orresponding eigenvalue prob-lem reads: Find � 2 C ; v 6= 0 suh that:��i��2vi + v00i � = 0 �i�1 < ' < �i; 1 6 i 6 m; (3.1)vi+1(�i)� vi(�i) = 0 1 6 i 6 m� 1 (3.2)�i+1v0i+1(�i)� �iv0i(�i) = 0 1 6 i 6 m� 1; (3.3)v1(0) = vm(�m) = 0 for Dirihlet onditions; (3.4)v01(0) = v0m(�m) = 0 for Neumann onditions; (3.5)v1(0) = v0m(�m) = 0 for mixed onditons: (3.6)In the ase of an interior rossing point S we have to replae the boundary onditions by transmissiononditions for ' = �m. Sine the parameters �i are supposed to be positive, the operator orrespondingto the eigenvalue problem is ellipti with parameter, for the de�nition see for example [1, 21℄. Theeigenvalue problem for the Lam�e operator is given in [13℄. The orresponding operator is ellipti withparameter as well.Example 3.2. In �gure 5 are plotted the positive eigenvalues for the Neumann problem for the Laplaeoperator on a domain with a rak (�1 = �4 ; �2 = �4 + '; �3 = 2�) for 0 < ' < 7�4 .
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Figure 5: Positive eigenvalues for a Neumann problemThe operators A(�) have the following property:Lemma 3.1. [1, 5℄ For every � 2 C the operatorA(�) : mYi=1H2(�i�1; �i)! L2(�0; �m)� C 2dm ;(Laplae: d = 1, Lam�e: d = 2) is Fredholm, the penil fA(�); � 2 C g is a Fredholm operator penil(i.e. Fredholm for every � 2 C and invertible for at least one �). The spetrum of A(�) onsists only ofeigenvalues whih are isolated points in C and whih have no aumulation points in C . Further thereexist �; Æ > 0 suh that there are no eigenvalues in the domain �� 2 C : j�j > �; jRe �j < Æ jIm �j 	, �g.6. Let � be an eigenvalue of A(�). By f��;�;�; 1 6 � 6 I(�); 0 6 � 6 M�;� � 1g we denote a anonialsystem of Jordan hains where ��;�;0 are the eigenfuntions and ��;�;�; � > 0, the assoiated eigenfun-tions; I(�) is the geometri multipliity of �, P�M�;� the algebrai multipliity of � (see e.g. [12℄). ForÆ := (�; �; �) we �nally setvÆ(r; ') = �Xq=0 (ln r)qq! ��;�;��q('); r > 0; ' 2 (�0; �m): (3.7)With these notations we are ready to desribe an asymptoti expansion for a weak solution:Theorem 3.1. [3℄ Let the right hand sides of (2.4)-(2.8) resp. (2.10)-(2.14) be suh thatFD 2 B 32 ; fk 2 L2(
k);gNi;k 2 H 12 (i;k) for i;k 2 N ;hNij;k 2 H 12 (ij;k) for ij;k 2 G:If for a orner or rossing point S the orresponding operator penil AS(�) has no eigenvalues on theline Re � = 1 (exept for � = 1 where the geometri and algebrai multipliities have to oinide), thena weak solution u 2 H1(
) admits the following asymptoti expansion in a neighborhood of S:�Su = ureg + �S XÆ2�S Ær�vÆ(r; '):
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Figure 6: Regions without eigenvalues (grey)Here ureg��
i 2 H2(
i). Further �S is a ut-o� funtion with �S � 1 in a neighborhood of S, �S =fÆ = (�; �; �) : � eigenvalue of A(�); 0 < Re � < 1; 1 6 � 6 I(�); 0 6 � 6M�;�g. Æ is a onstant (stressintensity fator) and vÆ are the singular funtions given by (3.7).3.2 Three dimensional domainsIn three dimensional polyhedral domains singularities an arise beause of orners and edges. Corre-spondingly we have to investigate model problems whih are de�ned in a neighborhood of orners androssing points and model problems whih are related to the edges.3.2.1 Corner singularitiesThe eigenvalue problem for orners or rossing points an be dedued analogous to the two dimensionalase:Let S be a rossing point, 
1; : : : ;
m the subdomains of 
 whih ontain S. Let Ki be the in�niteone with tip in S whih oinides with 
i in a neighborhood of S; KS is the one whih oinides with
 in a neighborhood of S. Note, that if S is an interior rossing point then KS = R3 . We further denoteby Gi := Ki \ S2, G := KS \ S2 the intersetions of Ki resp. K with the unit sphere S2; 0i;l := i;l \ S2for i;l 2 F , resp. 0ij;l := ij;l \ S2 for ij;l 2 G. The exterior parts of the boundary of G are divided inDirihlet (�Dir) and Neumann boundaries (�Neu) in the same way as the exterior parts of the boundaryof KS . Further we introdue spherial oordinates (�; �; ') with respet to S. We denote by ~Gi and ~G,both � [0; �℄ � [0; 2�[, the regions of the parameters (�; ') suh that Gi = fx 2 S2 : r = 1; (�; ') 2 ~Gigand G = fx 2 S2 : r = 1; (�; ') 2 ~Gg. For the de�nition of the eigenvalue problem whih orresponds toorner S we set ~V := fu 2 H1(G) : u���Dir = 0g:This spae is equipped with the normkuk2~V := Z ~G juj2 d! + Z ~G ���� 1sin ��'u����2 + j��uj2 d!; d! = sin �d�d':



3.2 Three dimensional domains 13For the Laplae operator the eigenvalue problem reads: Find � 2 C ; u 2 ~V nf0g suh thata(�; u; v) := (�2 + �)Xi Z ~Gi �iuivid!�Xi �i Z ~Gi � 1sin2 ��'ui�'vi + ��ui��vi�d! = 0 for all v 2 ~V : (3.8)Before we introdue the eigenvalue problem of the Lam�e operator we �rst give some abbreviations([16℄):A := 0�os' sin �sin' sin �os � 1AB := 0�os' os �sin' os �� sin � 1AC := 0�� sin'= sin �os'= sin �0 1AFurther we de�ne the following bilinear forms on ~V � ~V ! C:a(u; v) := mXs=1 3Xi;j;k;h=1Z ~Gs a(s)ijkhAjAhuivkd! for all u; v 2 ~V ; (3.9)b(u; v) := mXs=1 3Xi;j;k;h=1Z ~Gs a(s)ijkh(BjAh�ui�� vk + CjAh�ui�' vk)d! for all u; v 2 ~V ; (3.10)(u; v) := mXs=1 3Xi;j;k;h=1Z ~Gs a(s)ijkh(BjBh�ui�� �vk�� +BjCh�ui�� �vk�' + (3.11)+ CjBh�ui�' �vk�� + CjCh�ui�' �vk�' )d! for all u; v 2 ~V : (3.12)Here, ui denotes the i-th omponent of the vetor u (do not onfuse with u��
i). Further a(s)ijkh = 2�sÆkiÆjh+�sÆkhÆii are the elasti sti�ness oeÆients for the Lam�e operator on subdomain Gs.The eigenvalue problem for the Lam�e operator reads: Find � 2 C , u 2 ~V nf0g suh thata(�;u; v) := ��(�+ 1)a(u; v) � (�+ 1)b(u; v) + �b(v; u) + (u; v) = 0 for all v 2 ~V : (3.13)The bilinear forms (3.8) and (3.13) an formally be ahieved in the following way: Inserting the ansatzU = ��u(�; ') into equations (2.4)-(2.8) resp. (2.10)-(2.14) on the one Ks with zero right hand sidesresults in an eigenvalue problem for � and u. After multipliation by v(�; ') and integration by parts,one obtains equation (3.8) resp. (3.13).Sine the bilinear forms (3.8) and (3.13) are ontinuous there exists for every � 2 C a unique ontinuouslinear operator A(�) : ~V ! ~V 0 suh thathA(�)u; vi( ~V 0; ~V ) = a(�; u; v) for all u; v 2 ~V :Lemma 3.2. [3, 13℄ The bilinear form a for the Laplae resp. the Lam�e operator has the followingproperties:1. 8� < Æ 2 R 9�;Æ;��;Æ > 0, suh that 8� 2 C with Re � 2 [�; Æ℄ and j�j > ��;Æ there holds:kuk2H1((G);�) 6 �;Æ Re a(�; u; u) 8u 2 ~V : (3.14)Here we have set kuk2H1((G);�) = j�j2 kuk2L2(G) + kuk2H1(G).



14 3 REGULARITY AND ASYMPTOTIC EXPANSION OF WEAK SOLUTIONS2. The operator penil fA(�); � 2 C g is a Fredholm operator penil. The spetrum onsists only ofeigenvalues of A(�). These eigenvalues have �nite algebrai multipliity. There is only a �nitenumber of eigenvalues in any strip of the form Re � 2 [�; Æ℄.3. If �0 is an eigenvalue, then the same is true for �1��0 and the geometri and algebrai multipliitiesof both oinide.Proof. Estimate (3.14) an be shown for transmission problems in the same way as in the proof ofProp. 8.4 in [3℄. We only need the oeritivity of the bilinear form a in (2.3) resp. (2.9). For theFredholm property of A we follow the arguments in [3℄: Aording to the �rst statement of this lemmathere exists �0 2 C suh that A(�0) : ~V ! ~V 0 is invertible. For any � 2 C there holds: A(�) =A(�0) + (A(�)�A(�0)). We now prove that A(�)�A(�0) : ~V ! ~V 0 is ompat. As a onsequene,A(�) then is Fredholm.We begin with the Laplae operator: Let (un)n2N � ~V be bounded. Sine the embedding ~V ! L2(G) isompat, there exists u� 2 L2(G) and a subsequene (unk)k2N for whih unk ! u� in L2(
). Thereforek(A(�) �A(�0))(unk � unl)k ~V 0 = supkvk ~V =1 ja(�; unk � unl ; v)� a(�0; unk � unl ; v)j6 (�; �0) kunk � unlkL2(G) ;thus (A(�)�A(�0))(unk) onverges in ~V 0.For the Lam�e operator we prove with the same arguments as for the Laplae operator that the operatorsM : ~V ! ~V 0, de�ned by hMu; vi( ~V 0; ~V ) = a(u; v) (from equation (3.9)), and T : ~V ! ~V 0, de�ned byhTu; vi( ~V 0; ~V ) = b(v; u), are ompat operators. With similar arguments to those in the proof of Shauder'sTheorem (ompat operators and adjoint operators, [28, Satz III.4.4℄) one then proves, that the operatorB : ~V ! ~V 0, whih is de�ned by hBu; vi( ~V ; ~V 0) = b(u; v), is also ompat. Thus A(�) � A(�0) is aompat operator.The properties of the spetrum of Fredholm operator penils are desribed in [5℄.The eigenvalues of the bundle A(�) whih orrespond to the Laplae operator are given by �k;� =�12 � q14 + �k, where �k > 0 are the eigenvalues of the transmission Laplae-Beltrami operator onG � S2. The eigenfuntions of �k;+ and �k;� oinide, there are no assoiated eigenfuntions, see alsoLemma 5.1.For the Lam�e operator, assertion 3: is a onlusion of Theorem 1.2.2 in [13℄ together with the inequality8u 2 ~V nf0g; � 2 R : a(�12 + i�; u; u) > 0:This inequality an be shown with similar alulations to those in [13℄, pp. 108. �Let � be an eigenvalue of A and f	�;�;�; 1 6 � 6 I(�); 0 6 � 6 M�;� � 1g a anonial system ofJordan hains. With  = (�; �; �) we setw;(�; �; ') = �Xq=0 (ln�)qq! 	�;�;��q(�; '): (3.15)
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~nam�m Cm ~tj�1;jCj C1~na1 �1Figure 7: Model problem of a rossing point s on an edge3.2.2 Edge singularitiesFor the edge singularities we investigate the following model problem: Let s be a point on an edge farfrom orners or rossing points. We use loal Cartesian oordinates (x; y; z) with origin in s suh thatthe edge is part of the z axis, see �g 7. We denote by 
1; : : : ;
m those subdomains of 
 whih ontains. Let further Di be the dihedron whih oinides with 
i in a neighborhood of s. In the (x; y) plane weintrodue polar oordinates (r; '). Then the dihedrons are given byDi = f(x; y; z) : (x; y) 2 Cs;i; z 2 Rg;where Cs;i = f(x; y) 2 R2 : r > 0; �i�1 < ' < �ig:Here the numbering of the subdomains is suh that �0 < : : : < �m 6 �0 + 2�. Finally Ds = f(x; y; z) :r > 0; �0 < ' < �m; z 2 Rg. Writing the prinipal part of the operators (2.4)-(2.8) resp. (2.10)-(2.14)in this oordinate system gives the following model problemAu = f; x 2 Ds:Fourier transform of the model problem with respet to z, �z ! i�, results in a boundary transmissionproblem with parameter � on the two dimensional one Cs := f(x; y) : r > 0; �0 < ' < �mg:A(�;Dx;Dy)û(�; x; y) = f̂(�; x; y); (x; y) 2 Cs:This problem an be investigated with the method for two dimensional domains: As a new model problemwe onsider the prinipal part A0 of A(�;Dx;Dy) on the two dimensional one Cs:A0(Dx;Dy)u = f; (x; y) 2 Cs:Note that A0 is independent of �.Example 3.3. We set ~u(x; y) := (ux(x; y); uy(x; y)), (x; y) 2 Cs;i = f(x; y) : r > 0; �i�1 < ' < �ig.



16 3 REGULARITY AND ASYMPTOTIC EXPANSION OF WEAK SOLUTIONSThen for the Lam�e operator this model problem reads:���i4~ui + (�i + �i) grad div (~ui)� = 0; (x; y) 2 Cs;i; (3.16)~ui = 0 Dirihlet onditions; (3.17)�i(~ui)~ni = 0 Neumann onditions; (3.18)��i4uz = 0; (x; y) 2 Cs;i; (3.19)uz = 0 Dirihlet onditions; (3.20)�uz�~ni = 0 Neumann onditions (3.21)together with the transmission onditions whih are deoupled as well. The equations for ~u orrespondto those for plane strain where "13 = "23 = "33 = 0.Polar oordinates (r; ') for (x; y) and Mellin transform with respet to r lead to an operator bundleAe(�) whose eigenvalues and eigenfuntions our in the asymptoti expansion. The bundle Ae has theproperties given in Lemma 3.1.Let � be an eigenvalue of Ae, f��;�;�; 1 6 � 6 I(�); 0 6 � 6 M�;�g a anonial system of Jordanhains. For Æ = (�; �; �) we setvÆ;e(r; ') = �Xq=0 (ln r)qq! ��;�;��q('); r > 0; ' 2 (�0; �m): (3.22)Remark 3.1. It follows diretly from (3.16)-(3.21) that the spetrum of Ae for the Lam�e operatoronsists of the orner eigenvalues of the two dimensional Lam�e operator and those of the two dimensionalLaplae operator.3.2.3 Asymptoti expansion of a weak solutionWe are now ready to desribe asymptoti expansions of weak solutions.Theorem 3.2. [3℄ Let 
 � R3 be a omposite. For the right hand sides we assumeFD 2 B 32 ; fk 2 L2(
k);gNi;k 2 H 12 (i;k) for i;k 2 N ;hNij;k 2 H 12 (ij;k) for ij;k 2 G:Let further u 2 H1(
) be a solution of (2.4)-(2.8), resp. (2.10)-(2.14). For a rossing point S we denoteby �S a ut o� funtion with � � 1 in a neighborhood of S. ES is the set of all edges rossing at S.Let 0 < s 6 1 suh that there are no eigenvalues of the orner operator penil A(�) on the line Re � =�12 + s and no eigenvalues of the penils Ae(�), e 2 ES ; on the line Re � = s.Then a weak solution u 2 H1(
) has the following asymptoti expansion:�Su = ureg + �S X2�S �;���w; + �S Xe2ES XÆ2�eRe(�;�e )r�e vÆ;e: (3.23)Here ureg��
i 2 H1+s(
i). Further �S = f = (�; �; �) : � = eigenvalue of A(�); Re � 2℄� 12 ;�12 + s[ ;1 6 � 6 I(�); 0 6 � 6 M�;�g, �e = fÆ = (�; �; �) : � = eigenvalue of the edge penilAe(�); Re � 2℄0; s[; 1 6 � 6 I(�); 0 6 � 6M�;� g; e 2 ES. �;� are onstants, �;�e 2 Hs�Re �(R) and Re is a smoothingoperator, see [3, 22℄. Finally � denotes the distane to the orner S, re the distane to edge e. vÆ;e arethe singular funtions given by (3.22), w; the singular funtions in (3.15).



17Remark 3.2. The eigenfuntions and assoiated funtions 	�;�;� of the orner penil A are solutionsof ellipti boundary transmission problems on non smooth two dimensional domains. These funtionsan also be splitted into singular funtions and a smooth remainder.Remark 3.3. If S is a point on an edge and no orner or rossing point then the sum P2�S vanishesin the expansion (3.23).Corollary 3.1. If for all orners and edges of 
 there holds that there are no eigenvalues of the orre-sponding operator penils in the strip Re � 2℄ � 12 ; "℄ for orners and Re � 2℄0; 12 + "℄ for edges with asmall " > 0, then we have for a weak solution with right hand sides as in Theorem 3.2: u��
i 2 H 32+"(
i).The Sobolev embedding theorem then shows u��
i 2 C(
i):In hapter 5 we will dedue suÆient onditions on the geometry and parameters whih guaranteethat the strips in Corollary 3.1 are free of eigenvalues. For this we need a homotopy argument whih willbe presented in the next setion.4 A homotopy methodThe homotopy method is used to arry over estimates for the eigenvalues of \easy" problems to moreompliate problems. To do that we use a version of Rouh�e's Theorem for analyti operator valuedfuntions. Further we need Lemma 3.1 and Lemma 3.2 whih desribe domains in the omplex planewhere no eigenvalues of the penils A or Ae are situated.Let D � C be a domain, i.e. open and onneted. We onsider analyti Fredholm operator penilsA : D ! L(X;Y ), X;Y Banah spaes. Let � � D be a losed simply onneted urve, pieewise smooth,where the surrounded domain Q is ontained in D. The algebrai multipliity m(�;A) of A with respetto the ontour � is m(�;A) :=X�0 m(�0;A):The sum extends over all eigenvalues �0 in the interior of the enlosed domain, m(�0;A) denotes thealgebrai multipliity of the eigenvalue �0. Sine the penil A is supposed to be a Fredholm penil,m(�;A) is �nite, [5℄.Theorem 4.1 (Rouh�e's Theorem). [5, Thm 9.2℄ Let H be a separable Hilbert spae, D � C openand onneted and  � D a simply onneted pieewise smooth urve where the orresponding inludeddomain Q is ontained in D. Let further S1 ; S2 : D ! L(H) be analyti operator valued funtions suhthat S1 is normal with respet to �, that means:1. S1(�) is invertible for all � 2 �,2. S1(�) is a Fredholm operator for all � 2 Q.If for every � 2 � S1(�)�1S2(�) < 1in the operator norm, then S1+ S2 is also normal with respet to � and the algebrai multipliities of S1and S1 + S2 oinide.If in addition S1(�) is invertible for all � 2 Q then the same is true for S1 + S2.As a orollary we get



18 5 ESTIMATES OF THE EIGENVALUESTheorem 4.2. Let H1;H2 be separable Hilbert spaes, � � C a simply onneted pieewise smooth urvewith orresponding interior domain Q.For t 2 [0; 1℄ we onsider a family of analyti Fredholm operator penils of the formAt : C ! L(H1;H2) : �! At(�) = (1� t)A0(�) + tA1(�)where A0;A1 : C ! L(H1;H2) are analyti Fredholm operator penils. We assume for all t 2 [0; 1℄ thatthe penils At(�) are invertible for all � 2 � exept a �nite number of �i 2 �; 1 6 i 6 l. For these �i weassume:�i is an eigenvalue of At(�) for all t 2 [0; 1℄ with algebrai multipliity m(�i) whih is independent of t.Then the operators At(�), t 2 [0; 1℄, have the same algebrai multipliities with respet to �.If there exists t0 2 [0; 1℄ suh that At0(�) is invertible for every � 2 Q then this is true for all At,t 2 [0; 1℄.Proof (sketh). [9℄ In a �rst step one shows the Theorem for the ase H1 = H2 and when no eigenvaluesare situated on the ontour �. To do that one proves the following assertion:For every t0 2 [0; 1℄ exists a Æ(t0) > 0 suh that for all t 2 K(t0) := ft 2 [0; 1℄ : jt� t0j < Æ(t0)g and forall � 2 �: At0(�)�1(At(�)�At0(�) < 1. Here, k�k denotes the operator norm.Applying Rouh�es Theorem to S1 := At0 , S2 := At � At0 , t 2 K(t0), it follows that the algebraimultipliity with respet to � of At is onstant for t 2 K(t0) and �nally also for t 2 [0; 1℄.In the seond step one shows that due to the assumptions on the eigenvalues on � there exists a smallneighborhood Ui for every �i whih ontains no further eigenvalues of At(�); t 2 [0; 1℄. We de�ne a newurve ~� whih oinides with � outside Ui and whih is ontained in Q\ Ui near the eigenvalues in suha way that ~� does not ontain eigenvalues of the At. The proof for the ase H1 = H2 is �nished byapplying the results of the �rst step to the ontour ~�. The ase H1 6= H2 is a simple onsequene. �With the help of Lemma 3.1 and Lemma 3.2 one an extend Theorem 4.2 for operator penils A, Ae ofsetion 3.2.2 to in�nite strips of the form f� 2 C : Re � 2 [a; b℄g; �1 < a < b < 1. To show that agiven operator penilAe or A has no eigenvalues in the strip Re � 2℄a; b[ it suÆes to �nd the eigenvaluesand their algebrai multipliities on the lines Re � 2 fa; bg and to onstrut an operator family At as inTheorem 4.2 where A0 = A resp. A0 = Ae and where the distribution of the eigenvalues is known fort = 1. This method will be used in the next setion to derive new estimates for the eigenvalues.5 Estimates of the eigenvaluesIn this hapter we �rst give an overview over existing estimates for the width of the strips in Theorems3.1 and 3.2. The main goal is to desribe a lass of boundary transmission problems for whih the stripRe � 2℄0; 12 ℄ in the two-dimensional ase and the strips Re � 2℄� 12 ; 0℄ for orners and Re �e 2℄0; 12 ℄ foredges in the three dimensional ase are free of eigenvalues. Here a quasi-monotone distribution of thematerial parameters is an essential assumption whih leads together with some geometri onditions tothe estimates.5.1 Two dimensional domainsFor transmission problems for the Laplae operator on two dimensional domains there exist many esti-mates for the smallest positive eigenvalue of the operator penil given by (3.1)-(3.5). General estimateswithout any restrition on the geometry or the parameters were developed by Costabel/Dauge/Niaise



5.1 Two dimensional domains 19in [2℄ and by K�uhn, [14℄, who also developed reursion formulas (with respet to the number of subdo-mains) for equations whose roots are the eigenvalues. It turns out that there are no general bounds forthe smallest positive eigenvalue in the ase of more than two subdomains with pure Dirihlet (DD) orNeumann (NN) onditions or more than three subdomains in the ase of interior rossing points. This isillustrated in the next example.Example 5.1. Kellogg's example [8℄ shows that it is possible to get arbitrary small positive eigenvaluesfor the Laplae operator. Consider a domain as in �g. 8 with parameters �1 = �3 = 1; �2 = �4 = h. Theeigenvalues whih orrespond to the interior rossing point are given by � = 2k; k 2 Z, and the solutionsof the equation os(��) = 1� 8h(1+h)2 . For h ! 0 or h ! 1 the smallest positive eigenvalue tends to 0,see also �g 8.
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Figure 8: Kellogg's example: Domain and eigenvaluesUnder the assumption of a quasi-monotone distribution of the material parameters (Def. 5.1 below)one an prove further estimates for the Laplae operator for an arbitrary number of subdomains. This wasdone in [25℄ without any additional ondition on the geometry and in [9℄ under an additional geometrialassumption. Further estimates were derived in [19℄ where the author studies the inuene of the open-ing angles of the subdomains in detail. The estimates for the 2D Laplae operator are olleted in table 1.For the Lam�e operator, numerial examples indiate that analogous estimates are valid. While forone subdomain the position of the eigenvalues is well known, the situation is more diÆult for severalsubdomains. In this paper we introdue a generalized quasi-monotoniity ondition for pairs (�i; �i).Under this assumption and an additional geometri ondition, whih is exatly the same as in the aseof the Laplae operator, we prove estimates for an arbitrary number of subdomains. These results area generalization of those in [24℄, where estimates for two subdomains are given. The estimates for theLam�e operator are olleted in table 2.Estimates for arbitrary ellipti problems on one (n dimensional) subdomain with onial points and pureDirihlet or Neumann onditions are developed in [11℄.5.1.1 Quasi-monotoniity and geometri onditionsLet 
 � R2 be a omposite (see set. 1). For a orner or rossing point S let 
1; : : : ;
m be those subdo-mains whih ontain S. Ci denotes the one with vertex in S whih oinides with 
i in a neighborhood of



20 5 ESTIMATES OF THE EIGENVALUESS. Let the numbering of the subdomains be suh that in polar oordinates Ci = fx : 0 < r; �i�1 < ' < �igwhere �0 < : : : < �m 6 �0 + 2�, CS := fx : �0 < ' < �mg. Finally we set �ij = �Ci \ �Cj , �g. 4.Quasi-monotoniity was �rst de�ned for transmission problems for the Laplae operator, [4℄. We nowgeneralize the de�nition to pairs (�i; �i) of Lam�e onstants. Here and in the sequel we denote by DD thease of pure Dirihlet onditions on CS , NN the ase of pure Neumann onditions and by DN the ase ofmixed boundary onditions.De�nition 5.1 (Quasi-monotoniity). [4℄1. If S is an exterior rossing point with pure Neumann onditions or mixed onditions, or if S isan interior rossing point, then the distribution of the parameters �1; : : : ; �m, �1; : : : ; �m is quasi-monotone with respet to the rossing point S if there exists a unique j 2 f1; : : : ;mg suh that�1 6 : : : 6 �j > : : : > �m and �1 6 : : : 6 �j > : : : > �m:In the ase of mixed boundary onditions we require that 
j is the subdomain at the Dirihletboundary.2. If S is an exterior rossing point with pure Dirihlet onditions, then the distribution of the param-eters �1; : : : ; �m, �1; : : : ; �m is quasi-monotone with respet to the rossing point S if there exists aunique j 2 f1; : : : ;mg suh that�1 > : : : > �j 6 : : : 6 �m and �1 > : : : > �j 6 : : : 6 �m:For the Laplae operator ignore the �'s and replae 6 by < resp. > by >.Example 5.2. In the ase of the Laplae-operator and an interior rossing point where three subdomainsmeet, the parameters �i are always quasi-monotone. The parameters in Kellogg's example are not quasi-monotone.The following geometri onditions are losely related to the de�nition of quasi-monotoniity:GC 1 Let S be an exterior rossing point with pure Dirihlet onditions (DD) or pure Neumannonditions (NN). Let the parameters �1; : : : ; �m; �1; : : : ; �m be quasi-monotone with j as that indexfor whih we have the maximum in the ase NN resp. the minimum in the ase DD. The onditionreads 9~t 2 R2nf0g : ~t 2 Cj and ~na1~t < 0; ~nam~t < 0:Here we denote by ~na1; ~nam the exterior normal vetors on C1 resp. Cm, see �gure 9.GC 2 Let S be an interior rossing point; let the parameters �1; : : : ; �m; �1; : : : ; �m be quasi-monotone,j the index where we have the maximum and k the index where we have the minimum. Then theondition is 9~t 2 R2nf0g : ~t 2 Cj and � ~t 2 Ck:Remark 5.1. If ondition GC 1 holds for an exterior rossing point S then the opening angle of thedomain is < 2� in a neighborhood of S, so S is not a rak tip.



5.1 Two dimensional domains 21
PSfrag replaements C1Cm Cj~t

~na1~nam PSfrag replaements Cj Ck~t
�~tFigure 9: Examples for GC1, GC25.1.2 Estimates for the Laplae-operator, 2DIt is easy to verify that the eigenvalues of the operator bundles whih desribe the orner singularities forthe Laplae-operator on two-dimensional domains are real and that there are no assoiated eigenfuntionsfor non vanishing eigenvalues, [9℄. Thus the asymptoti expansion of a solution u in H1(
) has thefollowing simple form: �Su = ureg + �S X0<�<1 I(�)X�=1 �;�r�v�;�with the same notation as in Theorem 3.1. v�;� are the eigenfuntions to the eigenvalues �, there are nologarithmi terms.In table 1 estimates of the smallest positive eigenvalue are listed. We use the following notations: m isthe number of subdomains whih meet at rossing point S; � is the opening angle of the whole domainat S, 0 < � 6 2�; �0i is the opening angle of subdomain Ci. We assume �0i > 0 and have Pi �0i = �.Further ~� = max16i6mf�0ig is the maximal opening angle of the subdomains. By �0 we denote thesmallest positive eigenvalue.The estimates in the last row an be proved by a homotopy method. Sine the arguments are the sameas in the 3D ase we omit the details here and refer to the proof of Theorem 5.1.In ontrast to the ase of one subdomain we get the estimate �0 > 12 in the ase DN for two or moresubdomains also for �m = �. The reason is that one an prove the estimate for two subdomains diretly.For more than two subdomains, the proof is based on a homotopy argument (see the proof of Theorem5.1) whih arries over the known estimate for two subdomains to the ase of m > 2 subdomains.The estimates are sharp in the sense that for every estimate in table 1 there exists an example for whihthe smallest eigenvalue is arbitrarily lose to the bound given there. If the onditions in table 1 areviolated, there are examples for whih the smallest positive eigenvalue is lower than the bounds given inthe table.Further estimates whih take into aount the parameters and opening angles more preisely were derivedin [14℄ for two subdomains and in [19℄ for an arbitrary number of subdomains. For the speial ase of aninterior rossing point, whih is the intersetion of two straight lines, Petzoldt [25℄ proved � > 12 underthe only assumption that the parameters are distributed quasimonotonely.



22 5 ESTIMATES OF THE EIGENVALUESTable 1: Estimates for the Laplae operator, 2DDD or NN interior points DNm = 1 �0 = �� > 12 �0 = �2� > 14m = 2 quasi-mon., � 6 �:�0 > �2~� > �2� > 14 �0 > 12 �0 > 12(Costabel/Dauge/Niaise [2℄) [9℄m = 3 | �0 > �2~� > 14 |m > 3 quasi-monotoniity: (Petzoldt [25℄)�0 > 14 �0 > 14 �0 > 14m > 3 quasi-monotoniity + geom. ond. GC 1,2, [9℄: quasi-mon., � 6 �, [9℄:�0 > 12 �0 > 12 �0 > 125.1.3 Estimates for the Lam�e-operator, 2DIn ontrast to the Laplae-operator the eigenvalues of the operator bundles related to the Lam�e-operatoran also be non real and assoiated eigenfuntions an exist. Thus the asymptoti expansion in Theorem3.1 annot be simpli�ed in general. The estimates are olleted in table 2, where we use the followingnotations: m is the number of subdomains whih meet at rossing point S. � is the opening angle of thewhole domain at S, 0 < � 6 2� and �0 is an eigenvalue with smallest positive real part.The estimates form > 2 subdomains an be shown by a homotopy method whih uses the same argumentsas in the proof of Theorem 5.1 for 3D orner singularities, thus we omit the details here.5.2 Three dimensional domainsThe singularities for 3D polyhedral domains an be divided into edge and orner singularities, see Theorem3.2. The eigenvalues of the operator bundles whih are related to the edges are in the ase of theLaplae-operator ompletely given by the eigenvalues of the orner bundles of the Laplae-operator inthe orresponding two-dimensional domain. In the ase of the Lam�e-operator the eigenvalues are givenby those for the two dimensional Lam�e-operator and those of the two dimensional Laplae-operator onthe orresponding 2D domain, see Remark 3.1. Therefore, we onsider only orner singularities in thissetion.5.2.1 Laplae-operator, 3DThe following properties of the eigenvalues of the orner bundles for the 3D Laplae are well known:



5.3 Lam�e-operator, 3D 23Table 2: Estimates for the Lam�e operator, 2DDD NN interior points DNm = 1 [22℄0 < � < � Re �0 > 1 Re �0 > 1 Re �0 > 12� = � �0 = 1 �0 = 1 Re �0 = 12� < � < 2� Re �0 > 12 Re �0 > 12 Re �0 > 14� = 2� �0 = 12 �0 = 12 Re �0 = 14m = 2, [24℄ (�1 � �2)(�1 � �2) > 0; quasi-monotoniityGC 1: GC 1: � < � :Re �0 > 12 Re �0 > 12 Re �0 > 12 Re �0 > 12m > 3, [9℄ quasi-monotoniityGC 1: GC 1: GC 2: � < �:Re �0 > 12 Re �0 > 12 Re �0 > 12 Re �0 > 12Lemma 5.1. The eigenvalues of the bundle given by (3.8) are real, there are no assoiated eigenfun-tions. In the ases DD and DN there are no eigenvalues in [�1; 0℄. In the ase NN and in the aseof interior rossing points there are no eigenvalues in the interval (�1; 0). �1 and 0 are eigenvalueswith geometri multipliity=algebrai multipliity=1. The eigenfuntions to the eigenvalue � = 0 are theonstant funtions.Proof. The Lemma is a diret onsequene of the properties of the eigenvalues of the Laplae-Beltramioperator. �Corollary 5.1. Let u 2 H1(
) be a solution of (2.4)-(2.8) with right hand sides as in Theorem 3.2.Then there exists " > 0 suh that�Su = ureg + �S Xe2ES X�e2(0; 12+")16�6I(�e) Re(�e;�e )r�e�e;�;�; (5.1)where ureg��
i 2 H 32+"(
i), �e;�;� is eigenfuntion to the eigenvalue �e of the operator bundle orrespond-ing to edge e, there are no logarithmi terms.5.3 Lam�e-operator, 3DFor the Lam�e-operator there is no result like Lemma 5.1. Estimates of the real parts of the eigenvaluesare only possible for problems under assumptions whih are a generalization of the quasi-monotoniity



24 5 ESTIMATES OF THE EIGENVALUESand the geometri onditions in setion 5.1. It is still an open question whether there exist exampleswhere the orner bundles have eigenvalues in the strip Re � 2 (�12 ; 0), whih would result in unboundeddeformation �elds.5.3.1 Estimates for one subdomainDirihlet-problem, [18℄: Let S2 := fx 2 R3 : jxj = 1g and G � S2 be a domain. For the Dirihlet-problemon ones of the form C = fx 2 R3 : xjxj 2 Gg there holds: The strip Re � 2 [�1; 0℄ does not ontain anyeigenvalues of the orresponding orner operator bundle.Note that the domains desribed by C an also be non-Lipshitz domains.Neumann-problem, [11℄: Let ' be a positively homogeneous funtion of degree one, pieewise smoothin R2nf0g. Consider ones of the form C = fx 2 R3 : x3 = '(x1; x2)g. The orresponding orner penilhas no eigenvalues in the strip Re � 2 (�1; 0). � = 0 and � = �1 are the only eigenvalues on the linesRe � = �1 resp. Re � = 0. The geometri and algebrai multipliities oinide and equal to 3. Theeigenfuntions for � = 0 are given by the onstant funtions.Mixed problem, [22℄: For the mixed problem we need further restritions on the geometry. If G 1 holds(see below), then the orner bundle has no eigenvalues in the strip Re � 2 [�1; 0℄.If for example C is onvex and jDj = 1 or jN j = 1 then the geometri ondition is satis�ed.To desribe G 1 we introdue the following notation: Let C be a polyhedral one � R3 with vertex in 0.We assume that the boundary of C an be divided in the following way into plane oriented faes (i; ~ni):�C = n[i=1 k; i \ j = ; for i 6= j:~ni is the exterior normal vetor on C with respet to i. We set F = f(i; ~ni); 1 6 i 6 ng = D [ N ,D and N disjoint and not empty. We further de�ne the following index sets: ~D := fk 2 f1; : : : ; ng :(k; ~nk) 2 Dg, ~N := fk 2 f1; : : : ; ng : (k; ~nk) 2 Ng. [k2 ~D k is the Dirihlet boundary, [k2 ~N k theNeumann boundary. FinallyCD := 8<:x 2 R3 : x =Xk2 ~D �k~nk; �k > 0; Xk2 ~D �k > 09=; ;CN := 8<:x 2 R3 : x = Xk2 ~N �k~nk; �k > 0; Xk2 ~N �k > 09=; :G 1: C has no raks and CD \ CN = ;.It is an open question whether the estimates in the ases NN and DN still hold when the geomet-ri onditions are violated.5.3.2 Estimates for m > 2 subdomainsThe estimates in this setion we prove only for domains whih have no raks, thus we introdue a slightlysimpli�ed notation in omparison to setion 3:Let C � R3 be a polyhedral one with vertex in 0 and C = [mi=1Ci, where Ci are polyhedral ones



5.3 Lam�e-operator, 3D 25with vertex in 0, pairwise disjoint. We assume that neither C nor Ci; 1 6 i 6 m, have raks; Cand Ci need not have Lipshitz-boundaries. We further assume that if mesN�1(�C \ �Ci) 6= 0, thenthere exist plane faes i;l, pairwise disjoint, suh that mesN�1(Sn(i)l=1 i;l) = mesN�1(�Ci \ �C). We setF = fi;l; 1 6 i 6 mg = D [N . The interfae between Ci; Cj is divided into plane piees ij;l suh thatij;l � �Ci [ �Cj, and we set G := fij;l; 1 6 i; j 6 mg.If onversely  2 G then there exist Ci; Cj with  as a part of the ommon interfae. We set C1() :=Ci; C2() := Cj and �1 := �i; �2 := Cj , (the same for �). Finally we denote by ~n1 the exterior normalvetor to  with respet to C1(); ~u1 := ~ui�� and ~u2 := ~uj�� . If  2 F we denote by ~n the exteriornormal vetor to the one whose boundary ontains .If it is lear to whih boundary  we refer, we omit the index . We are now ready to give the maintheorem of this work.Theorem 5.1. (> 2 subdomains, Lam�e-operator) We assume that the Lam�e onstants satisfy �i > 0,�i + �i > 0.1. Pure Dirihlet onditions, F = D: Let C be an arbitrary polyhedral one whih is divided into sub-ones Ci. Let further ~t1;~t2;~t3 2 R3 with ~ti~tj = Æij suh that the following three onditions aresatis�ed:(a) 8  2 D : ~n~t1 6 0,8  2 G : ~t1~n1(�1 � �2) > 0; ~t1~n1(�1 � �2) > 0,(b) 8  2 D with ~n~t1 = 0 : ~t2~n 6 0,8  2 G with ~n1~t1 = 0 : ~t2~n1(�1 � �2) > 0; ~t2~n1(�1 � �2) > 0,() 8  2 D with ~n k ~t3 : ~t3~n < 0,8  2 G with ~n1 k ~t3 : ~t3~n1(�1 � �2) > 0; ~t3~n1(�1 � �2) > 0.Then there are no eigenvalues of the orresponding orner bundle A in the strip Re � 2 [�1; 0℄.2. Pure Neumann onditions, F = N : Let C be a one whih is given by a funtion ' as in setion5.3.1 and divided into subones Ci. Let further ~t1;~t2;~t3 2 R3 with ~ti~tj = Æij suh that the followingthree onditions are satis�ed:(a) 8  2 N : ~n~t1 6 0,8  2 G : ~t1~n1(�1 � �2) 6 0; ~t1~n1(�1 � �2) 6 0,(b) 8  2 N with ~n~t1 = 0 : ~t2~n 6 0,8  2 G with ~n1~t1 = 0 : ~t2~n1(�1 � �2) 6 0; ~t2~n1(�1 � �2) 6 0,() 8  2 N with ~n k ~t3 : ~t3~n < 0,8  2 G with ~n1 k ~t3 : ~t3~n1(�1 � �2) 6 0; ~t3~n1(�1 � �2) 6 0.Then the only eigenvalues of the orner bundle A in the strip Re � 2 [�1; 0℄ are �1 and 0. Thealgebrai and geometri multipliities oinide and equal to 3. The eigenfuntions of � = 0 are theonstant funtions.3. Mixed onditions: Let C be a one whih satis�es ondition G1 in setion 5.3.1 and whih is dividedinto subones Ci. Let further ~t1;~t2;~t3 2 R3 with ~ti~tj = Æij suh that the following three onditionsare satis�ed:



26 5 ESTIMATES OF THE EIGENVALUES(a) 8  2 D : ~n~t1 6 0,8  2 N : ~n~t1 > 0,8  2 G : ~t1~n1(�1 � �2) > 0; ~t1~n1(�1 � �2) > 0,(b) 8  2 D with ~n~t1 = 0 : ~t2~n 6 0,8  2 N with ~n~t1 = 0 : ~t2~n > 0,8  2 G with ~n1~t1 = 0 : ~t2~n1(�1 � �2) > 0; ~t2~n1(�1 � �2) > 0,() 8  2 D with ~n k ~t3 : ~t3~n < 0,8  2 N with ~n k ~t3 : ~t3~n > 0,8  2 G with ~n1 k ~t3 : ~t3~n1(�1 � �2) > 0; ~t3~n1(�1 � �2) > 0.Then there are no eigenvalues of the orner bundle A in the strip Re � 2 [�1; 0℄.4. Interior rossing points: Let C = R3 be divided into polyhedral subones Ci. If there exist ~t1;~t2;~t3 2R3 with ~ti~tj = Æij suh that(a) 8 2 G : ~t1~n1(�1 � �2) 6 0; ~t1~n1(�1 � �2) 6 0,(b) 8  2 G with ~n1~t1 = 0 : ~t2~n1(�1 � �2) 6 0; ~t2~n1(�1 � �2) 6 0,() 8  2 G with ~n1 k ~t3 : ~t3~n1(�1 � �2) 6 0; ~t3~n1(�1 � �2) 6 0,then the only eigenvalues of the orner bundle A in the strip Re � 2 [�1; 0℄ are �1 and 0. Thealgebrai and geometri multipliities oinide and equal to 3. The eigenfuntions of � = 0 are theonstant funtions.The onditions in the ases DD and NN for two subdomains with a plane interfae are exatly theonditions in [24℄. Therefore the proof of Theorem 5.1 is a generalization of the proof in [24℄. RewritingTheorem 5.1 for two dimensional domains shows that the onditions are satis�ed if and only if theparameters of the two dimensional problem are quasi-monotone and if the onditions GC 1 resp. GC2 are satis�ed. The onditions in Theorem 5.1 an be seen as a generalized quasi-monotoniity withadditional geometri onditions.Corollary 5.2. If for every orner the assumptions of Theorem 5.1 are satis�ed, then for all edges e,the orresponding edge bundles Ae(�) have no eigenvalues in the strip Re � 2 (0; 12 ℄. Thus u��
i 2 C(
i)(if the data are as in Theorem 3.2).Proof. From the assumptions about the orners one an easily derive the assumptions of setion 5.1.1 fortwo dimensional problems. The assertion follows with Remark 3.1. �The proof of Theorem 5.1 is based on a homotopy argument for an operator family A;t whih desribesfor t = 1 the given operator penil A on m subdomains and for t = 0 an operator penil on onesubdomain where we know the distribution of the eigenvalues. The onditions G1 in the ase DN andthe assumption that C an be desribed by a funtion ' in the ase NN are required to guarantee thatthe problems on one subdomain do not have eigenvalues in the strip Re � 2 (�1; 0).Example 5.3. Consider Fihera's orner in �g. 10. If all the boundaries whih ontain rossing pointS are Dirihlet boundaries and if �1 6 �2 6 �3 and �1 6 �2 6 �3 then the onditions of Theorem 5.1 1.are satis�ed. If all boundaries are Neumann boundaries, we have to replae 6 by > to satisfy Theorem5.1 2. If we onsider mixed boundary onditions at S with Dirihlet onditions at the parts of �
1 and�
3 whih ontain S, then ondition 3. of Theorem 5.1 is satis�ed if �3 6 �1 6 �2 and �3 6 �1 6 �2(this is the only possible hoie in that ase).
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5.3.3 Proof of Theorem 5.1The proof is based on a homotopy argument. We begin with the Dirihlet problem. In a �rst step weprove that there are no eigenvalues of the orresponding operator bundle A on the lines Re � = �1and Re � = 0. Due to the symmetry of the eigenvalues ( Lemma 3.2) we an restrit ourself to the lineRe � = 0. In a seond step we onstrut an operator family A;t(�) for whih we an apply Theorem 4.2.First step: We prove by ontradition that there are no eigenvalues of the operator-bundle A(�) onthe line Re � = 0.Let C be a polyhedral one with tip in 0 and properties as in Theorem 5.1.1 (Dirihlet problem). Assumethat there is an eigenvalue � with Re � = 0 and a orresponding eigenfuntion ~v 6= 0. Then the funtion~u := ��~v (� distane to 0) satis�es for k 2 f1; 2; 3g:0 = mXi=1 ZCi(Æ) �k(�i jtr "(~ui)j2 + 2�i j"(~ui)j2) dx (5.2)� mXi=1 Z�Ci(Æ) 2Re h�i(~ui)~ni; �k~uii ds: (5.3)
Here we have set Ci;Æ := f~x 2 Ci : Æ < j~xj < 1g for a given Æ 2 (0; 1). With h�; �i we denote the innerprodut in C 3 ; for A;B 2 C 3�3 we de�ne A : B = tr(AtB). Equation (5.2) an be derived by Green'sformula and the produt rule, taking �k~u as a test funtion. Using Gauss Theorem we get:0 = mXi=1 Z�Ci(Æ) ��i jtr "(~ui)j2 + 2�i j"(~ui)j2 �nik ds� mXi=1 Z�Ci(Æ) 2Re h�i(~ui)~ni; �k~uii ds; (5.4)



28 5 ESTIMATES OF THE EIGENVALUESwhere ~ni denotes the exterior normal vetor on Ci(Æ). The integrals over the sets fx 2 Ci : jxj = 1g andfx 2 Ci : jxj = Æg vanish beause of the speial form of ~u. It remains (Æ = fx 2  : Æ < jxj < 1g):0 = X2G(~n1)k ZÆ �1 (~u1) : "(~u1)� �2 (~u2) : "(~u2 ) ds� X2G 2Re ZÆh�1 (~u1)~n1 ; �ku1 � �ku2i ds+ X2D ZÆ �(~u) : "(~u)(~n)k � 2Reh�(~u)~n ; �k~ui ds: (5.5)Let  2 D. Using the Dirihlet onditions we get �~u�~t = 0 on  for all ~t with ~t~n = 0. Thus we have�k~u = (~n)k �u�~n and therefore: h�(~u)~n ; �k~ui = (~n)k�(~u) : "(~u): (5.6)Loal oordinates on the interfaes: Let  2 G. We introdue a loal Cartesian oordinate system whihis spanned by ~a1;~a2; ~n1 with positive orientation. We set Q := (~a1;~a2; ~n1) and r~u := r~uQ. For~w := QT~u we further set E(~w) := 12(r ~w + (r ~w)T ), Si(~w) := �i trE(~w) + 2�iE(~w). One �nally getsthe following relations between the original oordinates and the transformed system:"(~u) = QE(~w)QT ; tr "(~u) = trE(~w); jtr "(~u)j2 = jtrE(~w)j2 ;j"(~u)j2 = jE(~w)j2 ; �i(~u) = QSi(~w)QT ; �i(~u) : "(~u) = Si(~w) : E(~w):The transmission onditions for ~x 2  are transformed as follows:~ui(~x)� ~uj(~x) = 0 , ~wi(~x)� ~wj(~x) = 0; (5.7)�i(~ui)~n1 � �j(~uj)~n1 = 0 , �Si(~wi)� Sj(~wj)�0�0011A = 0: (5.8)Inserting the Dirihlet transmission ondition we geth�1 (~u1)~n1 ; �ku1 � �ku2i = (~n1)khS1 (~w1 )0�0011A ; � ~w1�~n1 � � ~w2�~n1 i; ~x 2 :Inserting the last equation and (5.6) into (5.5) gives:0 = X2G ~n1 ZÆ �S1 (~w1 ) : E(~w1 )� S2 (~w2 ) : E(~w2 )� ds� X2G ~n12Re ZÆ hS1 (~w1 )0�0011A ; � ~w1�~n1 � � ~w2�~n1 i ds� X2D ~n ZÆ �(~u) : "(~u) ds: (5.9)



5.3 Lam�e-operator, 3D 29Using again the transmission onditions on  we get the relations, see also [23℄:Eii(~w1) = Eii(~w2); i = 1; 2;�1Ei3(~w1) = �2Ei3(~w2); i = 1; 2;2�1E33(~w1) + �1 trE(~w1) = 2�2E33(~w2) + �2 trE(~w2)(�2 + 2�2)E33(~w2) = (2�1 + �1)E33(~w1) + (�1 � �2) 2Xi=1 Eii(~w1);After short alulations analogous to those in [23℄ we get from (5.9) and the above relations:0 = X2G ~n1 ZÆ �2(�1 � �2)(jE11(~w1)j2 + jE22(~w1)j2 + 2 jE12(~w1)j2)+4�1�2 (�1 � �2)(jE13(~w1)j2 + jE23(~w1)j2)+(�1 � �2)(�1 + 2�2)�2 + 2�2 jtrE(~w1)j2+4(�1 � �2)(�1 � �2)�2 + 2�2 Re �E33(~w1)trE(~w1)�+2(�2 + 2�1)(�1 � �2)�2 + 2�2 jE33(~w1)j2 � ds�X2D ~n ZÆ �(~u) : "(~u) ds=: X2G ~n1 ZÆ B1 (~w1 ) ds�X2D ~n ZÆ �(~u) : "(~u) ds: (5.10)The last equation is the essential equation of this proof. Salar multipliation of (5.10) with ~t1 of Theorem5.1 gives: 0 = X2G~n1~t1 6=0~n1 ~t1 ZÆ B1 (~w1 ) ds� X2D~n~t1 6=0~n ~t1 ZÆ �(~u) : "(~u) ds: (5.11)Assumption 1.(a) of Theorem 5.1 together with Lemma 5.3 (subsequent to this proof) shows8  2 G with ~n1~t1 6= 0 : ~n1 ~t1 ZÆ B1 (~w1 ) ds > 0;8  2 D with ~n~t1 6= 0 : ~n ~t1 ZÆ �(~u) : "(~u) ds 6 0:Thus equation (5.11) is satis�ed i�8  2 G with ~n1~t1 6= 0 : B1 (~w1 ) = 0; (5.12)8  2 D with ~n~t1 6= 0 : �(~u) : "(~u) = 0: (5.13)In the same way we onlude for the remaining boundaries and interfaes. Thus we �nally get (5.12),(5.13) for every  2 D resp.  2 G. Using Lemma 5.3, we get from these equations for all  2 G:1. Case, �1 � �2 6= 0: E(~w1) = 0 = E(~w2) on  and therefore "(~u1) = 0 = "(~u2) on .



30 5 ESTIMATES OF THE EIGENVALUES2. Case, �1 = �2 ; �1 6= �2 : tr "(~u1) = 0 = tr "(~u2 ) on .For  2 D we have "(~u) = 0 on .Sine ~u is a solution of the homogeneous boundary transmission problem we onlude: For everyi = 1; : : : ;m the funtion tr "(~ui) is a solution of the following problem in one Ci:4(tr "(~ui)) = 0 in Ci; (5.14)tr "(~ui) = 0 on �Ci: (5.15)Further tr "(~u) = ��1+i�~v (follows from the ansatz for ~u) whih �nally leads to tr "(~ui) = 0 on Ci. Thisfollows with the help of Lemma 5.1.1. Case: If for a sub one Ci there holds "(~ui) = 0 on �Ci, then eah omponent "kl(~ui) of "(~ui) is asolution of: 4"kl(~ui) = 0 in Ci; (5.16)"kl(~ui) = 0 on �Ci: (5.17)Again with Lemma 5.1 there follows "(~ui) = 0 in Ci and �nally ~ui = onst on Ci.2. Case: If �i = �j for two neighboring ones Ci; Cj , then �i(~ui) = 2�i"(~ui) = 2�i"(~uj) = �i(~uj) on = �Ci \ �Cj. Here we used tr "(~ui) = 0 on Ci. Therefore ~u is a solution of�(�i4~u+ (�i + �i) grad div ~u) = 0 in Ci [ Cj;the one Ci[Cj an be onsidered as one one with the parameters �i; �i. Rejoining all neighboring oneswith �i = �j results in a one ~C for whih ~� 6= �k for all neighboring ones Ck. The same onsiderationsas in the �rst ase lead to ~u�� ~C = onst.Finally we have ~u = onst on C and together with the Dirihlet onditions: ~u = 0 on C. This is a on-tradition to the assumption ~u 6= 0, thus the line Re � = 0 does not ontain eigenvalues of the operatorpenil whih orresponds to the Dirihlet problem. Using the symmetry of the eigenvalues the same istrue for the line Re � = �1.Seond step: Applying the homotopy argument of Theorem 4.2 to the operator family At given by�i(t) := (1 � t)�1 + t�i, �i(t) := (1 � t)�1 + t�i �nishes the proof sine there are no eigenvalues inthe strip Re � 2 [�1; 0℄ for t = 0 and for all t 2 [0; 1℄ there are no eigenvalues of At on the linesRe � = �1;Re � = 0.Mixed problems: We use the same arguments as for the Dirihlet problem. The essential equation here is0 =X2G ~n1 ZÆ B1 (~w1 ) ds�X2D ~n ZÆ �(~u) : "(~u) ds+ X2N ~n ZÆ �(~u) : "(~u) ds: (5.18)whih replaes equation (5.10). By analogous arguments we onlude that there are no eigenvalues on thelines Re � 2 f�1; 0g. ConditionG1 guarantees that the problem with �i = �j; �i = �j on all subdomainshas no eigenvalues in the strip Re � 2 [�1; 0℄.Neumann problem: Here, equation (5.10) is replaed by0 =X2G ~n1 ZÆ B1 (~w1 ) ds+ X2N ~n ZÆ �(~u) : "(~u) ds: (5.19)



5.3 Lam�e-operator, 3D 31With similar arguments to the Dirihlet ase one proves that � = 0 is the only eigenvalue on the lineRe � = 0 with the onstant funtions as eigenfuntions. By symmetry, �1 is the only eigenvalue on theline Re � = �1. By alulations similar to those in [13, pp. 127℄ one an prove that there are no asso-iated eigenfuntions for the eigenvalue � = 0. Thus the geometri multipliity = algebrai multipliity= 3. The proof �nishes with a homotopy argument.Interior rossing points: The ase of one subdomain (i.e. C = R3) is treated in Lemma 5.2 subsequent tothe proof. For the ase of m > 2 subdomains we proeed as in the Neumann problem, where equation(5.19) is replaed by 0 =X2G ~n1 ZÆ B1 (~w1 ) ds: (5.20)This �nishes the proof of Theorem 5.1. �5.3.4 Two auxiliary LemmataLemma 5.2. The eigenvalue problem orresponding to the equation�4~u+ (�+ �) grad div ~u = 0; x 2 R3nf0g (5.21)(here, 0 is the \vertex" of the one) has exatly the eigenvalues �k = 0; k 2 Z. The eigenvalue �0 = 0has geometri multipliity = algebrai multipliity = 3 and has the onstant funtions as eigenfuntions.Proof. Let ~u = r�~v be a solution of (5.21). Then tr "(~u) = r��1~~v is a solution of4 tr("(~u)) = 0 in R3 :Thus � � 1 = 12 �q14 + �, where � is an eigenvalue of the Laplae-Beltrami operator on the wholesphere S2 and ~~v is a orresponding eigenvetor. The eigenvalues of the Laplae-Beltrami have the form�n = n(n+ 1); n 2 N0 , the geometri multipliity is given by Kn = 2n+ 1 [20℄, there are no assoiatedeigenfuntions. �Lemma 5.3. [24℄ Let �1; �2 > 0; �i + �i > 0; i = 1; 2. For x; y 2 C we setb(x; y) := (�1 � �2)(�1 + 2�2) jxj2 + 4(�1 � �2)(�1 � �2)Re (yx) + 2(�2 + 2�1)(�1 � �2) jyj2 :There holds:i.) �1 > �2 and �1 > �2 ) b(x; y) > 0;8x; y 2 C .ii.) �1 > �2 and �1 > �2 ) b(x; y) > 0;8x; y 2 C ; y 6= 0.iii.) �1 6 �2 and �1 6 �2 ) b(x; y) 6 0;8x; y 2 C .iv.) �1 < �2 and �1 6 �2 ) b(x; y) < 0;8x; y 2 C ; y 6= 0.v.) �1 = �2 and �1 6= �2, then b(x; y) = 0, x = 0.The Lemma is proven with similar arguments to those in [24℄.
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