
  Bericht  2002/10 

Universität Stuttgart  

 

Mehrfeldprobleme in der 
Kontinuumsmechanik 

Dorothee Knees 

Regularity results for transmission 
problems for the Laplace and Lamé 

operators on polygonal or 
polyhedral domains 



SFB 404
- Geschäftsstelle -
Pfaffenwaldring 57

70550 Stuttgart

Telefon: 0711/685-5554
Telefax: 0711/685-5599

E-Mail: sfb404@mathematik.uni-stuttgart.de
http://sfb404.mathematik.uni-stuttgart.de/sfb404/

ISSN 0949-2046



  Bericht  2002/10 

Universität Stuttgart  

 

Mehrfeldprobleme in der 
Kontinuumsmechanik 

Dorothee Knees 

Regularity results for transmission 
problems for the Laplace and Lamé 

operators on polygonal or 
polyhedral domains 



Regularity results for transmission problems for theLapla
e and Lam�e operators on polygonal or polyhedraldomainsDorothee Knees�Abstra
tBoundary value problems for the Lapla
e and Lam�e operators with pie
ewise 
onstant material
oeÆ
ients are investigated on polygonal or polyhedral domains. Be
ause of geometri
 pe
uliaritiesand non-smooth material 
onstants the solutions and espe
ially the derivatives have a singular behaviorin a neighborhood of 
orners, edges and 
rossing points. For 3D problems for the Lam�e operator it isnot 
lear if the displa
ement �elds are bounded. In this paper we derive suÆ
ient 
onditions on thematerial 
onstants and geometry whi
h guarantee that weak solutions of the BVPs are bounded andpie
ewise 
ontinuous. We further give a short overview over known results.1 Introdu
tionIn this paper we 
onsider boundary transmission problems for the Lapla
e and Lam�e operators on po-lygonal or polyhedral domains. It is well known that harmoni
 and linear elasti
 �elds have a singularbehavior near geometri
al pe
uliarities su
h as 
orners, edges, 
rossing points or 
rossing edges. Thesingular behavior 
an be 
hara
terized by an asymptoti
 expansion for weak solutions u in a neighborhoodof a 
orner point S. For 3D polyhedral domains the expansion has the following form:Let u 2 H1(
) := fu 2 L2(
) : u��
i 2 H1(
i)g be a weak solution for the Lapla
e or Lam�e equationswith pie
ewise 
onstant 
oeÆ
ients on 
i � R3 ; 
 = [i
i, 
i polyhedral. Then u 
an be de
omposed inthe following way in a neighborhood of a 
orner point S [3℄:�Su = ureg + �Suedge + �Su
orner:Here, ureg��
i 2 H2�"(
i) for a small " > 0, �S is a 
ut-o� fun
tion. Furtheru
orner = X� 12<Re �j< 12�" 
j ��jWj(ln�; �; '); (1.1)where (�; �; ') are spheri
al 
oordinates. Finallyuedge = Xedges e X0<Re �j;e<1�" d�e(ze; �) r�j;ee Vj;e(ln re; '):Here we sum over all edges e whi
h 
ontain S, re is the distan
e to edge e. The regularity of a weaksolution is determined by the smallest real parts of the singular exponents �j ; �j;e. If there are no edge�Mathematis
hes Institut A, Universit�at Stuttgart, Pfa�enwaldring 57, 70569 Stuttgart, Germany,kneesde�mathematik.uni-stuttgart.de 1



2 2 FORMULATION OF THE PROBLEMexponents �j;e in the strip Re � 2℄0; 12 ℄ and no 
orner exponents �j in the strip Re � 2℄� 12 ; 0[ then wehave the following regularity result for weak solutions: �Su��
i 2 H 32+"(
i) whi
h is embedded in C(
i).The main goal of this paper is to des
ribe 
lasses of transmission problems for whi
h weak solutionsadmit an asymptoti
 expansion as in (1.1) where no edge exponents are situated in the strip Re � 2℄0; 12 ℄and no 
orner exponents in the strip Re � 2℄� 12 ; 0℄. These 
lasses 
onsist of transmission problems withan arbitrary number of subdomains where the material parameters are distributed quasi-monotonely andwhere some additional geometri
 
onditions are satis�ed. In the two dimensional 
ase there are exampleswhi
h show that if these 
onditions are violated there 
an be stronger singularities, [8℄, whereas in thethree dimensional 
ase su
h examples are unknown for the Lam�e operator.The paper is organized as follows: In se
tions 2 and 3 we give the basi
 de�nitions and re
all asymptoti
expansions for weak solutions, [10, 3, 24℄. In se
tion 4, a homotopy argument based on Rou
h�e's Theoremfor operator-valued fun
tions is presented whi
h we will use in se
tion 5 to prove the main result formu-lated in Theorem 5.1. In this Theorem we des
ribe in detail the assumptions on the material parameters(quasi-monotoni
ity) and the geometry whi
h guarantee that there are no 
orner exponents in the stripRe � 2℄ � 12 ; 0[. For boundary value problems whi
h satisfy these 
onditions we then get the regularityu��
i 2 C(
i). The main idea of the proof is to 
arry over known estimates of the exponents for problemswith 
onstant parameters to problems with pie
ewise 
onstant parameters by a homotopy argument.A short overview of known estimates of the singular exponents will also be given in se
tion 5. There isa variety of estimates for the Lapla
e transmission operator on 2D domains [2, 14, 24, 25, 19℄ whi
h wesummarize in table 1. In 
ontrast to the Lapla
e operator, there are only few results for transmissionproblems of the Lam�e system in the literature. Estimates for one subdomain were derived in [7, 22, 12, 26℄.The results presented in this paper are a generalization of those in [24℄, where estimates for boundarytransmission problems on two subdomains with a plane interfa
e were developed.2 Formulation of the Problem2.1 DomainsIn this paper we will 
onsider polygonal or polyhedral domains 
 � RN , N = 2; 3, whi
h are divided intopolygonal or polyhedral subdomains. In order to in
lude domains with 
ra
ks and other non-Lips
hitzdomains, we �rst introdu
e the notion of generalized polyhedrons and 
omposites. In se
tion 2.2 the
orresponding Sobolev-spa
es and needed tra
e theorems will be spe
i�ed.2.1.1 Generalized polyhedronsLet 
 � RN , N = 2; 3, be bounded and let the 
one property be satis�ed:De�nition 2.1. [29, Def. 2.2℄ 
 � RN satis�es the 
one property if for every x 2 
 there exists an openspheri
al 
one C(x) with vertex in x whi
h is 
ongruent to a �xed 
one C0 and C(x) � 
.We further assume that �
 is the union of oriented N � 1 dimensional plane surfa
es, that means:There is a �nite number of pairs (�i; ~ni) with �i � �
 su
h that1. �
 = [i�i,
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Figure 1: Generalized polyhedrons2. Every �i is an open 
onne
ted polygonal subset of a N � 1 dimensional hyperplane, �i has aLips
hitz boundary. ~ni is a unit normal ve
tor on �i for whi
h we assume: 8x0 2 �i 9 Æ(x0) > 0su
h that 8 0 < Æ < Æ(x0) there holds: x0 � Æ~ni 2 
.3. 8i; j : if �i \ �j 6= ; and ~ni = ~nj, then �i = �j.4. If S := (int
)n
 6= ; (i. e. if 
 has 
ra
ks) then there exist (�i1 ; ~ni1); : : : ; (�il ; ~nil) where the �ij arepairwise disjoint and S = [16j6l�ij .Further there exist (�k1 ; ~nk1); : : : ; (�kl ; ~nkl) with �kj = �ij and ~nkj = �~nij for 1 6 j 6 l.Domains whi
h satisfy these 
onditions will be 
alled generalized polyhedrons.These 
onditions 
an be interpreted as follows: �
 is divided into plane fa
es �i. To ea
h �i is asso
iateda normal ve
tor ~ni whi
h is dire
ted to the exterior of 
 if a part of �i is 
ontained in the exteriorboundary of 
. If 
 has a 
ra
k S then S shall be 
overed twi
e by the (�i; ~ni) su
h that one 
an identifyleft and right 
ra
k sides (with the 
orresponding normal ve
tors). Two di�erent parts �i and �j mayonly interse
t if ~ni = �~nj (this 
an happen at a 
ra
k only).Example 2.1. Every standard polyhedron and polyhedrons with 
ra
ks are generalized polyhedrons. In�g. 1 generalized polyhedrons are plotted whi
h have no Lips
hitz boundary.2.1.2 CompositesWe now introdu
e 
omposed polyhedral domains where we will study transmission problems.Let 
 � RN be a generalized polyhedron. We assume that 
 is divided into a �nite number of generalized
PSfrag repla
ements 
i
j 
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Figure 2: Examples for 
omposites, 2D and 3D
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Figure 3: Example for a 
omposite with 
ra
k, 2Dpolyhedra 
i in the following way: 
 = M[i=1
i;where 
i \ 
j = ; for i 6= j; 
i � 
 and if Si := int(
i)n
i 6= ; then Si � �
. Su
h domains will be
alled 
omposites, �g. 2.To des
ribe the boundary �
 we introdu
e the notation, �g. 3:If mesN�1(�
\�
i) 6= 0 then we divide the 
ommon boundary into oriented parts (
i;l; ~ni;l), 1 6 l 6 n(i),su
h that:
i;l is an open subset of a N � 1 dimensional hyperplane, 
i;l has a polygonal Lips
hitz boundary and
i;l � �
i\�
; ~ni;l is normal to 
i;l and for �i := Sn(i)l=1 
i;l there holds: mesN�1(�i) = mesN�1(�
i\�
).Further the pairs (
i;l; ~ni;l) satisfy 2. and 3. in se
tion 2.1.1 and in addition:4'. If Si := (int
i)n
i 6= ; (i. e. if 
i has 
ra
ks) then there exist (
i;l1 ; ~ni;l1); : : : ; (
i;lk ; ~ni;lk) where the
i;lj are pairwise disjoint and Si = [16j6k
i;lj .Further there exist (
i;s1 ; ~ni;s1); : : : ; (
i;sk ; ~ni;sk) with 
i;sj = 
i;lj and ~ni;sj = �~ni;lj for 1 6 j 6 k.For the interfa
es we use the following notation:If mesN�1(�
i \ �
jn�
) 6= 0 then we divide the interfa
e of 
i;
j into plane fa
es 
ij;l; 1 6 l 6 n(ij):
ij;l is an open subset of a N � 1 dimensional hyperplane and has a polygonal Lips
hitz boundary;
ij;l \ 
ij;k = ; for l 6= k and for �ij := Sn(ij)l=1 
ij;l there holds: mesN�1(�ij) = mesN�1(�
i \ �
jn�
).For 
ij;k 2 G we denote by ~nij;k the exterior normal ve
tor of 
ij;k with respe
t to 
i, by ~nji;k the exteriornormal ve
tor of 
ij;k with respe
t to 
j.Finally we 
olle
t the parts of �
 in the set F := f(
i;l; ~ni;l); 1 6 i 6M; 1 6 l 6 n(i)g =: D [ N ,where D;N are disjoint and 
hara
terize the Diri
hlet- and the Neumann-boundary respe
tively. G :=f
ij;k; i; j; kg des
ribes the interfa
e.By S we denote the set of geometri
al singularities whi
h 
onsist of 
orners and edges.



2.2 Spa
es 52.2 Spa
esThe following Sobolev spa
es will be used:Let l 2 N0 ; 
 � RN be an open, 
onne
ted domain.H l(
) := fu 2 L2(
) : D�u 2 L2(
); 0 6 j�j 6 lg:Here, D�u is the distributional derivative of u , � is a multi-index. (H l(
); k�kHl(
)) is a separable Hilbertspa
e with the usual norm and inner produ
t, [29℄. If 
 is a 
omposite, we setHl(
) := fu 2 L2(
) : u��
i 2 H l(
i)g:We shortly write ui for u��
i . For 
 � RN ; open, D(
) is the set of in�nitely di�erentiable fun
tions inRN with 
ompa
t support in 
, D(
) = fu��
 : u 2 D(RN )g.We further need the following tra
e spa
es for l = 1; 2; : : :: Let 
 be a 
omposite, 
 2 G [ F .H l� 12 (
) := D(
)k�kHl� 12 (
) ;where the norm is de�ned by the Sobolev-Slobodetskij normkuk2Hl� 12 (
) = kuk2Hl�1(
) + Xj�j6l�1Z
�
 jD�u(x)�D�u(y)j2jx� yjN+1 dxdy:Finally ~H l� 12 (
) = fu 2 H l� 12 (h(
)) : suppu � 
g;where h(
) is that N � 1 dimensional hyperplane whi
h 
ontains 
. Sin
e 
 has a Lips
hitz boundaryH l� 12 (
) = fu��
 : u 2 H l� 12 (h(
))g, [29, Thm. 3.6℄.For l = 1 we de�ne the following dual spa
es:H� 12 (
) := � ~H 12 (
)�0; ~H� 12 (
) := �H 12 (
)�0:For v 2 ~H 12 (
); h 2 H� 12 (
) we denote by hh; v; i
 := hh; vi(H� 12 (
); ~H 12 (
)) the dual pairing.For generalized polyhedrons we have the following tra
e theorems:Theorem 2.1. Let 
 � RN be a generalized polyhedron , (�i; ~ni) as in se
t. 2.1.1, m 2 N.1. Let 0 6 l 6 m� 1. There exists a unique linear and 
ontinuous mapping
l(�i;~ni) : Hm(
)! lYj=0Hm�j� 12 (�i)with the following property:If ~
 � RN is an open Lips
hitz-domain with ~
 � 
, �i � � ~
 and ~ni as exterior normal ve
tor,then for all u 2 Hm(
) with u��~
 2 D(~
):
l(�i;~ni)(u) = �u���i ; �u�~ni ���i ; : : : ; �lu�~nli ���i� :



6 2 FORMULATION OF THE PROBLEM2. There exists a linear, 
ontinuous extension operatorF(�i;~ni) : ~Hm� 12 (�i) �! �v 2 Hm(
) : supp(v���
) � �i	su
h that 
0(�i;~ni) Æ F(�i;~ni)(u) = u for all u 2 ~Hm� 12 (�i).This Theorem is proved in [6℄ for generalized polyhedrons with Lips
hitz boundaries and 
an easilybe extended to those without Lips
hitz boundaries.For the de�nition of the normal derivative for H1-fun
tions we introdu
e analogous to [6℄ the spa
eE(
) := fu 2 H1(
) : 4u 2 L2(
)g. This spa
e is a Bana
h spa
e regarding the norm kukE :=kukH1(
)+ k4ukL2(
). If 
 is a bounded Lips
hitz domain, then D(
) is dense in E(
). For 
omposites
 we set E(
) := nu 2 H1(
) : u��
i 2 E(
i)o :Theorem 2.2 (Normal derivative). [6℄ Let 
 � Rn be a generalized polyhedron, (�i; ~ni) as in se
t.2.1.1. Then there exists a unique linear, 
ontinuous operator��~ni : E(
) �! H� 12 (�i)with the following property:If ~
 � RN is an open Lips
hitz-domain with ~
 � 
, �i � � ~
 and ~ni the exterior normal ve
tor, thenfor all u 2 H1(
) with u��~
 2 D(~
) the 
lassi
al normal derivative and ��~ni 
oin
ide. Furthermore thefollowing Green's formula is valid for all u 2 E(
); v 2 H1(
) with v��(�i;~ni) 2 ~H 12 (�i) for all i:Z
4uv dx+ Z
rurv dx =X�i h �u�~ni ; vi�i ; (2.1)where h�; �i�i is the dual pairing h�; �i(H� 12 (�i); ~H 12 (�i)).Remark 2.1. An analogous Green's formula holds for 
omposites.2.3 Boundary transmission problemsWe now introdu
e the variational formulation of boundary transmission problems for the Lapla
e andLam�e operators. Let 
 � RN be a bounded 
omposite. In order to des
ribe admissible Diri
hlet data wede�ne the following spa
e for l = 1; 2; : : ::Bl� 12 := �FD : FD = �u1��
D1;1 ; : : : ; u1��
D1;n(1) ; u2��
D2;1 ; : : : ; uM ��
DM;n(M) ; : : : ;: : : ; ui��
ij;k � uj��
ij;k� : ui 2 H l(
i) \E(
i)o ;whi
h is a subspa
e of Q(
i;l;~ni;l)2DH l� 12 (
i;k) �Q
ij;k2G H l� 12 (
ij;k): By ui��
Di;j we mean the restri
tionof ui to 
Di;j if 
Di;j is part of the Diri
hlet boundary.Remark 2.2. If F 2 B 12 then there are satis�ed some 
ompatibility 
onditions between the data on theDiri
hlet boundaries and the Diri
hlet data on the interfa
es. These 
onditions were studied in [6, 24℄.



2.3 Boundary transmission problems 7For the right hand sides we assume 
ondition (D)(D) fi 2 �H1(
i)�0 ; gDi;k 2 H 12 (
i;k) for 
i;k 2 D; hDij;k 2 H 12 (
ij;k) for 
ij;k 2 G;gNi;k 2 H� 12 (
i;k) for 
i;k 2 N ; hNij;k 2 H� 12 (
ij;k) for 
ij;k 2 G:For the Diri
hlet data gDi;k and hDij;k we further assume:FD := (: : : ; gDi;k; : : : ; hDij;k; : : :) 2 B 12 .FinallyV := �u 2 H1(
) : 8
 2 D : u��
 = 0; 8
 2 N : u��
 2 ~H 12 (
); 8
ij 2 G : ui��
ij ; uj��
ij 2 ~H 12 (
ij)	:2.3.1 Lapla
e operatorWe are now ready to de�ne the boundary transmission problem for the Lapla
e operator. Therebywe redu
e problems with nonhomogeneous Diri
hlet data by a standard pro
edure to problems withhomogeneous Diri
hlet data.De�nition 2.2 (Variational solution). Let 
 � RN be a 
omposite, �1; : : : ; �M 2 R, let the datasatisfy (D). u 2 H1(
) is a variational solution of the boundary transmission problem for the Lapla
eoperator if there exists w 2 V su
h that u = w + ĝ where ĝ 2 E(
) satis�es the Diri
hlet 
onditions (i.e.8
i;l 2 D : ĝ��
i;l = gDi;l; 8
ij;k 2 G : ĝi��
ij;k � ĝj��
ij;k = hDij;k) and w is a solution ofa(w; v) = MXi=1hfi; vi((H1(
i))0 ;H1(
i)) + X
Ni;j2NhgNi;j; vi
Ni;j + X
ij;k2GhhNij;k; vi
ij;k+ MXi=1 �i Z
i4ĝiv dx� MXi=1 �ih �ĝi�~ni ; vi�
i for all v 2 V: (2.2)Here, h �ĝi�~ni ; vi�
i := X(
i;k;~ni;k)2N ;
i;k��
i h �ĝi�~ni;k ; vi
i;k + X
ij;k2G;
ij;k��
ih �ĝi�~nij;k ; vi
ij;kand a(u; v) = MXi=1 �i Z
i ruirvi dx: (2.3)Lemma 2.1. If 
ondition (D) holds and if in addition fi 2 L2(
i) for all 1 6 i 6M , then a variationalsolution u is in E(
) and solves ��i4ui = fi in 
i; (2.4)ui��
i;k = gDi;k; 
i;k 2 D; (2.5)�ui�~ni;k ��
i;k = gNi;k; 
i;k 2 N ; (2.6)ui��
ij;k � uj��
ij;k = hDij;k; 
ij;k 2 G; (2.7)�i �ui�~nij;k ��
ij;k + �j �uj�~nji;k ��
ij;k = hNij;k; 
ij;k 2 G; (2.8)



8 2 FORMULATION OF THE PROBLEMProof. Let u be a variational solution. Then w := u� ĝ 2 V and satis�es (2.2) for all v 2 V , in parti
ularfor all vi 2 D(RN ) with supp vi � 
i. Using Green's formula (2.1) we obtain:�Z
i �i(ui � ĝi)4vi dx = Z
i(fi + �i4ĝi)vi dxfor all vi 2 D(
i). Thus ��i4(ui�ĝi) = fi+�i4ĝi in the distributional sense and due to the assumptionson fi; ĝi we may 
on
lude that ui 2 E(
i) with ��i4ui = fi, �nally u 2 E(
).Now let (
i;l; ~ni;l) 2 N . For all vi 2W (
i; 
i;l) := fv 2 H1(
i) : supp(v���
i) � 
i;lg there holds (Green'sformula): Z
i r(ui � ĝi)rvi dx = �Z
i4(ui � ĝi)vi dx+ h�(ui � ĝi)�~ni;l ; vii
i;l ;whi
h leads to 8 vi 2W (
i; 
i;l) : h�(ui � ĝi)�~ni;l ; vii
i;l = hgNi;l � �ĝi�~ni;l ; vii
i;land �nally (with Thm. 2.1) �(ui � ĝi)�~ni;l = gNi;l � �ĝi�~ni;l in H� 12 (
i;l):Analogous 
onsiderations show the validity of (2.7) and (2.8). �In the sequel we assume �i > 0 for all i. Problem (2.4)-(2.8) then des
ribes an ellipti
 boundarytransmission problem (Def. see [23, 15℄).One 
an prove existen
e and uniqueness of variational solutions in the usual way using the Lemma ofLax/Milgram. Note that the Poin
ar�e/Friedri
hs inequality is valid on generalized polyhedrons (One
an prove this inequality using embedding theorems for Sobolev spa
es. These theorems are true forgeneralized polyhedrons, [17℄).2.3.2 Lam�e operatorBefore we formulate the boundary value problem for the Lam�e operator we introdu
e some notation:By u : 
! RN we denote the displa
ement �eld, �; � 2 R are the Lam�e 
onstants. The stress tensor forlinear elasti
 isotropi
 and homogeneous materials is given via Hooke's law by �(u) = � tr "(u) + 2�"(u),where "(u) = 12�ru+ (ru)T � is the linearized strain tensor. For quadrati
 matri
es A;B we denote byA : B = tr(ATB) the inner produ
t.In order to de�ne the normal stresses on the boundary we introdu
e for 
 � RN (open domain)ELam�e(
) := fu 2 H1(
) : div�(u) 2 L2(
)g;ELam�e(
) := fu 2 H1(
) : u��
i 2 ELam�e(
i)g if 
 is a 
omposite.The same arguments as for the Lapla
e operator showTheorem 2.3 (Normal stresses). Let 
 � Rn be a generalized polyhedron, (�i; ~ni) as in se
t. 2.1.1.Then there exists a unique linear, 
ontinuous operatorTi : ELam�e(
) �! H� 12 (�i)with the following property:If ~
 � RN is an open Lips
hitz-domain with ~
 � 
, �i � � ~
 and ~ni the exterior normal ve
tor, then for



9all u 2 H1(
) with u��~
 2 D(~
) the 
lassi
al normal stress �(u)~ni���i and Ti(u) 
oin
ide. Furthermorethe following Green's formula is valid for all u 2 ELam�e(
); v 2 H1(
) with v��(�i;~ni) 2 ~H 12 (�i) for all i:Z
 div (�(u))v dx+ Z
 �(u) : "(v) dx =X�i h�(u)~ni; vi�i :De�nition 2.3 (Variational solution). Let 
 � RN be a 
omposite and the data satisfy (D). u 2H1(
) is a variational solution of the boundary transmission problem for the Lam�e operator if there existsw 2 V su
h that u = w + ĝ where ĝ 2 ELam�e(
) satis�es the Diri
hlet 
onditions and w is a solution ofa(w; v) = MXi=1hfi; vi((H1(
i))0;H1(
i)) + X
i;l2NhgNi;k; vi
i;l + X
ij;k2GhhNij;k; vi
ij;k+ MXi=1 Z
i ��i4ĝi + (�i + �i) grad div ĝi)v dx� MXi=1h�i(ĝi)~ni; vi�
i for all v 2 V:Here, a(�; �) is the bilinear form a(u; v) = MXi=1 Z
i �i(ui) : "(vi) dx; (2.9)the pairings h�; �i
i have the same meaning as in De�nition 2.2.If 
ondition (D) holds and if in addition fi 2 L2(
i) for all i then a variational solution u is inELam�e(
) and solves ���i4ui + (�i + �i) grad div ui� = fi in 
i; (2.10)ui��
i;k = gDi;k; 
i;k 2 D; (2.11)�i(ui)~ni;k = gNi;k; 
i;k 2 N ; (2.12)ui��
ij;k � uj��
ij;k = hDij;k; 
ij;k 2 G; (2.13)�i(ui)~nij;k + �j(uj)~nji;k = hNij;k; 
ij;k 2 G; (2.14)A suÆ
ient 
ondition for the ellipti
ity of this boundary transmission problem is �i > 0; �i + �i > 0 forall i, [27℄, whi
h we assume in the sequel.Existen
e and uniqueness of variational solutions 
an be proved using the Lax/Milgram Lemma. Notethat Korn's inequality is valid on generalized polyhedrons whi
h are the union of a �nite number ofdisjoint generalized polyhedrons with Lips
hitz boundary.3 Regularity and asymptoti
 expansion of weak solutionsThe regularity of weak solutions is mainly in
uen
ed by the presen
e of geometri
 singularities su
has edges, 
orners, 
rossing points. The asymptoti
 expansion of a solution in a neighborhood of thesegeometri
 singularities 
an be des
ribed with the help of eigenvalues and eigenfun
tions of operatorbundles whi
h are related to model problems for edges or 
orners.
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S ~na1~namFigure 4: Model problem, 2D3.1 Two dimensional domainsLet 
 � R2 be a 
omposite. For a 
orner point S let 
1; : : : ;
m be those subdomains of 
 whi
h meetin S. By Ci we denote the in�nite 
one with tip in S whi
h 
oin
ides with 
i in a neighborhood of S.Let the numbering be su
h that we have in polar 
oordinates: Ci = fx : 0 < r; �i�1 < ' < �ig where�0 < : : : < �m 6 �0+2�, CS := fx : �0 < ' < �mg, �g. 4. The model problem for the Lapla
e or Lam�eoperator in the 
one CS reads now: Au = f; x 2 CS ;where A is given by (2.4){(2.8) resp. (2.10){(2.14). Rewriting the model problem in polar 
oordinatesand applying the Mellin transform, M[g℄(�) = 1p2� R10 r���1g(r) dr, (r�r) ! �, we get the followingnonlinear eigenvalue problem: Find v 6= 0 and � 2 C su
h thatA(�)v(�;') = 0; ' 2 (�0; �m):Example 3.1. For the transmission problem of the Lapla
e operator the 
orresponding eigenvalue prob-lem reads: Find � 2 C ; v 6= 0 su
h that:��i��2vi + v00i � = 0 �i�1 < ' < �i; 1 6 i 6 m; (3.1)vi+1(�i)� vi(�i) = 0 1 6 i 6 m� 1 (3.2)�i+1v0i+1(�i)� �iv0i(�i) = 0 1 6 i 6 m� 1; (3.3)v1(0) = vm(�m) = 0 for Diri
hlet 
onditions; (3.4)v01(0) = v0m(�m) = 0 for Neumann 
onditions; (3.5)v1(0) = v0m(�m) = 0 for mixed 
onditons: (3.6)In the 
ase of an interior 
rossing point S we have to repla
e the boundary 
onditions by transmission
onditions for ' = �m. Sin
e the parameters �i are supposed to be positive, the operator 
orrespondingto the eigenvalue problem is ellipti
 with parameter, for the de�nition see for example [1, 21℄. Theeigenvalue problem for the Lam�e operator is given in [13℄. The 
orresponding operator is ellipti
 withparameter as well.Example 3.2. In �gure 5 are plotted the positive eigenvalues for the Neumann problem for the Lapla
eoperator on a domain with a 
ra
k (�1 = �4 ; �2 = �4 + '; �3 = 2�) for 0 < ' < 7�4 .
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Figure 5: Positive eigenvalues for a Neumann problemThe operators A(�) have the following property:Lemma 3.1. [1, 5℄ For every � 2 C the operatorA(�) : mYi=1H2(�i�1; �i)! L2(�0; �m)� C 2dm ;(Lapla
e: d = 1, Lam�e: d = 2) is Fredholm, the pen
il fA(�); � 2 C g is a Fredholm operator pen
il(i.e. Fredholm for every � 2 C and invertible for at least one �). The spe
trum of A(�) 
onsists only ofeigenvalues whi
h are isolated points in C and whi
h have no a

umulation points in C . Further thereexist �; Æ > 0 su
h that there are no eigenvalues in the domain �� 2 C : j�j > �; jRe �j < Æ jIm �j 	, �g.6. Let � be an eigenvalue of A(�). By f��;�;�; 1 6 � 6 I(�); 0 6 � 6 M�;� � 1g we denote a 
anoni
alsystem of Jordan 
hains where ��;�;0 are the eigenfun
tions and ��;�;�; � > 0, the asso
iated eigenfun
-tions; I(�) is the geometri
 multipli
ity of �, P�M�;� the algebrai
 multipli
ity of � (see e.g. [12℄). ForÆ := (�; �; �) we �nally setvÆ(r; ') = �Xq=0 (ln r)qq! ��;�;��q('); r > 0; ' 2 (�0; �m): (3.7)With these notations we are ready to des
ribe an asymptoti
 expansion for a weak solution:Theorem 3.1. [3℄ Let the right hand sides of (2.4)-(2.8) resp. (2.10)-(2.14) be su
h thatFD 2 B 32 ; fk 2 L2(
k);gNi;k 2 H 12 (
i;k) for 
i;k 2 N ;hNij;k 2 H 12 (
ij;k) for 
ij;k 2 G:If for a 
orner or 
rossing point S the 
orresponding operator pen
il AS(�) has no eigenvalues on theline Re � = 1 (ex
ept for � = 1 where the geometri
 and algebrai
 multipli
ities have to 
oin
ide), thena weak solution u 2 H1(
) admits the following asymptoti
 expansion in a neighborhood of S:�Su = ureg + �S XÆ2�S 
Ær�vÆ(r; '):



12 3 REGULARITY AND ASYMPTOTIC EXPANSION OF WEAK SOLUTIONS
PSfrag repla
ements

Im �
Re ��

1Æ

Figure 6: Regions without eigenvalues (grey)Here ureg��
i 2 H2(
i). Further �S is a 
ut-o� fun
tion with �S � 1 in a neighborhood of S, �S =fÆ = (�; �; �) : � eigenvalue of A(�); 0 < Re � < 1; 1 6 � 6 I(�); 0 6 � 6M�;�g. 
Æ is a 
onstant (stressintensity fa
tor) and vÆ are the singular fun
tions given by (3.7).3.2 Three dimensional domainsIn three dimensional polyhedral domains singularities 
an arise be
ause of 
orners and edges. Corre-spondingly we have to investigate model problems whi
h are de�ned in a neighborhood of 
orners and
rossing points and model problems whi
h are related to the edges.3.2.1 Corner singularitiesThe eigenvalue problem for 
orners or 
rossing points 
an be dedu
ed analogous to the two dimensional
ase:Let S be a 
rossing point, 
1; : : : ;
m the subdomains of 
 whi
h 
ontain S. Let Ki be the in�nite
one with tip in S whi
h 
oin
ides with 
i in a neighborhood of S; KS is the 
one whi
h 
oin
ides with
 in a neighborhood of S. Note, that if S is an interior 
rossing point then KS = R3 . We further denoteby Gi := Ki \ S2, G := KS \ S2 the interse
tions of Ki resp. K with the unit sphere S2; 
0i;l := 
i;l \ S2for 
i;l 2 F , resp. 
0ij;l := 
ij;l \ S2 for 
ij;l 2 G. The exterior parts of the boundary of G are divided inDiri
hlet (�Dir) and Neumann boundaries (�Neu) in the same way as the exterior parts of the boundaryof KS . Further we introdu
e spheri
al 
oordinates (�; �; ') with respe
t to S. We denote by ~Gi and ~G,both � [0; �℄ � [0; 2�[, the regions of the parameters (�; ') su
h that Gi = fx 2 S2 : r = 1; (�; ') 2 ~Gigand G = fx 2 S2 : r = 1; (�; ') 2 ~Gg. For the de�nition of the eigenvalue problem whi
h 
orresponds to
orner S we set ~V := fu 2 H1(G) : u���Dir = 0g:This spa
e is equipped with the normkuk2~V := Z ~G juj2 d! + Z ~G ���� 1sin ��'u����2 + j��uj2 d!; d! = sin �d�d':



3.2 Three dimensional domains 13For the Lapla
e operator the eigenvalue problem reads: Find � 2 C ; u 2 ~V nf0g su
h thata
(�; u; v) := (�2 + �)Xi Z ~Gi �iuivid!�Xi �i Z ~Gi � 1sin2 ��'ui�'vi + ��ui��vi�d! = 0 for all v 2 ~V : (3.8)Before we introdu
e the eigenvalue problem of the Lam�e operator we �rst give some abbreviations([16℄):A := 0�
os' sin �sin' sin �
os � 1AB := 0�
os' 
os �sin' 
os �� sin � 1AC := 0�� sin'= sin �
os'= sin �0 1AFurther we de�ne the following bilinear forms on ~V � ~V ! C:a(u; v) := mXs=1 3Xi;j;k;h=1Z ~Gs a(s)ijkhAjAhuivkd! for all u; v 2 ~V ; (3.9)b(u; v) := mXs=1 3Xi;j;k;h=1Z ~Gs a(s)ijkh(BjAh�ui�� vk + CjAh�ui�' vk)d! for all u; v 2 ~V ; (3.10)
(u; v) := mXs=1 3Xi;j;k;h=1Z ~Gs a(s)ijkh(BjBh�ui�� �vk�� +BjCh�ui�� �vk�' + (3.11)+ CjBh�ui�' �vk�� + CjCh�ui�' �vk�' )d! for all u; v 2 ~V : (3.12)Here, ui denotes the i-th 
omponent of the ve
tor u (do not 
onfuse with u��
i). Further a(s)ijkh = 2�sÆkiÆjh+�sÆkhÆii are the elasti
 sti�ness 
oeÆ
ients for the Lam�e operator on subdomain Gs.The eigenvalue problem for the Lam�e operator reads: Find � 2 C , u 2 ~V nf0g su
h thata
(�;u; v) := ��(�+ 1)a(u; v) � (�+ 1)b(u; v) + �b(v; u) + 
(u; v) = 0 for all v 2 ~V : (3.13)The bilinear forms (3.8) and (3.13) 
an formally be a
hieved in the following way: Inserting the ansatzU = ��u(�; ') into equations (2.4)-(2.8) resp. (2.10)-(2.14) on the 
one Ks with zero right hand sidesresults in an eigenvalue problem for � and u. After multipli
ation by v(�; ') and integration by parts,one obtains equation (3.8) resp. (3.13).Sin
e the bilinear forms (3.8) and (3.13) are 
ontinuous there exists for every � 2 C a unique 
ontinuouslinear operator A
(�) : ~V ! ~V 0 su
h thathA
(�)u; vi( ~V 0; ~V ) = a
(�; u; v) for all u; v 2 ~V :Lemma 3.2. [3, 13℄ The bilinear form a
 for the Lapla
e resp. the Lam�e operator has the followingproperties:1. 8� < Æ 2 R 9
�;Æ;��;Æ > 0, su
h that 8� 2 C with Re � 2 [�; Æ℄ and j�j > ��;Æ there holds:kuk2H1((G);�) 6 
�;Æ Re a
(�; u; u) 8u 2 ~V : (3.14)Here we have set kuk2H1((G);�) = j�j2 kuk2L2(G) + kuk2H1(G).



14 3 REGULARITY AND ASYMPTOTIC EXPANSION OF WEAK SOLUTIONS2. The operator pen
il fA
(�); � 2 C g is a Fredholm operator pen
il. The spe
trum 
onsists only ofeigenvalues of A
(�). These eigenvalues have �nite algebrai
 multipli
ity. There is only a �nitenumber of eigenvalues in any strip of the form Re � 2 [�; Æ℄.3. If �0 is an eigenvalue, then the same is true for �1��0 and the geometri
 and algebrai
 multipli
itiesof both 
oin
ide.Proof. Estimate (3.14) 
an be shown for transmission problems in the same way as in the proof ofProp. 8.4 in [3℄. We only need the 
oer
itivity of the bilinear form a in (2.3) resp. (2.9). For theFredholm property of A
 we follow the arguments in [3℄: A

ording to the �rst statement of this lemmathere exists �0 2 C su
h that A
(�0) : ~V ! ~V 0 is invertible. For any � 2 C there holds: A
(�) =A
(�0) + (A
(�)�A
(�0)). We now prove that A
(�)�A
(�0) : ~V ! ~V 0 is 
ompa
t. As a 
onsequen
e,A
(�) then is Fredholm.We begin with the Lapla
e operator: Let (un)n2N � ~V be bounded. Sin
e the embedding ~V ! L2(G) is
ompa
t, there exists u� 2 L2(G) and a subsequen
e (unk)k2N for whi
h unk ! u� in L2(
). Thereforek(A
(�) �A
(�0))(unk � unl)k ~V 0 = supkvk ~V =1 ja
(�; unk � unl ; v)� a
(�0; unk � unl ; v)j6 
(�; �0) kunk � unlkL2(G) ;thus (A
(�)�A
(�0))(unk) 
onverges in ~V 0.For the Lam�e operator we prove with the same arguments as for the Lapla
e operator that the operatorsM : ~V ! ~V 0, de�ned by hMu; vi( ~V 0; ~V ) = a(u; v) (from equation (3.9)), and T : ~V ! ~V 0, de�ned byhTu; vi( ~V 0; ~V ) = b(v; u), are 
ompa
t operators. With similar arguments to those in the proof of S
hauder'sTheorem (
ompa
t operators and adjoint operators, [28, Satz III.4.4℄) one then proves, that the operatorB : ~V ! ~V 0, whi
h is de�ned by hBu; vi( ~V ; ~V 0) = b(u; v), is also 
ompa
t. Thus A
(�) � A
(�0) is a
ompa
t operator.The properties of the spe
trum of Fredholm operator pen
ils are des
ribed in [5℄.The eigenvalues of the bundle A
(�) whi
h 
orrespond to the Lapla
e operator are given by �k;� =�12 � q14 + �k, where �k > 0 are the eigenvalues of the transmission Lapla
e-Beltrami operator onG � S2. The eigenfun
tions of �k;+ and �k;� 
oin
ide, there are no asso
iated eigenfun
tions, see alsoLemma 5.1.For the Lam�e operator, assertion 3: is a 
on
lusion of Theorem 1.2.2 in [13℄ together with the inequality8u 2 ~V nf0g; � 2 R : a
(�12 + i�; u; u) > 0:This inequality 
an be shown with similar 
al
ulations to those in [13℄, pp. 108. �Let � be an eigenvalue of A
 and f	�;�;�; 1 6 � 6 I(�); 0 6 � 6 M�;� � 1g a 
anoni
al system ofJordan 
hains. With 
 = (�; �; �) we setw
;
(�; �; ') = �Xq=0 (ln�)qq! 	�;�;��q(�; '): (3.15)
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rossing point s on an edge3.2.2 Edge singularitiesFor the edge singularities we investigate the following model problem: Let s be a point on an edge farfrom 
orners or 
rossing points. We use lo
al Cartesian 
oordinates (x; y; z) with origin in s su
h thatthe edge is part of the z axis, see �g 7. We denote by 
1; : : : ;
m those subdomains of 
 whi
h 
ontains. Let further Di be the dihedron whi
h 
oin
ides with 
i in a neighborhood of s. In the (x; y) plane weintrodu
e polar 
oordinates (r; '). Then the dihedrons are given byDi = f(x; y; z) : (x; y) 2 Cs;i; z 2 Rg;where Cs;i = f(x; y) 2 R2 : r > 0; �i�1 < ' < �ig:Here the numbering of the subdomains is su
h that �0 < : : : < �m 6 �0 + 2�. Finally Ds = f(x; y; z) :r > 0; �0 < ' < �m; z 2 Rg. Writing the prin
ipal part of the operators (2.4)-(2.8) resp. (2.10)-(2.14)in this 
oordinate system gives the following model problemAu = f; x 2 Ds:Fourier transform of the model problem with respe
t to z, �z ! i�, results in a boundary transmissionproblem with parameter � on the two dimensional 
one Cs := f(x; y) : r > 0; �0 < ' < �mg:A(�;Dx;Dy)û(�; x; y) = f̂(�; x; y); (x; y) 2 Cs:This problem 
an be investigated with the method for two dimensional domains: As a new model problemwe 
onsider the prin
ipal part A0 of A(�;Dx;Dy) on the two dimensional 
one Cs:A0(Dx;Dy)u = f; (x; y) 2 Cs:Note that A0 is independent of �.Example 3.3. We set ~u(x; y) := (ux(x; y); uy(x; y)), (x; y) 2 Cs;i = f(x; y) : r > 0; �i�1 < ' < �ig.



16 3 REGULARITY AND ASYMPTOTIC EXPANSION OF WEAK SOLUTIONSThen for the Lam�e operator this model problem reads:���i4~ui + (�i + �i) grad div (~ui)� = 0; (x; y) 2 Cs;i; (3.16)~ui = 0 Diri
hlet 
onditions; (3.17)�i(~ui)~ni = 0 Neumann 
onditions; (3.18)��i4uz = 0; (x; y) 2 Cs;i; (3.19)uz = 0 Diri
hlet 
onditions; (3.20)�uz�~ni = 0 Neumann 
onditions (3.21)together with the transmission 
onditions whi
h are de
oupled as well. The equations for ~u 
orrespondto those for plane strain where "13 = "23 = "33 = 0.Polar 
oordinates (r; ') for (x; y) and Mellin transform with respe
t to r lead to an operator bundleAe(�) whose eigenvalues and eigenfun
tions o

ur in the asymptoti
 expansion. The bundle Ae has theproperties given in Lemma 3.1.Let � be an eigenvalue of Ae, f��;�;�; 1 6 � 6 I(�); 0 6 � 6 M�;�g a 
anoni
al system of Jordan
hains. For Æ = (�; �; �) we setvÆ;e(r; ') = �Xq=0 (ln r)qq! ��;�;��q('); r > 0; ' 2 (�0; �m): (3.22)Remark 3.1. It follows dire
tly from (3.16)-(3.21) that the spe
trum of Ae for the Lam�e operator
onsists of the 
orner eigenvalues of the two dimensional Lam�e operator and those of the two dimensionalLapla
e operator.3.2.3 Asymptoti
 expansion of a weak solutionWe are now ready to des
ribe asymptoti
 expansions of weak solutions.Theorem 3.2. [3℄ Let 
 � R3 be a 
omposite. For the right hand sides we assumeFD 2 B 32 ; fk 2 L2(
k);gNi;k 2 H 12 (
i;k) for 
i;k 2 N ;hNij;k 2 H 12 (
ij;k) for 
ij;k 2 G:Let further u 2 H1(
) be a solution of (2.4)-(2.8), resp. (2.10)-(2.14). For a 
rossing point S we denoteby �S a 
ut o� fun
tion with � � 1 in a neighborhood of S. ES is the set of all edges 
rossing at S.Let 0 < s 6 1 su
h that there are no eigenvalues of the 
orner operator pen
il A
(�) on the line Re � =�12 + s and no eigenvalues of the pen
ils Ae(�), e 2 ES ; on the line Re � = s.Then a weak solution u 2 H1(
) has the following asymptoti
 expansion:�Su = ureg + �S X
2�S 
�;���w
;
 + �S Xe2ES XÆ2�eRe(
�;�e )r�e vÆ;e: (3.23)Here ureg��
i 2 H1+s(
i). Further �S = f
 = (�; �; �) : � = eigenvalue of A
(�); Re � 2℄� 12 ;�12 + s[ ;1 6 � 6 I(�); 0 6 � 6 M�;�g, �e = fÆ = (�; �; �) : � = eigenvalue of the edge pen
ilAe(�); Re � 2℄0; s[; 1 6 � 6 I(�); 0 6 � 6M�;� g; e 2 ES. 
�;� are 
onstants, 
�;�e 2 Hs�Re �(R) and Re is a smoothingoperator, see [3, 22℄. Finally � denotes the distan
e to the 
orner S, re the distan
e to edge e. vÆ;e arethe singular fun
tions given by (3.22), w
;
 the singular fun
tions in (3.15).



17Remark 3.2. The eigenfun
tions and asso
iated fun
tions 	�;�;� of the 
orner pen
il A
 are solutionsof ellipti
 boundary transmission problems on non smooth two dimensional domains. These fun
tions
an also be splitted into singular fun
tions and a smooth remainder.Remark 3.3. If S is a point on an edge and no 
orner or 
rossing point then the sum P
2�S vanishesin the expansion (3.23).Corollary 3.1. If for all 
orners and edges of 
 there holds that there are no eigenvalues of the 
orre-sponding operator pen
ils in the strip Re � 2℄ � 12 ; "℄ for 
orners and Re � 2℄0; 12 + "℄ for edges with asmall " > 0, then we have for a weak solution with right hand sides as in Theorem 3.2: u��
i 2 H 32+"(
i).The Sobolev embedding theorem then shows u��
i 2 C(
i):In 
hapter 5 we will dedu
e suÆ
ient 
onditions on the geometry and parameters whi
h guaranteethat the strips in Corollary 3.1 are free of eigenvalues. For this we need a homotopy argument whi
h willbe presented in the next se
tion.4 A homotopy methodThe homotopy method is used to 
arry over estimates for the eigenvalues of \easy" problems to more
ompli
ate problems. To do that we use a version of Rou
h�e's Theorem for analyti
 operator valuedfun
tions. Further we need Lemma 3.1 and Lemma 3.2 whi
h des
ribe domains in the 
omplex planewhere no eigenvalues of the pen
ils A
 or Ae are situated.Let D � C be a domain, i.e. open and 
onne
ted. We 
onsider analyti
 Fredholm operator pen
ilsA : D ! L(X;Y ), X;Y Bana
h spa
es. Let � � D be a 
losed simply 
onne
ted 
urve, pie
ewise smooth,where the surrounded domain Q is 
ontained in D. The algebrai
 multipli
ity m(�;A) of A with respe
tto the 
ontour � is m(�;A) :=X�0 m(�0;A):The sum extends over all eigenvalues �0 in the interior of the en
losed domain, m(�0;A) denotes thealgebrai
 multipli
ity of the eigenvalue �0. Sin
e the pen
il A is supposed to be a Fredholm pen
il,m(�;A) is �nite, [5℄.Theorem 4.1 (Rou
h�e's Theorem). [5, Thm 9.2℄ Let H be a separable Hilbert spa
e, D � C openand 
onne
ted and 
 � D a simply 
onne
ted pie
ewise smooth 
urve where the 
orresponding in
ludeddomain Q is 
ontained in D. Let further S1 ; S2 : D ! L(H) be analyti
 operator valued fun
tions su
hthat S1 is normal with respe
t to �, that means:1. S1(�) is invertible for all � 2 �,2. S1(�) is a Fredholm operator for all � 2 Q.If for every � 2 � 

S1(�)�1S2(�)

 < 1in the operator norm, then S1+ S2 is also normal with respe
t to � and the algebrai
 multipli
ities of S1and S1 + S2 
oin
ide.If in addition S1(�) is invertible for all � 2 Q then the same is true for S1 + S2.As a 
orollary we get



18 5 ESTIMATES OF THE EIGENVALUESTheorem 4.2. Let H1;H2 be separable Hilbert spa
es, � � C a simply 
onne
ted pie
ewise smooth 
urvewith 
orresponding interior domain Q.For t 2 [0; 1℄ we 
onsider a family of analyti
 Fredholm operator pen
ils of the formAt : C ! L(H1;H2) : �! At(�) = (1� t)A0(�) + tA1(�)where A0;A1 : C ! L(H1;H2) are analyti
 Fredholm operator pen
ils. We assume for all t 2 [0; 1℄ thatthe pen
ils At(�) are invertible for all � 2 � ex
ept a �nite number of �i 2 �; 1 6 i 6 l. For these �i weassume:�i is an eigenvalue of At(�) for all t 2 [0; 1℄ with algebrai
 multipli
ity m(�i) whi
h is independent of t.Then the operators At(�), t 2 [0; 1℄, have the same algebrai
 multipli
ities with respe
t to �.If there exists t0 2 [0; 1℄ su
h that At0(�) is invertible for every � 2 Q then this is true for all At,t 2 [0; 1℄.Proof (sket
h). [9℄ In a �rst step one shows the Theorem for the 
ase H1 = H2 and when no eigenvaluesare situated on the 
ontour �. To do that one proves the following assertion:For every t0 2 [0; 1℄ exists a Æ(t0) > 0 su
h that for all t 2 K(t0) := ft 2 [0; 1℄ : jt� t0j < Æ(t0)g and forall � 2 �: 

At0(�)�1(At(�)�At0(�)

 < 1. Here, k�k denotes the operator norm.Applying Rou
h�es Theorem to S1 := At0 , S2 := At � At0 , t 2 K(t0), it follows that the algebrai
multipli
ity with respe
t to � of At is 
onstant for t 2 K(t0) and �nally also for t 2 [0; 1℄.In the se
ond step one shows that due to the assumptions on the eigenvalues on � there exists a smallneighborhood Ui for every �i whi
h 
ontains no further eigenvalues of At(�); t 2 [0; 1℄. We de�ne a new
urve ~� whi
h 
oin
ides with � outside Ui and whi
h is 
ontained in Q\ Ui near the eigenvalues in su
ha way that ~� does not 
ontain eigenvalues of the At. The proof for the 
ase H1 = H2 is �nished byapplying the results of the �rst step to the 
ontour ~�. The 
ase H1 6= H2 is a simple 
onsequen
e. �With the help of Lemma 3.1 and Lemma 3.2 one 
an extend Theorem 4.2 for operator pen
ils A
, Ae ofse
tion 3.2.2 to in�nite strips of the form f� 2 C : Re � 2 [a; b℄g; �1 < a < b < 1. To show that agiven operator pen
ilAe or A
 has no eigenvalues in the strip Re � 2℄a; b[ it suÆ
es to �nd the eigenvaluesand their algebrai
 multipli
ities on the lines Re � 2 fa; bg and to 
onstru
t an operator family At as inTheorem 4.2 where A0 = A
 resp. A0 = Ae and where the distribution of the eigenvalues is known fort = 1. This method will be used in the next se
tion to derive new estimates for the eigenvalues.5 Estimates of the eigenvaluesIn this 
hapter we �rst give an overview over existing estimates for the width of the strips in Theorems3.1 and 3.2. The main goal is to des
ribe a 
lass of boundary transmission problems for whi
h the stripRe � 2℄0; 12 ℄ in the two-dimensional 
ase and the strips Re �
 2℄� 12 ; 0℄ for 
orners and Re �e 2℄0; 12 ℄ foredges in the three dimensional 
ase are free of eigenvalues. Here a quasi-monotone distribution of thematerial parameters is an essential assumption whi
h leads together with some geometri
 
onditions tothe estimates.5.1 Two dimensional domainsFor transmission problems for the Lapla
e operator on two dimensional domains there exist many esti-mates for the smallest positive eigenvalue of the operator pen
il given by (3.1)-(3.5). General estimateswithout any restri
tion on the geometry or the parameters were developed by Costabel/Dauge/Ni
aise



5.1 Two dimensional domains 19in [2℄ and by K�uhn, [14℄, who also developed re
ursion formulas (with respe
t to the number of subdo-mains) for equations whose roots are the eigenvalues. It turns out that there are no general bounds forthe smallest positive eigenvalue in the 
ase of more than two subdomains with pure Diri
hlet (DD) orNeumann (NN) 
onditions or more than three subdomains in the 
ase of interior 
rossing points. This isillustrated in the next example.Example 5.1. Kellogg's example [8℄ shows that it is possible to get arbitrary small positive eigenvaluesfor the Lapla
e operator. Consider a domain as in �g. 8 with parameters �1 = �3 = 1; �2 = �4 = h. Theeigenvalues whi
h 
orrespond to the interior 
rossing point are given by � = 2k; k 2 Z, and the solutionsof the equation 
os(��) = 1� 8h(1+h)2 . For h ! 0 or h ! 1 the smallest positive eigenvalue tends to 0,see also �g 8.
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Figure 8: Kellogg's example: Domain and eigenvaluesUnder the assumption of a quasi-monotone distribution of the material parameters (Def. 5.1 below)one 
an prove further estimates for the Lapla
e operator for an arbitrary number of subdomains. This wasdone in [25℄ without any additional 
ondition on the geometry and in [9℄ under an additional geometri
alassumption. Further estimates were derived in [19℄ where the author studies the in
uen
e of the open-ing angles of the subdomains in detail. The estimates for the 2D Lapla
e operator are 
olle
ted in table 1.For the Lam�e operator, numeri
al examples indi
ate that analogous estimates are valid. While forone subdomain the position of the eigenvalues is well known, the situation is more diÆ
ult for severalsubdomains. In this paper we introdu
e a generalized quasi-monotoni
ity 
ondition for pairs (�i; �i).Under this assumption and an additional geometri
 
ondition, whi
h is exa
tly the same as in the 
aseof the Lapla
e operator, we prove estimates for an arbitrary number of subdomains. These results area generalization of those in [24℄, where estimates for two subdomains are given. The estimates for theLam�e operator are 
olle
ted in table 2.Estimates for arbitrary ellipti
 problems on one (n dimensional) subdomain with 
oni
al points and pureDiri
hlet or Neumann 
onditions are developed in [11℄.5.1.1 Quasi-monotoni
ity and geometri
 
onditionsLet 
 � R2 be a 
omposite (see se
t. 1). For a 
orner or 
rossing point S let 
1; : : : ;
m be those subdo-mains whi
h 
ontain S. Ci denotes the 
one with vertex in S whi
h 
oin
ides with 
i in a neighborhood of



20 5 ESTIMATES OF THE EIGENVALUESS. Let the numbering of the subdomains be su
h that in polar 
oordinates Ci = fx : 0 < r; �i�1 < ' < �igwhere �0 < : : : < �m 6 �0 + 2�, CS := fx : �0 < ' < �mg. Finally we set �ij = �Ci \ �Cj , �g. 4.Quasi-monotoni
ity was �rst de�ned for transmission problems for the Lapla
e operator, [4℄. We nowgeneralize the de�nition to pairs (�i; �i) of Lam�e 
onstants. Here and in the sequel we denote by DD the
ase of pure Diri
hlet 
onditions on CS , NN the 
ase of pure Neumann 
onditions and by DN the 
ase ofmixed boundary 
onditions.De�nition 5.1 (Quasi-monotoni
ity). [4℄1. If S is an exterior 
rossing point with pure Neumann 
onditions or mixed 
onditions, or if S isan interior 
rossing point, then the distribution of the parameters �1; : : : ; �m, �1; : : : ; �m is quasi-monotone with respe
t to the 
rossing point S if there exists a unique j 2 f1; : : : ;mg su
h that�1 6 : : : 6 �j > : : : > �m and �1 6 : : : 6 �j > : : : > �m:In the 
ase of mixed boundary 
onditions we require that 
j is the subdomain at the Diri
hletboundary.2. If S is an exterior 
rossing point with pure Diri
hlet 
onditions, then the distribution of the param-eters �1; : : : ; �m, �1; : : : ; �m is quasi-monotone with respe
t to the 
rossing point S if there exists aunique j 2 f1; : : : ;mg su
h that�1 > : : : > �j 6 : : : 6 �m and �1 > : : : > �j 6 : : : 6 �m:For the Lapla
e operator ignore the �'s and repla
e 6 by < resp. > by >.Example 5.2. In the 
ase of the Lapla
e-operator and an interior 
rossing point where three subdomainsmeet, the parameters �i are always quasi-monotone. The parameters in Kellogg's example are not quasi-monotone.The following geometri
 
onditions are 
losely related to the de�nition of quasi-monotoni
ity:GC 1 Let S be an exterior 
rossing point with pure Diri
hlet 
onditions (DD) or pure Neumann
onditions (NN). Let the parameters �1; : : : ; �m; �1; : : : ; �m be quasi-monotone with j as that indexfor whi
h we have the maximum in the 
ase NN resp. the minimum in the 
ase DD. The 
onditionreads 9~t 2 R2nf0g : ~t 2 Cj and ~na1~t < 0; ~nam~t < 0:Here we denote by ~na1; ~nam the exterior normal ve
tors on C1 resp. Cm, see �gure 9.GC 2 Let S be an interior 
rossing point; let the parameters �1; : : : ; �m; �1; : : : ; �m be quasi-monotone,j the index where we have the maximum and k the index where we have the minimum. Then the
ondition is 9~t 2 R2nf0g : ~t 2 Cj and � ~t 2 Ck:Remark 5.1. If 
ondition GC 1 holds for an exterior 
rossing point S then the opening angle of thedomain is < 2� in a neighborhood of S, so S is not a 
ra
k tip.
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�~tFigure 9: Examples for GC1, GC25.1.2 Estimates for the Lapla
e-operator, 2DIt is easy to verify that the eigenvalues of the operator bundles whi
h des
ribe the 
orner singularities forthe Lapla
e-operator on two-dimensional domains are real and that there are no asso
iated eigenfun
tionsfor non vanishing eigenvalues, [9℄. Thus the asymptoti
 expansion of a solution u in H1(
) has thefollowing simple form: �Su = ureg + �S X0<�<1 I(�)X�=1 
�;�r�v�;�with the same notation as in Theorem 3.1. v�;� are the eigenfun
tions to the eigenvalues �, there are nologarithmi
 terms.In table 1 estimates of the smallest positive eigenvalue are listed. We use the following notations: m isthe number of subdomains whi
h meet at 
rossing point S; � is the opening angle of the whole domainat S, 0 < � 6 2�; �0i is the opening angle of subdomain Ci. We assume �0i > 0 and have Pi �0i = �.Further ~� = max16i6mf�0ig is the maximal opening angle of the subdomains. By �0 we denote thesmallest positive eigenvalue.The estimates in the last row 
an be proved by a homotopy method. Sin
e the arguments are the sameas in the 3D 
ase we omit the details here and refer to the proof of Theorem 5.1.In 
ontrast to the 
ase of one subdomain we get the estimate �0 > 12 in the 
ase DN for two or moresubdomains also for �m = �. The reason is that one 
an prove the estimate for two subdomains dire
tly.For more than two subdomains, the proof is based on a homotopy argument (see the proof of Theorem5.1) whi
h 
arries over the known estimate for two subdomains to the 
ase of m > 2 subdomains.The estimates are sharp in the sense that for every estimate in table 1 there exists an example for whi
hthe smallest eigenvalue is arbitrarily 
lose to the bound given there. If the 
onditions in table 1 areviolated, there are examples for whi
h the smallest positive eigenvalue is lower than the bounds given inthe table.Further estimates whi
h take into a

ount the parameters and opening angles more pre
isely were derivedin [14℄ for two subdomains and in [19℄ for an arbitrary number of subdomains. For the spe
ial 
ase of aninterior 
rossing point, whi
h is the interse
tion of two straight lines, Petzoldt [25℄ proved � > 12 underthe only assumption that the parameters are distributed quasimonotonely.



22 5 ESTIMATES OF THE EIGENVALUESTable 1: Estimates for the Lapla
e operator, 2DDD or NN interior points DNm = 1 �0 = �� > 12 �0 = �2� > 14m = 2 quasi-mon., � 6 �:�0 > �2~� > �2� > 14 �0 > 12 �0 > 12(Costabel/Dauge/Ni
aise [2℄) [9℄m = 3 | �0 > �2~� > 14 |m > 3 quasi-monotoni
ity: (Petzoldt [25℄)�0 > 14 �0 > 14 �0 > 14m > 3 quasi-monotoni
ity + geom. 
ond. GC 1,2, [9℄: quasi-mon., � 6 �, [9℄:�0 > 12 �0 > 12 �0 > 125.1.3 Estimates for the Lam�e-operator, 2DIn 
ontrast to the Lapla
e-operator the eigenvalues of the operator bundles related to the Lam�e-operator
an also be non real and asso
iated eigenfun
tions 
an exist. Thus the asymptoti
 expansion in Theorem3.1 
annot be simpli�ed in general. The estimates are 
olle
ted in table 2, where we use the followingnotations: m is the number of subdomains whi
h meet at 
rossing point S. � is the opening angle of thewhole domain at S, 0 < � 6 2� and �0 is an eigenvalue with smallest positive real part.The estimates form > 2 subdomains 
an be shown by a homotopy method whi
h uses the same argumentsas in the proof of Theorem 5.1 for 3D 
orner singularities, thus we omit the details here.5.2 Three dimensional domainsThe singularities for 3D polyhedral domains 
an be divided into edge and 
orner singularities, see Theorem3.2. The eigenvalues of the operator bundles whi
h are related to the edges are in the 
ase of theLapla
e-operator 
ompletely given by the eigenvalues of the 
orner bundles of the Lapla
e-operator inthe 
orresponding two-dimensional domain. In the 
ase of the Lam�e-operator the eigenvalues are givenby those for the two dimensional Lam�e-operator and those of the two dimensional Lapla
e-operator onthe 
orresponding 2D domain, see Remark 3.1. Therefore, we 
onsider only 
orner singularities in thisse
tion.5.2.1 Lapla
e-operator, 3DThe following properties of the eigenvalues of the 
orner bundles for the 3D Lapla
e are well known:



5.3 Lam�e-operator, 3D 23Table 2: Estimates for the Lam�e operator, 2DDD NN interior points DNm = 1 [22℄0 < � < � Re �0 > 1 Re �0 > 1 Re �0 > 12� = � �0 = 1 �0 = 1 Re �0 = 12� < � < 2� Re �0 > 12 Re �0 > 12 Re �0 > 14� = 2� �0 = 12 �0 = 12 Re �0 = 14m = 2, [24℄ (�1 � �2)(�1 � �2) > 0; quasi-monotoni
ityGC 1: GC 1: � < � :Re �0 > 12 Re �0 > 12 Re �0 > 12 Re �0 > 12m > 3, [9℄ quasi-monotoni
ityGC 1: GC 1: GC 2: � < �:Re �0 > 12 Re �0 > 12 Re �0 > 12 Re �0 > 12Lemma 5.1. The eigenvalues of the bundle given by (3.8) are real, there are no asso
iated eigenfun
-tions. In the 
ases DD and DN there are no eigenvalues in [�1; 0℄. In the 
ase NN and in the 
aseof interior 
rossing points there are no eigenvalues in the interval (�1; 0). �1 and 0 are eigenvalueswith geometri
 multipli
ity=algebrai
 multipli
ity=1. The eigenfun
tions to the eigenvalue � = 0 are the
onstant fun
tions.Proof. The Lemma is a dire
t 
onsequen
e of the properties of the eigenvalues of the Lapla
e-Beltramioperator. �Corollary 5.1. Let u 2 H1(
) be a solution of (2.4)-(2.8) with right hand sides as in Theorem 3.2.Then there exists " > 0 su
h that�Su = ureg + �S Xe2ES X�e2(0; 12+")16�6I(�e) Re(
�e;�e )r�e�e;�;�; (5.1)where ureg��
i 2 H 32+"(
i), �e;�;� is eigenfun
tion to the eigenvalue �e of the operator bundle 
orrespond-ing to edge e, there are no logarithmi
 terms.5.3 Lam�e-operator, 3DFor the Lam�e-operator there is no result like Lemma 5.1. Estimates of the real parts of the eigenvaluesare only possible for problems under assumptions whi
h are a generalization of the quasi-monotoni
ity



24 5 ESTIMATES OF THE EIGENVALUESand the geometri
 
onditions in se
tion 5.1. It is still an open question whether there exist exampleswhere the 
orner bundles have eigenvalues in the strip Re � 2 (�12 ; 0), whi
h would result in unboundeddeformation �elds.5.3.1 Estimates for one subdomainDiri
hlet-problem, [18℄: Let S2 := fx 2 R3 : jxj = 1g and G � S2 be a domain. For the Diri
hlet-problemon 
ones of the form C = fx 2 R3 : xjxj 2 Gg there holds: The strip Re � 2 [�1; 0℄ does not 
ontain anyeigenvalues of the 
orresponding 
orner operator bundle.Note that the domains des
ribed by C 
an also be non-Lips
hitz domains.Neumann-problem, [11℄: Let ' be a positively homogeneous fun
tion of degree one, pie
ewise smoothin R2nf0g. Consider 
ones of the form C = fx 2 R3 : x3 = '(x1; x2)g. The 
orresponding 
orner pen
ilhas no eigenvalues in the strip Re � 2 (�1; 0). � = 0 and � = �1 are the only eigenvalues on the linesRe � = �1 resp. Re � = 0. The geometri
 and algebrai
 multipli
ities 
oin
ide and equal to 3. Theeigenfun
tions for � = 0 are given by the 
onstant fun
tions.Mixed problem, [22℄: For the mixed problem we need further restri
tions on the geometry. If G 1 holds(see below), then the 
orner bundle has no eigenvalues in the strip Re � 2 [�1; 0℄.If for example C is 
onvex and jDj = 1 or jN j = 1 then the geometri
 
ondition is satis�ed.To des
ribe G 1 we introdu
e the following notation: Let C be a polyhedral 
one � R3 with vertex in 0.We assume that the boundary of C 
an be divided in the following way into plane oriented fa
es (
i; ~ni):�C = n[i=1 
k; 
i \ 
j = ; for i 6= j:~ni is the exterior normal ve
tor on C with respe
t to 
i. We set F = f(
i; ~ni); 1 6 i 6 ng = D [ N ,D and N disjoint and not empty. We further de�ne the following index sets: ~D := fk 2 f1; : : : ; ng :(
k; ~nk) 2 Dg, ~N := fk 2 f1; : : : ; ng : (
k; ~nk) 2 Ng. [k2 ~D 
k is the Diri
hlet boundary, [k2 ~N 
k theNeumann boundary. FinallyCD := 8<:x 2 R3 : x =Xk2 ~D �k~nk; �k > 0; Xk2 ~D �k > 09=; ;CN := 8<:x 2 R3 : x = Xk2 ~N �k~nk; �k > 0; Xk2 ~N �k > 09=; :G 1: C has no 
ra
ks and CD \ CN = ;.It is an open question whether the estimates in the 
ases NN and DN still hold when the geomet-ri
 
onditions are violated.5.3.2 Estimates for m > 2 subdomainsThe estimates in this se
tion we prove only for domains whi
h have no 
ra
ks, thus we introdu
e a slightlysimpli�ed notation in 
omparison to se
tion 3:Let C � R3 be a polyhedral 
one with vertex in 0 and C = [mi=1Ci, where Ci are polyhedral 
ones



5.3 Lam�e-operator, 3D 25with vertex in 0, pairwise disjoint. We assume that neither C nor Ci; 1 6 i 6 m, have 
ra
ks; Cand Ci need not have Lips
hitz-boundaries. We further assume that if mesN�1(�C \ �Ci) 6= 0, thenthere exist plane fa
es 
i;l, pairwise disjoint, su
h that mesN�1(Sn(i)l=1 
i;l) = mesN�1(�Ci \ �C). We setF = f
i;l; 1 6 i 6 mg = D [N . The interfa
e between Ci; Cj is divided into plane pie
es 
ij;l su
h that
ij;l � �Ci [ �Cj, and we set G := f
ij;l; 1 6 i; j 6 mg.If 
onversely 
 2 G then there exist Ci; Cj with 
 as a part of the 
ommon interfa
e. We set C1(
) :=Ci; C2(
) := Cj and �
1 := �i; �
2 := Cj , (the same for �). Finally we denote by ~n
1 the exterior normalve
tor to 
 with respe
t to C1(
); ~u
1 := ~ui��
 and ~u
2 := ~uj��
 . If 
 2 F we denote by ~n
 the exteriornormal ve
tor to the 
one whose boundary 
ontains 
.If it is 
lear to whi
h boundary 
 we refer, we omit the index 
. We are now ready to give the maintheorem of this work.Theorem 5.1. (> 2 subdomains, Lam�e-operator) We assume that the Lam�e 
onstants satisfy �i > 0,�i + �i > 0.1. Pure Diri
hlet 
onditions, F = D: Let C be an arbitrary polyhedral 
one whi
h is divided into sub-
ones Ci. Let further ~t1;~t2;~t3 2 R3 with ~ti~tj = Æij su
h that the following three 
onditions aresatis�ed:(a) 8 
 2 D : ~n
~t1 6 0,8 
 2 G : ~t1~n
1(�
1 � �
2) > 0; ~t1~n
1(�
1 � �
2) > 0,(b) 8 
 2 D with ~n
~t1 = 0 : ~t2~n
 6 0,8 
 2 G with ~n
1~t1 = 0 : ~t2~n
1(�
1 � �
2) > 0; ~t2~n
1(�
1 � �
2) > 0,(
) 8 
 2 D with ~n
 k ~t3 : ~t3~n
 < 0,8 
 2 G with ~n
1 k ~t3 : ~t3~n
1(�
1 � �
2) > 0; ~t3~n
1(�
1 � �
2) > 0.Then there are no eigenvalues of the 
orresponding 
orner bundle A
 in the strip Re � 2 [�1; 0℄.2. Pure Neumann 
onditions, F = N : Let C be a 
one whi
h is given by a fun
tion ' as in se
tion5.3.1 and divided into sub
ones Ci. Let further ~t1;~t2;~t3 2 R3 with ~ti~tj = Æij su
h that the followingthree 
onditions are satis�ed:(a) 8 
 2 N : ~n
~t1 6 0,8 
 2 G : ~t1~n
1(�
1 � �
2) 6 0; ~t1~n
1(�
1 � �
2) 6 0,(b) 8 
 2 N with ~n
~t1 = 0 : ~t2~n
 6 0,8 
 2 G with ~n
1~t1 = 0 : ~t2~n
1(�
1 � �
2) 6 0; ~t2~n
1(�
1 � �
2) 6 0,(
) 8 
 2 N with ~n
 k ~t3 : ~t3~n
 < 0,8 
 2 G with ~n
1 k ~t3 : ~t3~n
1(�
1 � �
2) 6 0; ~t3~n
1(�
1 � �
2) 6 0.Then the only eigenvalues of the 
orner bundle A
 in the strip Re � 2 [�1; 0℄ are �1 and 0. Thealgebrai
 and geometri
 multipli
ities 
oin
ide and equal to 3. The eigenfun
tions of � = 0 are the
onstant fun
tions.3. Mixed 
onditions: Let C be a 
one whi
h satis�es 
ondition G1 in se
tion 5.3.1 and whi
h is dividedinto sub
ones Ci. Let further ~t1;~t2;~t3 2 R3 with ~ti~tj = Æij su
h that the following three 
onditionsare satis�ed:
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 2 D : ~n
~t1 6 0,8 
 2 N : ~n
~t1 > 0,8 
 2 G : ~t1~n
1(�
1 � �
2) > 0; ~t1~n
1(�
1 � �
2) > 0,(b) 8 
 2 D with ~n
~t1 = 0 : ~t2~n
 6 0,8 
 2 N with ~n
~t1 = 0 : ~t2~n
 > 0,8 
 2 G with ~n
1~t1 = 0 : ~t2~n
1(�
1 � �
2) > 0; ~t2~n
1(�
1 � �
2) > 0,(
) 8 
 2 D with ~n
 k ~t3 : ~t3~n
 < 0,8 
 2 N with ~n
 k ~t3 : ~t3~n
 > 0,8 
 2 G with ~n
1 k ~t3 : ~t3~n
1(�
1 � �
2) > 0; ~t3~n
1(�
1 � �
2) > 0.Then there are no eigenvalues of the 
orner bundle A
 in the strip Re � 2 [�1; 0℄.4. Interior 
rossing points: Let C = R3 be divided into polyhedral sub
ones Ci. If there exist ~t1;~t2;~t3 2R3 with ~ti~tj = Æij su
h that(a) 8
 2 G : ~t1~n
1(�
1 � �
2) 6 0; ~t1~n
1(�
1 � �
2) 6 0,(b) 8 
 2 G with ~n
1~t1 = 0 : ~t2~n
1(�
1 � �
2) 6 0; ~t2~n
1(�
1 � �
2) 6 0,(
) 8 
 2 G with ~n
1 k ~t3 : ~t3~n
1(�
1 � �
2) 6 0; ~t3~n
1(�
1 � �
2) 6 0,then the only eigenvalues of the 
orner bundle A
 in the strip Re � 2 [�1; 0℄ are �1 and 0. Thealgebrai
 and geometri
 multipli
ities 
oin
ide and equal to 3. The eigenfun
tions of � = 0 are the
onstant fun
tions.The 
onditions in the 
ases DD and NN for two subdomains with a plane interfa
e are exa
tly the
onditions in [24℄. Therefore the proof of Theorem 5.1 is a generalization of the proof in [24℄. RewritingTheorem 5.1 for two dimensional domains shows that the 
onditions are satis�ed if and only if theparameters of the two dimensional problem are quasi-monotone and if the 
onditions GC 1 resp. GC2 are satis�ed. The 
onditions in Theorem 5.1 
an be seen as a generalized quasi-monotoni
ity withadditional geometri
 
onditions.Corollary 5.2. If for every 
orner the assumptions of Theorem 5.1 are satis�ed, then for all edges e,the 
orresponding edge bundles Ae(�) have no eigenvalues in the strip Re � 2 (0; 12 ℄. Thus u��
i 2 C(
i)(if the data are as in Theorem 3.2).Proof. From the assumptions about the 
orners one 
an easily derive the assumptions of se
tion 5.1.1 fortwo dimensional problems. The assertion follows with Remark 3.1. �The proof of Theorem 5.1 is based on a homotopy argument for an operator family A
;t whi
h des
ribesfor t = 1 the given operator pen
il A
 on m subdomains and for t = 0 an operator pen
il on onesubdomain where we know the distribution of the eigenvalues. The 
onditions G1 in the 
ase DN andthe assumption that C 
an be des
ribed by a fun
tion ' in the 
ase NN are required to guarantee thatthe problems on one subdomain do not have eigenvalues in the strip Re � 2 (�1; 0).Example 5.3. Consider Fi
hera's 
orner in �g. 10. If all the boundaries whi
h 
ontain 
rossing pointS are Diri
hlet boundaries and if �1 6 �2 6 �3 and �1 6 �2 6 �3 then the 
onditions of Theorem 5.1 1.are satis�ed. If all boundaries are Neumann boundaries, we have to repla
e 6 by > to satisfy Theorem5.1 2. If we 
onsider mixed boundary 
onditions at S with Diri
hlet 
onditions at the parts of �
1 and�
3 whi
h 
ontain S, then 
ondition 3. of Theorem 5.1 is satis�ed if �3 6 �1 6 �2 and �3 6 �1 6 �2(this is the only possible 
hoi
e in that 
ase).
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5.3.3 Proof of Theorem 5.1The proof is based on a homotopy argument. We begin with the Diri
hlet problem. In a �rst step weprove that there are no eigenvalues of the 
orresponding operator bundle A
 on the lines Re � = �1and Re � = 0. Due to the symmetry of the eigenvalues ( Lemma 3.2) we 
an restri
t ourself to the lineRe � = 0. In a se
ond step we 
onstru
t an operator family A
;t(�) for whi
h we 
an apply Theorem 4.2.First step: We prove by 
ontradi
tion that there are no eigenvalues of the operator-bundle A
(�) onthe line Re � = 0.Let C be a polyhedral 
one with tip in 0 and properties as in Theorem 5.1.1 (Diri
hlet problem). Assumethat there is an eigenvalue � with Re � = 0 and a 
orresponding eigenfun
tion ~v 6= 0. Then the fun
tion~u := ��~v (� distan
e to 0) satis�es for k 2 f1; 2; 3g:0 = mXi=1 ZCi(Æ) �k(�i jtr "(~ui)j2 + 2�i j"(~ui)j2) dx (5.2)� mXi=1 Z�Ci(Æ) 2Re h�i(~ui)~ni; �k~uii ds: (5.3)
Here we have set Ci;Æ := f~x 2 Ci : Æ < j~xj < 1g for a given Æ 2 (0; 1). With h�; �i we denote the innerprodu
t in C 3 ; for A;B 2 C 3�3 we de�ne A : B = tr(AtB). Equation (5.2) 
an be derived by Green'sformula and the produ
t rule, taking �k~u as a test fun
tion. Using Gauss Theorem we get:0 = mXi=1 Z�Ci(Æ) ��i jtr "(~ui)j2 + 2�i j"(~ui)j2 �nik ds� mXi=1 Z�Ci(Æ) 2Re h�i(~ui)~ni; �k~uii ds; (5.4)



28 5 ESTIMATES OF THE EIGENVALUESwhere ~ni denotes the exterior normal ve
tor on Ci(Æ). The integrals over the sets fx 2 Ci : jxj = 1g andfx 2 Ci : jxj = Æg vanish be
ause of the spe
ial form of ~u. It remains (
Æ = fx 2 
 : Æ < jxj < 1g):0 = X
2G(~n
1)k Z
Æ �
1 (~u
1) : "(~u
1)� �
2 (~u
2) : "(~u
2 ) ds� X
2G 2Re Z
Æh�
1 (~u
1)~n
1 ; �ku
1 � �ku
2i ds+ X
2D Z
Æ �
(~u
) : "(~u
)(~n
)k � 2Reh�
(~u
)~n
 ; �k~u
i ds: (5.5)Let 
 2 D. Using the Diri
hlet 
onditions we get �~u�~t = 0 on 
 for all ~t with ~t~n
 = 0. Thus we have�k~u = (~n
)k �u�~n
 and therefore: h�
(~u
)~n
 ; �k~u
i = (~n
)k�
(~u
) : "(~u
): (5.6)Lo
al 
oordinates on the interfa
es: Let 
 2 G. We introdu
e a lo
al Cartesian 
oordinate system whi
his spanned by ~a1;~a2; ~n
1 with positive orientation. We set Q
 := (~a1;~a2; ~n
1) and r
~u := r~uQ. For~w := QT~u we further set E(~w) := 12(r
 ~w + (r
 ~w)T ), Si(~w) := �i trE(~w) + 2�iE(~w). One �nally getsthe following relations between the original 
oordinates and the transformed system:"(~u) = QE(~w)QT ; tr "(~u) = trE(~w); jtr "(~u)j2 = jtrE(~w)j2 ;j"(~u)j2 = jE(~w)j2 ; �i(~u) = QSi(~w)QT ; �i(~u) : "(~u) = Si(~w) : E(~w):The transmission 
onditions for ~x 2 
 are transformed as follows:~ui(~x)� ~uj(~x) = 0 , ~wi(~x)� ~wj(~x) = 0; (5.7)�i(~ui)~n
1 � �j(~uj)~n
1 = 0 , �Si(~wi)� Sj(~wj)�0�0011A = 0: (5.8)Inserting the Diri
hlet transmission 
ondition we geth�
1 (~u
1)~n
1 ; �ku
1 � �ku
2i = (~n
1)khS
1 (~w
1 )0�0011A ; � ~w
1�~n
1 � � ~w
2�~n
1 i; ~x 2 
:Inserting the last equation and (5.6) into (5.5) gives:0 = X
2G ~n
1 Z
Æ �S
1 (~w
1 ) : E(~w
1 )� S
2 (~w
2 ) : E(~w
2 )� ds� X
2G ~n
12Re Z
Æ hS
1 (~w
1 )0�0011A ; � ~w
1�~n
1 � � ~w
2�~n
1 i ds� X
2D ~n
 Z
Æ �
(~u
) : "(~u
) ds: (5.9)



5.3 Lam�e-operator, 3D 29Using again the transmission 
onditions on 
 we get the relations, see also [23℄:Eii(~w1) = Eii(~w2); i = 1; 2;�1Ei3(~w1) = �2Ei3(~w2); i = 1; 2;2�1E33(~w1) + �1 trE(~w1) = 2�2E33(~w2) + �2 trE(~w2)(�2 + 2�2)E33(~w2) = (2�1 + �1)E33(~w1) + (�1 � �2) 2Xi=1 Eii(~w1);After short 
al
ulations analogous to those in [23℄ we get from (5.9) and the above relations:0 = X
2G ~n
1 Z
Æ �2(�1 � �2)(jE11(~w1)j2 + jE22(~w1)j2 + 2 jE12(~w1)j2)+4�1�2 (�1 � �2)(jE13(~w1)j2 + jE23(~w1)j2)+(�1 � �2)(�1 + 2�2)�2 + 2�2 jtrE(~w1)j2+4(�1 � �2)(�1 � �2)�2 + 2�2 Re �E33(~w1)trE(~w1)�+2(�2 + 2�1)(�1 � �2)�2 + 2�2 jE33(~w1)j2 � ds�X
2D ~n
 Z
Æ �
(~u
) : "(~u
) ds=: X
2G ~n
1 Z
Æ B
1 (~w
1 ) ds�X
2D ~n
 Z
Æ �
(~u
) : "(~u
) ds: (5.10)The last equation is the essential equation of this proof. S
alar multipli
ation of (5.10) with ~t1 of Theorem5.1 gives: 0 = X
2G~n
1~t1 6=0~n
1 ~t1 Z
Æ B
1 (~w
1 ) ds� X
2D~n
~t1 6=0~n
 ~t1 Z
Æ �
(~u
) : "(~u
) ds: (5.11)Assumption 1.(a) of Theorem 5.1 together with Lemma 5.3 (subsequent to this proof) shows8 
 2 G with ~n
1~t1 6= 0 : ~n
1 ~t1 Z
Æ B
1 (~w
1 ) ds > 0;8 
 2 D with ~n
~t1 6= 0 : ~n
 ~t1 Z
Æ �
(~u
) : "(~u
) ds 6 0:Thus equation (5.11) is satis�ed i�8 
 2 G with ~n
1~t1 6= 0 : B
1 (~w
1 ) = 0; (5.12)8 
 2 D with ~n
~t1 6= 0 : �
(~u
) : "(~u
) = 0: (5.13)In the same way we 
on
lude for the remaining boundaries and interfa
es. Thus we �nally get (5.12),(5.13) for every 
 2 D resp. 
 2 G. Using Lemma 5.3, we get from these equations for all 
 2 G:1. Case, �
1 � �
2 6= 0: E(~w1) = 0 = E(~w2) on 
 and therefore "(~u
1) = 0 = "(~u
2) on 
.



30 5 ESTIMATES OF THE EIGENVALUES2. Case, �
1 = �
2 ; �
1 6= �
2 : tr "(~u
1) = 0 = tr "(~u
2 ) on 
.For 
 2 D we have "(~u
) = 0 on 
.Sin
e ~u is a solution of the homogeneous boundary transmission problem we 
on
lude: For everyi = 1; : : : ;m the fun
tion tr "(~ui) is a solution of the following problem in 
one Ci:4(tr "(~ui)) = 0 in Ci; (5.14)tr "(~ui) = 0 on �Ci: (5.15)Further tr "(~u) = ��1+i�~v (follows from the ansatz for ~u) whi
h �nally leads to tr "(~ui) = 0 on Ci. Thisfollows with the help of Lemma 5.1.1. Case: If for a sub 
one Ci there holds "(~ui) = 0 on �Ci, then ea
h 
omponent "kl(~ui) of "(~ui) is asolution of: 4"kl(~ui) = 0 in Ci; (5.16)"kl(~ui) = 0 on �Ci: (5.17)Again with Lemma 5.1 there follows "(~ui) = 0 in Ci and �nally ~ui = 
onst on Ci.2. Case: If �i = �j for two neighboring 
ones Ci; Cj , then �i(~ui) = 2�i"(~ui) = 2�i"(~uj) = �i(~uj) on
 = �Ci \ �Cj. Here we used tr "(~ui) = 0 on Ci. Therefore ~u is a solution of�(�i4~u+ (�i + �i) grad div ~u) = 0 in Ci [ Cj;the 
one Ci[Cj 
an be 
onsidered as one 
one with the parameters �i; �i. Rejoining all neighboring 
oneswith �i = �j results in a 
one ~C for whi
h ~� 6= �k for all neighboring 
ones Ck. The same 
onsiderationsas in the �rst 
ase lead to ~u�� ~C = 
onst.Finally we have ~u = 
onst on C and together with the Diri
hlet 
onditions: ~u = 0 on C. This is a 
on-tradi
tion to the assumption ~u 6= 0, thus the line Re � = 0 does not 
ontain eigenvalues of the operatorpen
il whi
h 
orresponds to the Diri
hlet problem. Using the symmetry of the eigenvalues the same istrue for the line Re � = �1.Se
ond step: Applying the homotopy argument of Theorem 4.2 to the operator family At given by�i(t) := (1 � t)�1 + t�i, �i(t) := (1 � t)�1 + t�i �nishes the proof sin
e there are no eigenvalues inthe strip Re � 2 [�1; 0℄ for t = 0 and for all t 2 [0; 1℄ there are no eigenvalues of At on the linesRe � = �1;Re � = 0.Mixed problems: We use the same arguments as for the Diri
hlet problem. The essential equation here is0 =X
2G ~n
1 Z
Æ B
1 (~w
1 ) ds�X
2D ~n
 Z
Æ �
(~u
) : "(~u
) ds+ X
2N ~n
 Z
Æ �(~u) : "(~u) ds: (5.18)whi
h repla
es equation (5.10). By analogous arguments we 
on
lude that there are no eigenvalues on thelines Re � 2 f�1; 0g. ConditionG1 guarantees that the problem with �i = �j; �i = �j on all subdomainshas no eigenvalues in the strip Re � 2 [�1; 0℄.Neumann problem: Here, equation (5.10) is repla
ed by0 =X
2G ~n
1 Z
Æ B
1 (~w
1 ) ds+ X
2N ~n
 Z
Æ �
(~u
) : "(~u
) ds: (5.19)



5.3 Lam�e-operator, 3D 31With similar arguments to the Diri
hlet 
ase one proves that � = 0 is the only eigenvalue on the lineRe � = 0 with the 
onstant fun
tions as eigenfun
tions. By symmetry, �1 is the only eigenvalue on theline Re � = �1. By 
al
ulations similar to those in [13, pp. 127℄ one 
an prove that there are no asso-
iated eigenfun
tions for the eigenvalue � = 0. Thus the geometri
 multipli
ity = algebrai
 multipli
ity= 3. The proof �nishes with a homotopy argument.Interior 
rossing points: The 
ase of one subdomain (i.e. C = R3) is treated in Lemma 5.2 subsequent tothe proof. For the 
ase of m > 2 subdomains we pro
eed as in the Neumann problem, where equation(5.19) is repla
ed by 0 =X
2G ~n
1 Z
Æ B
1 (~w
1 ) ds: (5.20)This �nishes the proof of Theorem 5.1. �5.3.4 Two auxiliary LemmataLemma 5.2. The eigenvalue problem 
orresponding to the equation�4~u+ (�+ �) grad div ~u = 0; x 2 R3nf0g (5.21)(here, 0 is the \vertex" of the 
one) has exa
tly the eigenvalues �k = 0; k 2 Z. The eigenvalue �0 = 0has geometri
 multipli
ity = algebrai
 multipli
ity = 3 and has the 
onstant fun
tions as eigenfun
tions.Proof. Let ~u = r�~v be a solution of (5.21). Then tr "(~u) = r��1~~v is a solution of4 tr("(~u)) = 0 in R3 :Thus � � 1 = 12 �q14 + �, where � is an eigenvalue of the Lapla
e-Beltrami operator on the wholesphere S2 and ~~v is a 
orresponding eigenve
tor. The eigenvalues of the Lapla
e-Beltrami have the form�n = n(n+ 1); n 2 N0 , the geometri
 multipli
ity is given by Kn = 2n+ 1 [20℄, there are no asso
iatedeigenfun
tions. �Lemma 5.3. [24℄ Let �1; �2 > 0; �i + �i > 0; i = 1; 2. For x; y 2 C we setb(x; y) := (�1 � �2)(�1 + 2�2) jxj2 + 4(�1 � �2)(�1 � �2)Re (yx) + 2(�2 + 2�1)(�1 � �2) jyj2 :There holds:i.) �1 > �2 and �1 > �2 ) b(x; y) > 0;8x; y 2 C .ii.) �1 > �2 and �1 > �2 ) b(x; y) > 0;8x; y 2 C ; y 6= 0.iii.) �1 6 �2 and �1 6 �2 ) b(x; y) 6 0;8x; y 2 C .iv.) �1 < �2 and �1 6 �2 ) b(x; y) < 0;8x; y 2 C ; y 6= 0.v.) �1 = �2 and �1 6= �2, then b(x; y) = 0, x = 0.The Lemma is proven with similar arguments to those in [24℄.
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