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Global stress regularity for convex and some

nonconvex variational problems on

Lipschitz-domains

Dorothee Knees
∗

Abstract

A global regularity theorem for stress fields which correspond to minimisers of convex and
some special nonconvex variational problems is derived for Lipschitz-domains. In the first
part it is assumed that the energy densities defining the variational problem are convex but
not necessarily strictly convex and satisfy a convexity inequality. The regularity result for
this case is derived with a difference quotient technique. In the second part the regularity
results are carried over from the convex case to special nonconvex variational problems taking
advantage of the relation between nonconvex variational problems and the corresponding
(quasi-) convexified problems. The results are applied amongst others to the variational
problems for linear elasticity, the p-Laplace operator and for scalar and vectorial two-well
potentials (compatible case).

Keywords: global stress regularity; convex variational problem; nonconvex variational problem;
nonsmooth domain; difference quotient technique

AMS Subject Classification: 35J70, 35B65, 49N60, 74G40, 35D10.

1 Introduction

We investigate the global regularity of stress fields which are related to minimisers of convex, but
not necessarily strictly convex, variational problems with mixed boundary conditions on domains
with Lipschitz boundary. Furthermore, the results are carried over to stress fields of special
nonconvex variational problems. The variational problems under consideration are of the following
type: For a bounded domain Ω ⊂ R

d we denote by ΓD ⊂ ∂Ω the Dirichlet boundary, furthermore
let g ∈ W 1,p(Ω), f ∈

(

W 1,p(Ω)
)′

and V := {v ∈W 1,p(Ω) : v
∣

∣

ΓD
= 0}. The variational problem is:

Find u : Ω→ R
m, u ∈ g + V such that for every v ∈ g + V

I(u) 6 I(v) =

∫

Ω

W (∇v(x)) dx − 〈f, v〉. (1)

Here, W : R
m×d → R is a given energy density. If u is a minimiser of I then the corresponding

stress field σ is defined as
σ(x) := DW (∇u(x)), x ∈ Ω,

where the notation DW (A) =
(

∂W (A)
∂Aik

)

16i6m,
16k6d

∈ R
m×d is used for the derivative of W . In the

first part of this paper the main assumption is that the energy density W is a C1 function and
satisfies the following convexity inequality for every A,B ∈ R

m×d:

(W (A)−W (B)−DW (B) : (A−B)) (1 + |A|s + |B|s) > c |DW (A)−DW (B)|r (2)
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for some constants c > 0, s > 0 and r > 1. Inequality (2) implies that W is convex but not
necessarily strictly convex. Examples for energy densities W with (2) will be given in this paper
and include the energy densities of linear elastic materials, the p-Laplace equation and a model
for Hencky elasto-plasticity with linear hardening.

It is well known for linear and quasilinear elliptic equations that the global regularity of weak
solutions does not only depend on the smoothness of the right hand sides but also on the smooth-
ness of the boundary of Ω. Global regularity results for weak solutions of quasilinear elliptic
systems of p-structure were derived independently by C. Ebmeyer and J. Frehse [12, 14] (mixed
boundary conditions, polyhedral domains) and G. Savaré [31] (pure Dirichlet or pure Neumann
conditions on Lipschitz domains). Combining the geometrical assumptions from these articles, we
describe here a rather general class of domains (Lipschitz domains with additional geometrical
constraints near points with changing boundary conditions) for which we prove a global regularity
result for the stress field σ. This result is derived with a difference quotient technique on the basis
of convexity inequality (2) and describes the smoothness of σ in Nikolskii and Sobolev-Slobodeckij
spaces. In the proof we extend ideas from [12, 14, 31] to our situation.

In the second part of the paper we discuss the regularity properties of the stress fields of a
special class of nonconvex variational problems. Nonconvex problems need not have minimisers
and in that case it is reasonable to study the relaxed variational problem

Find u ∈ g + V such that for every v ∈ g + V

IR(u) 6 IR(v) =

∫

Ω

WR(∇v(x)) dx − 〈f, v〉. (3)

Here, WR is in general given by the quasiconvex envelope W qc of the original energy density W
[9, 29, 1]. It follows from the relaxation theory in the calculus of variations that if the original
problem has a solution u then it is also a solution of the relaxed problem. Moreover, the stresses
of both problems coincide: σ = DW (∇u) = DW qc(∇u). We use this relation in combination with
the additional assumption that the quasiconvex envelope W qc is equal to the convex envelope W c

of the original energy density W in order to carry over regularity results for stresses of convex
problems to special nonconvex problems. Examples for such problems are scalar or vectorial
two-well potentials (compatible case).

This paper and the examples herein are highly motivated by an article by C. Carstensen and S.
Müller, where local and global stress regularity results for smooth domains are proved [5]. There,
the main assumption is that the energy density W satisfies the following monotonicity inequality

(

(DW (A)−DW (B)) : (A−B)
)

(1 + |A|s + |B|s) > c |DW (A)−DW (B)|r (4)

with c > 0, s > 0 and r > 1. This condition follows directly from convexity inequality (2). In
lemma 2.3 we describe sufficient conditions on W for which the monotonicity inequality and the
convexity inequality are equivalent.

The paper is organised as follows: After a description of the assumptions on the energy density
W and the geometry of the domain Ω, we formulate in section 2 the main result on the global
regularity of stress fields of convex variational problems. The proof is based on a difference quotient
technique. These results are then applied to convex examples from continuum mechanics. In
section 3 we formulate a regularity theorem for the nonconvex case and illustrate it with further
examples.

2 Regularity in the convex case

2.1 Notation

Let us first introduce some notation and general assumptions. Form×d-matrices A,B ∈ R
m×d the

inner product is defined byA : B = tr
(

A>B
)

= tr
(

B>A
)

=
∑m

i=1

∑d
k=1 AikBik and |A| =

√
A : A

is the corresponding Frobenius norm.
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If not otherwise stated it is assumed that Ω ⊂ R
d, d > 2, is a bounded domain with Lipschitz

boundary ∂Ω = ΓD∪ΓN . ΓD and ΓN are open and disjoint and denote the Dirichlet and Neumann
boundary, respectively.

For p ∈ (1,∞) and s > 0 the spaces W s,p(Ω) are the usual Sobolev-Slobodeckij spaces, see e.g.
[2, 18]. Furthermore,

V = {v ∈ W 1,p(Ω) : v
∣

∣

ΓD
= 0}. (5)

For the formulation of the boundary conditions we need the following trace space and its dual for
and open subset Γ ⊂ ∂Ω, p ∈ (1,∞):

W 1− 1
p
,p(Γ) =

{

u ∈ Lp(Γ) : ∃û ∈W 1,p(Ω) such that û
∣

∣

Γ
= u

}

, (6)

W̃
− 1

p′
,p′
(Γ) =

(

W 1− 1
p
,p(Γ)

)′

. (7)

Throughout the whole paper p′ is the conjugate exponent of p, 1
p
+ 1

p′
= 1. Furthermore, the

dual pairing for elements u of a Banach space X and elements f of its dual X ′ is denoted by
〈f, u〉 = 〈f, u〉X . Besides the usual Sobolev spaces we deal also with Nikolskii spaces. Nikolskii
spaces are very useful for proving regularity results with a difference quotient technique since their
norms are based on difference quotients. For convenience we cite here the definition of Nikolskii
spaces and an embedding theorem.

Definition 2.1 (Nikolskii space). [2, 26] Let s = m + δ, where m > 0 is an integer and
0 < δ < 1. For 1 < p <∞ the Nikolskii spaces are defined as

N s,p(Ω) :=
{

u ∈ Lp(Ω) : ‖u‖N s,p(Ω) <∞
}

with

‖u‖pN s,p(Ω) = ‖u‖
p

Lp(Ω) +
∑

|α|=m

sup
η>0

h∈R
d

0<|h|<η

∫

Ωη

|Dαu(x+ h)−Dαu(x)|p

|h|δp
dx (8)

and Ωη = {x ∈ Ω : dist(x, ∂Ω) > η}.
Lemma 2.2. [2, 26, 33, 34] Let s, p be as in definition 2.1 and let Ω ⊂ R

d be a bounded domain
with Lipschitz boundary. The following embeddings are continuous for every ε > 0:

N s+ε,p(Ω) ⊂W s,p(Ω) ⊂ N s,p(Ω).

Lemma 2.2 is a consequence of [18, Thm. 1.4.1.3], [26, p. 381], [33, sections 1.3, 2.1.1, 2.2.9]
and [34, sec. 2.3.2]. An equivalent norm is generated if the supremum in (8) is replaced by
sup η>0,h=ηej ,

ej∈{e1,...,ed}

, where {e1, . . . , ed} is a basis of R
d [26, 23].

2.2 The convex minimisation problem

We study minimisation problems where the energy density W : R
m×d → R, m, d > 1, has the

following properties:

H1 W ∈ C1(Rm×d,R).

H2 There exist constants p ∈ (1,∞), c0, c1, c2, c21, c3 > 0 such that for every A ∈ R
m×d

c0 |A|p − c1 6 W (A) 6 c2 |A|p + c21, (9)

|DW (A)| 6 c3(1 + |A|p−1). (10)

H3 There exist constants c > 0, r > 1, s > 0 such that for every A,B ∈ R
m×d

(

W (A) −W (B)−DW (B) : (A−B)
)

(1 + |A|s + |B|s) > c |DW (A) −DW (B)|r . (11)

Condition H3 implies that the energy density W is convex but not necessarily strictly convex.
The following lemma describes sufficient conditions on W for which convexity inequality (11) and
monotonicity inequality (4) are equivalent.
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Lemma 2.3. Let W ∈ C1(Rm×d,R) satisfy (9) with p > 1 and let monotonicity inequality (4) be
valid for s > 0 and r > 1. We denote by W ∗ the conjugate function of W and by ∂W ∗(σ) the
subdifferential of W ∗ at σ ∈ R

m×d. Then

1. W ∗ ∈ C(Rm×d,R) and W ∗ is subdifferentiable on R
m×d. Furthermore, ∂W ∗(σ) is compact

for every σ ∈ R
m×d.

2. If s = 0 then it holds for every σ1, σ2 ∈ R
m×d and A ∈ ∂W ∗(σ2) with the constant c from

monotonicity inequality (4)

W ∗(σ1)−W ∗(σ2)−A : (σ1 − σ2) > cr−1 |σ1 − σ2|r . (12)

Furthermore, it holds for every A,B ∈ R
m×d with c from (4)

W (A) −W (B)−DW (B) : (A−B) > cr−1 |DW (A) −DW (B)|r . (13)

3. Let s 6= 0 and assume in addition that (10) is satisfied. Then there exist constants κ, δ > 0
such that it holds for every σ1, σ2 ∈ R

m×d and Ai ∈ ∂W ∗(σi)

W ∗(σ1)−W ∗(σ2)−A2 : (σ1 − σ2)

> κ (1 + |A1|s + |A2|s + δ(|A1|ps + |A2|ps))−1 |σ1 − σ2|r . (14)

Moreover, it holds for every A1, A2 ∈ R
m×d

W (A1)−W (A2)−DW (A2) : (A1 −A2)

> κ (1 + |A1|s + |A2|s + δ(|A1|ps + |A2|ps))−1 |DW (A1)−DW (A2)|r . (15)

If c0 = c2 in (9) or if |A| 6 c(1 + |DW (A)| 1
p−1 ) for some c > 0 and every A ∈ R

m×d, then
(14) and (15) hold with δ = 0. This means that in these cases the monotonicity inequality
(4) and convexity inequality (11) are equivalent.

Proof. Part 1. of the lemma follows due to (9) from Corollaries 10.1.1, 13.3.1 and Theorems
12.2 and 23.4 in [28]. Furthermore, (13) and (15) follow from (12) and (14) via the relation
σ = DW (A) ⇔ W ∗(σ) +W (A) = A : σ [28, Thm. 23.5]. For the proof of (12) and (14) let
σ1 6= σ2 ∈ R

m×d. We define f(t) = W ∗(σ2 + t(σ1 − σ2)), t ∈ R and

f ′+(t) := lim
λ↘0

λ−1 (f(t+ λ)− f(t)) .

Theorem 23.1 in [28] guarantees that f ′+(t) : R → R is well defined. Moreover, it follows from [28,
Thm. 23.4] that

f ′+(t) = sup{A : (σ1 − σ2); A ∈ ∂W ∗(σ2 + t(σ1 − σ2))}. (16)

Since ∂W ∗(σ) is compact for every σ ∈ R
m×d, there exists for every t an element A+(t) ∈

∂W ∗(σ2 + t(σ1 − σ2)) for which the supremum in (16) is attained. Taylor’s expansion [28, Cor.
24.2.1] and monotonicity inequality (4) yield for every A2 ∈ ∂W ∗(σ2)

W ∗(σ1)−W ∗(σ2)−A2 : (σ1 − σ2) =

∫ 1

0

f ′+(t)− (A2 : (σ1 − σ2)) dt

=

∫ 1

0

1

t
(A+(t)−A2) : t(σ1 − σ2) dt

(4)

> c

∫ 1

0

t−1(1 + |A+(t)|s + |A2|s)−1 |t(σ1 − σ2)|r dt. (17)
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This proves (12) if s = 0. Assume now that s > 0. The next task is to find an upper bound for

|A+(t)|. If the estimate |A| 6 c(1 + |DW (A)| 1
p−1 ) is valid for every A, then analogous arguments

as subsequent to (21) here below imply (14) with δ = 0. If this estimate does not hold then direct
calculations show (use (9) and the definition of W ∗) that for every σ ∈ R

m×d:

q−1(c2p)
−1

p−1 |σ|q − c21 6 W ∗(σ) 6 c1 + q−1(c0p)
−1

p−1 |σ|q , (18)

where c0, c1, c2 are the constants from (9) and 1
q
+ 1

p
= 1. The convexity of W ∗ and (18) imply

for every σ ∈ R
m×d and A ∈ ∂W ∗(σ), A 6= 0,

|A| = A : (|A|−1A) 6 W ∗(σ + |A|−1A)−W ∗(σ)

(18)

6 d1 + d0

∣

∣

∣
σ + |A|−1A

∣

∣

∣

q

− d2 |σ|q , (19)

where d0 = q−1(c0p)
−1

p−1 , d1 = c1 + c21 and d2 = q−1(c2p)
−1

p−1 . Furthermore, Taylor’s expansion
yields for σ, τ ∈ R

m×d

|σ + τ |q − |σ|q 6 q

∫ 1

0

(|σ|+ t |τ |)q−1 |τ | dt 6 q(|σ|+ |τ |)q−1 |τ | . (20)

Combining inequalities (19) and (20) leads to

|A| 6 d1 + (d0 − d2) |σ|q + d0q(|σ|+ 1)q−1 (21)

for every A ∈ ∂W ∗(σ). Thus, it follows for t ∈ (0, 1) and σ(t) = σ2+ t(σ1−σ2) together with (10)
that

|A+(t)| 6 d1 + (d0 − d2) |σ(t)|q + d0q(|σ(t)|+ 1)q−1

6 d1 + (d0 − d2)(|σ1|+ |σ2|)q + d0q(|σ1|+ |σ2|+ 1)q−1

(10)

6 d1 + c(d0 − d2)(1 + |A1|p + |A2|p) + c(1 + |A1|+ |A2|). (22)

Here, c > 0 is a constant and A1 ∈ ∂W ∗(σ1) and A2 ∈ ∂W ∗(σ2) are arbitrary. Furthermore we
have used that (|A| + |B|)α 6 cα(|A|α + |B|α) for α > 0, see e.g. [22]. Together with (17) we
obtain finally

W ∗(σ1)−W ∗(σ2)−A2 : (σ1 − σ2)

> κ (1 + (d0 − d2)(|A1|ps + |A2|ps) + |A1|s + |A2|s)−1 |σ1 − σ2|r (23)

for every σ1, σ2 ∈ R
m×d and every Ai ∈ ∂W ∗(σi) with a constant κ > 0 which is independent of

σi and Ai. This proves (14) with δ = d0 − d2 > 0. If c0 = c2, then δ = d0 − d2 = 0.

The existence of minimisers of problem (1) follows with standard arguments from the direct method
in the calculus of variations, see e.g. [9].

Theorem 2.4. Let Ω ⊂ R
d be a bounded domain with Lipschitz boundary and assume that the

energy density W : R
m×d → R satisfies H1-H3 with p ∈ (1,∞). Furthermore, let g ∈ W 1,p(Ω),

f ∈ Lp′(Ω) and h ∈ W̃
− 1

p′
,p′
(ΓN ). If ΓD = ∅, we require in addition that f and h satisfy the

solvability condition
∫

Ω

fv dx+ 〈h, v〉
W

1− 1
p
,p
(∂Ω)

= 0 (24)

for every constant v ∈ R
m. The minimisation problem

Find u : Ω→ R
m, u ∈ g + V such that for every v ∈ g + V

I(u) 6 I(v) =

∫

Ω

W (∇v(x)) dx −
∫

Ω

fv dx− 〈h, v〉
W

1− 1
p
,p
(ΓN )

(25)
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has a solution u. Moreover, σ = DW (∇u) ∈ Lp′(Ω). If u1 and u2 are two minimisers, then σ1 =
DW (∇u1) = DW (∇u2) = σ2. The functional I is Fréchet-differentiable and the minimisation
problem is equivalent to solving the weak Euler-Lagrange equations

Find u ∈ g + V such that for every v ∈ V
∫

Ω

DW (∇u(x)) : ∇v(x) dx =

∫

Ω

fv dx+ 〈h, v〉
W

1− 1
p
,p
(ΓN )

. (26)

Remark 2.5. 1. Even though minimisers of I need not be unique, the stress field is unique.
This is due to the lower bound |DW (A)−DW (B)|r in H3.

2. The theorem remains true if the energy I in (25) is defined via the linearised strain ten-
sor ε(v). More precisely, let m = d ∈ {2, 3}, DW (A) ∈ R

d×d
sym for A ∈ R

d×d
sym and let

in the definition of I the gradient ∇v be replaced by the linearised strain tensor ε(v) =
1
2

(

∇v + (∇v)>
)

. In this case, the solvability condition has to be replaced by the condition
∫

Ω fr dx+ 〈h, r〉W 1− 1
p
,p
(∂Ω)

= 0 for every r ∈ R = {r : Ω→ R
d : r(x) = a+Bx, a ∈ R

d, B ∈
R
d×d, B +B> = 0} = ker ε. Now, the stress σ is defined as σ = DW (ε(u)).

2.3 Admissible domains

It is known from the regularity theory for weak solutions of linear elliptic equations that the global
regularity does not only depend on the smoothness of the data but also on the geometry of the
domain Ω. In this section we describe geometrical assumptions on Ω which enable us to apply the
difference quotient technique for the derivation of global regularity results for σ. The geometrical
assumptions depend on the boundary conditions. We give first an abstract definition of admissible
domains. In lemma 2.8 we then describe two and three dimensional examples.

Definition 2.6 (Cone). A set K ⊂ R
d is a cone with vertex in x0 ∈ R

d if there exists a simply
connected, open and nonempty set C ⊂ ∂B1(0) = {x ∈ R

d : |x| = 1} such that K = {x ∈ R
d\{x0} :

(x− x0)/|x− x0| ∈ C}.

Definition 2.7 (Admissible domain). Let Ω ⊂ R
d be a bounded domain with ∂Ω = ΓD ∪ ΓN

where ΓD and ΓN are open (possibly empty) and disjoint.

1. Case, ΓD ∩ ΓN = ∅: Ω is an admissible domain if it has a Lipschitz boundary.

2. Case, ΓD ∩ ΓN 6= ∅: Ω is an admissible domain if it has a Lipschitz boundary and if in addition
there exists a finite number of open balls BRj

(xj) with radius Rj and centre xj ∈ ΓD ∩ ΓN

and a finite number of cones Kj ⊂ R
d with vertex in 0 such that ΓD ∩ ΓN ⊂ ∪J

j=1BRj
(xj).

Furthermore, for every j there exist nonempty domains Ωj
D, Ω

j
N ⊂ BRj

(xj) with Ωj
D∩Ω

j
N = ∅

and

BRj
(xj)\Ω = Ωj

D ∪ Ωj
N , ΓD ∩ BRj

(xj) ⊂ ∂Ωj
D, ΓN ∩ BRj

(xj) ⊂ ∂Ωj
N , (27)

(

(

BRj
(xj)\Ωj

N

)

+Kj

)

∩ Ωj
N = ∅, (28)

(Ωj
D +Kj) ∩

(

BRj
(xj)\Ωj

D

)

= ∅, (29)

see also figure 1 (left, the index j is omitted). Here, the notation Ω + K = {y ∈ R
d : y =

x+ h, x ∈ Ω, h ∈ K} is used.

The next lemma describes some examples of admissible domains for d = 2, 3. The proof of this
lemma is technical and is given in the appendix.

Lemma 2.8. 1. Let Ω ⊂ R
2 be a Lipschitz-polygon. Ω is admissible if and only if the in-

terior opening angle at those points, where ΓD and ΓN intersect, is strictly less than π,
](ΓD,ΓN ) < π.

6



PSfrag replacements

K
K

ΓD

ΓN

Ω

ΩD

ΩN

xj

Ω̂

PSfrag replacements

ΓD

ΓN

Figure 1: Examples for admissible domains

2. Let Ω ⊂ R
3 be a Lipschitz-polyhedron where at most three faces intersect in the neighbourhood

of those points, where the type of the boundary conditions changes. Assume in addition that
the interior opening angle between the Dirichlet and Neumann boundary is strictly less than
π. Then Ω is an admissible domain, see figure 1 (right) for an example.

2.4 Stress regularity in the convex case

We are now ready to formulate the main result on the global regularity of stress fields of convex
minimisation problems with mixed boundary conditions on admissible domains. In addition to
the assumptions on the domain we also have to require higher smoothness of the right hand sides
f, g, h in (26). In particular we assume that the Neumann datum h can be written as h = H

∣

∣

ΓN
~n

on ΓN , where ~n is the exterior unit normal vector on ΓN and the function H : Ω → R
m×d is

specified in the following theorem.

Theorem 2.9. Let Ω ⊂ R
d be an admissible domain and assume that W : R

m×d → R satisfies
H1-H3 for r, p > 1, s > 0 with rp

p+s
> 1. Let Ω̂ ⊃⊃ Ω be an arbitrary domain and assume further

that f ∈ Lp′(Ω), g ∈W 2,p(Ω̂), ∇g ∈ L∞(Ω̂) and H ∈W 1,p′(Ω̂,Rm×d) ∩L∞(Ω̂). Let u ∈W 1,p(Ω)
be a minimiser of problem (25) with u

∣

∣

ΓD
= g
∣

∣

ΓD
and h = H

∣

∣

ΓN
~n on ΓN .

If ∇u ∈ Lα(Ω) for some α > p and if σ = DW (∇u) ∈ Lγ(Ω) with γ = max{p′, αr
α+s

}, then σ
has the following global regularity for every δ > 0:

σ = DW (∇u) ∈ N 1
r
,τ (Ω) ⊂W

1
r
−δ,τ (Ω). (30)

Here, τ = αr
α+s

>
pr
p+s

> 1.

Remark 2.10. 1. The theorem remains true if in the minimisation problem (25) ∇u is replaced
by ε(u) and if the assumptions of remark 2.5 hold.

2. In [5] C. Carstensen and S. Müller obtained the local regularity σ ∈ W 1,τ
loc (Ω) with τ = pr

p+s
.

3. In the next section we discuss the optimality of theorem 2.9 for linear elasticity and for
equations of power-law type.

Proof. We apply a difference quotient technique to deduce estimates for the stress fields in Nikol-
skii norms. For the derivation of these estimates the domain Ω is covered by a finite number of
balls and the estimates are proved for each of these balls separately. The estimates are obtained
by inserting suitable differences of weak solutions and shifted weak solutions into the weak formu-
lation and by applying the convexity inequality. The main difficulty is that weak solutions have to
be extended across the boundary of Ω in such a way that differences of weak solutions and shifted
weak solutions are admissible test functions for the weak formulation. Due to the assumptions on
the domain Ω it is possible to define such extensions. We partially take up the ideas from [13] in
the proof.

Let Ω ⊂ R
d be an admissible domain. In particular, Ω is a Lipschitz domain and satisfies

therefore the uniform interior and exterior cone condition [18]. It follows together with part 2. of

7



definition 2.7 that there exists a finite number of balls BRj
(xj) and cones Kj with vertices in 0

such that Ω ⊂ ∪J
j=1BRj

(xj) and each of the pairs (BRj
(xj),Kj) satisfies one of the following four

cases:

1. BRj
(xj) ⊂ Ω.

2.
(

BRj
(xj) ∩ ∂Ω

)

⊂ ΓD and for every x ∈ BRj
(xj)∩ΓD it holds ((x+Kj )∩BRj

(xj))∩Ω = ∅.

3.
(

BRj
(xj) ∩ ∂Ω

)

⊂ ΓN and for every x ∈ BRj
(xj) ∩ Ω it holds ((x+Kj) ∩ BRj

(xj)) ⊂ Ω.

4. xj ∈ ΓD ∩ ΓN and the pair (BRj
(xj),Kj) satisfies (27)-(29) of definition 2.7 with suitable

domains Ωj
D and Ωj

N .

Note that there exists θ > 0 such that the balls BRj−θ(xj) still cover Ω. We prove now that

σ
∣

∣

Ω∩BRj−θ
(xj)

∈ N 1
r
,τ (Ω ∩ BRj−θ(xj))

for every j and consider the fourth case in detail. The remaining cases can be treated similarly.
In order to simplify the notation we omit the index j in the following.

Let BR be a ball, K a cone with vertex in 0 and ΩD,ΩN ⊂ BR domains such that (27)-(29)
of definition 2.7 hold. Let u ∈ W 1,p(Ω) be a weak solution of minimisation problem (25) with
f ∈ Lp′(Ω), g ∈ W 2,p(Ω̂), ∇g ∈ L∞(Ω̂) and H ∈ W 1,p′(Ω̂,Rm×d) ∩ L∞(Ω̂). Note that the
Neumann term in (25) can be rewritten as

〈h, v〉
W

1− 1
p
,p
(ΓN )

= 〈H~n, v〉
W

1− 1
p
,p
(ΓN )

=

∫

Ω

(divH)v dx+

∫

Ω

H : ∇v dx (31)

for v ∈ V . Let Ω0 = int
(

Ω ∩ BR ∪ ΩD

)

= BR\ΩN and assume that Ω0 ⊂ Ω̂, see figure 1. We
extend u to ΩD as follows

ũ(x) =

{

u(x), x ∈ Ω,

g(x), x ∈ Ω0.
(32)

Since u
∣

∣

ΓD
= g

∣

∣

ΓD
it follows that ũ ∈ W 1,p(Ω ∪ Ω0). Choose η ∈ C∞0 (BR) with η = 1 on BR−θ

and define for x ∈ Ω and h ∈ K with |h| < h0 =
1
2 dist(supp η, ∂BR):

v(x) = η2(x) (ũ(x+ h)− g(x+ h)− (ũ(x)− g(x)))

= η2(x)4h(ũ(x)− g(x)). (33)

Here, we use the notation 4hw(x) = w(x + h) − w(x) for h ∈ R
d. Note that v ∈ W 1,p

0 (Ω) and
therefore v is an admissible test function for the weak formulation (26). Assume that ∇u ∈ Lα(Ω)
for some α > p and let τ = αr

α+s
. It follows from convexity inequality (11) with A = ∇ũ(x + h),

B = ∇ũ(x) and Hölder’s inequality with r
τ

> 1 that

∫

Ω

η
4τ
r |4hDW (∇ũ)|τ dx

(11)

6 c

∫

Ω

η
4τ
r (1 + |∇ũ|s + |∇ũ(x + h)|s)

τ
r

× (4hW (∇ũ)−DW (∇ũ) : 4h∇ũ)
τ
r dx

6 c

(
∫

Ω

η
2τ
r−τ (1 + |∇ũ|s + |∇ũ(x+ h)|s)

τ
r−τ dx

)
r−τ
r

×
(
∫

Ω

η2 (4hW (∇ũ)−DW (∇ũ) : 4h∇ũ) dx
)

τ
r

= cI1I2. (34)

8



It is sτ(r − τ)−1 = α and since ∇u ∈ Lα(Ω) and ∇g ∈ L∞(Ω̂), the factor I1 is bounded inde-
pendently of h ∈ K. Therefore, there exists a constant c > 0 such that for every h ∈ K with
|h| < h0

c
∥

∥

∥
η

4
r |4hDW (∇ũ)|

∥

∥

∥

r

Lτ (Ω)
6

∫

Ω

η24hW (∇ũ) dx −
∫

Ω

η2DW (∇ũ) : 4h∇ũdx

= I21 + I22. (35)

We prove now that |I21|+ |I22| 6 c |h| for a constant c > 0 which is independent of h ∈ K. Due to
the product rule for differences, 4h(f(x)g(x)) = f(x)4hg(x)+ g(x+h)4hf(x), we obtain for I21

I21 =

∫

Ω

4h

(

η2W (∇ũ)
)

dx−
∫

Ω

W (∇ũ(x+ h))4hη
2 dx.

= I211 + I212. (36)

Note that (supp η ∪ supp η(·+ h)) ⊂ BR for h ∈ K with |h| < h0 and therefore we get taking into
account the definition of ũ

I211 =

∫

Ω∩BR

η2(x + h)W (∇ũ(x+ h)) dx−
∫

Ω

η2W (∇ũ) dx

=

∫

(Ω+h)∩BR

η2W (∇ũ) dx−
∫

Ω∩BR

η2W (∇ũ) dx

=

∫

((Ω+h)\Ω)∩BR

η2W (∇g) dx −
∫

((Ω\(Ω+h))∩BR

η2W (∇u) dx. (37)

From ∇g ∈ L∞(Ω̂) and assumption H2, inequality (9), we obtain

I211 6 |((Ω + h)\Ω) ∩ BR|
∥

∥η2W (∇g)
∥

∥

L∞(BR)
−
∫

(Ω\(Ω+h))∩BR

η2 (c0 |∇u|p − c1) dx

6 c |h| (
∥

∥η2W (∇g)
∥

∥

L∞(BR)
+ c1)− c0

∫

(Ω\(Ω+h))∩BR

η2 |∇u|p dx (38)

and the constant c is independent of h ∈ K. Since η ∈ C∞0 (BR), there exists c(η) > 0 such that

∣

∣η2(x + h)− η2(x)
∣

∣ 6 c(η) |h|

for every h ∈ R
d and x ∈ BR. Thus the term I212 can be estimated as follows

|I212| 6 c(η) |h|
∫

(Ω∪ΩD)∩BR

|W (∇ũ)| dx 6 c |h| . (39)

We obtain finally from (38) and (39) that

I21 = I211 + I212 6 c |h| − c0

∫

(Ω\(Ω+h))∩BR

η2 |∇u|p dx, (40)

where c is independent of h ∈ K and c0 is the constant from (9). Applying the product rule to
I22 and taking into account (31) and that v = η24h(ũ− g) is an admissible test function for the

9



weak formulation (26) we obtain

I22 = −
∫

Ω

η2DW (∇ũ) : 4h∇ũdx

= −
∫

Ω

DW (∇ũ) : ∇
(

η24h(ũ− g)
)

dx−
∫

Ω

DW (∇ũ) : ∇(η24hg) dx

+

∫

Ω

DW (∇ũ) : (4hũ⊗∇η2) dx

= −
∫

Ω

η2(f + divH)4h(ũ− g) dx−
∫

Ω

H : ∇(η24hũ) dx+

∫

Ω

H : ∇(η24hg) dx

+

∫

Ω

DW (∇ũ) : (4hũ⊗∇η2) dx−
∫

Ω

DW (∇ũ) : ∇(η24hg) dx

= I221 + . . .+ I225. (41)

Here, (4hũ⊗∇η2)ij = (∂iη)(4hũj) and ũj is the j-th component of ũ. Lemma 7.23 in [17] implies
for ũ, g ∈ W 1,p(Ω ∪ Ω0), and h ∈ K that

‖η4h(ũ− g)‖Lp((Ω∪Ω0)∩BR)
6 |h| ‖u− g‖Lp(Ω∩BR)

‖η‖L∞(BR)
.

Therefore, there exists a constant c > 0 which is independent of h ∈ K such that

|I221|+ |I224| 6 ‖f + divH‖Lp′ (Ω) ‖η4h(ũ− g)‖Lp((Ω∪Ω0)∩BR)

+ ‖DW (∇u)‖Lp′ (Ω) c(η) ‖η4hũ‖Lp((Ω∪Ω0)∩BR)
6 c |h| . (42)

Since g ∈ W 2,p(Ω̂), similar arguments show that

|I223|+ |I225| 6 c |h| . (43)

In order to estimate I222 we apply again the product rules for differences and derivatives:

I222 = −
∫

Ω

H : ∇(η24hũ) dx

= −
∫

Ω

H :
(

4hũ⊗∇η2
)

dx−
∫

Ω

4h

(

η2H : ∇ũ
)

dx+

∫

Ω

(4h(η
2H)) : ∇ũ(x+ h) dx. (44)

The first term can be treated similarly to I224, the third term similarly to I221. The second term
can be transformed as follows (compare also (37))

∫

Ω

4h(η
2H : ∇ũ) dx =

∫

(Ω+h\Ω)∩BR

η2H : ∇g dx−
∫

(Ω\(Ω+h))∩BR

η2H : ∇u dx. (45)

Since ∇g,H ∈ L∞(Ω̂,Rm×d), we obtain

∣

∣

∣

∣

∣

∫

(Ω+h\Ω)∩BR

η2H : ∇g dx
∣

∣

∣

∣

∣

6
∣

∣

(

(Ω + h)\Ω
)

∩ BR

∣

∣

∥

∥η2H : ∇g
∥

∥

L∞(Ω̂)
6 c |h| (46)

and c is independent of h ∈ K. By Hölder’s and Young’s inequality we get for the second term in
(45) for every ε > 0

∣

∣

∣

∣

∣

∫

(Ω\(Ω+h))∩BR

(ε−1η
2

p′H) : (εη
2
p∇u) dx

∣

∣

∣

∣

∣

6

∫

(Ω\(Ω+h))∩BR

1

p′

∣

∣

∣
ε−1η

2

p′H
∣

∣

∣

p′

dx+

∫

(Ω\(Ω+h))∩BR

εp

p
η2 |∇u|p dx

(47)
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and the first term can be estimated by c |h|, where c depends on ε > 0. Estimates (44)-(47) imply
that

|I222| 6 c |h|+ εp

p

∫

(Ω\Ω+h)∩BR

η2 |∇u|p dx. (48)

Collecting the above estimates (inequalities (40), (42), (43), (48)) we obtain finally that there
exists a constant c > 0 such that it holds for every h ∈ K, |h| < h0

∥

∥

∥
η

4
r |4hDW (∇ũ)|

∥

∥

∥

r

Lτ (Ω)
6 I21 + I221 + I222 + I223 + I224 + I225

6 c |h|+
(

p−1εp − c0
)

∫

(Ω\(Ω+h))∩BR

η2 |∇u|p dx.

Choosing 0 < ε < (pc0)
1
p and taking into account that η

∣

∣

BR−θ
= 1 we get

‖4hDW (∇u)‖rLτ (Ω∩BR−θ)
6 c |h|

for every h ∈ K, |h| < h0, with a constant c which is independent of h. This implies that

σ = DW (∇u) ∈ N 1
r
,τ (Ω ∩ BR−θ) ⊂ W

1
r
−δ,τ (Ω ∩ BR−θ) for every δ > 0, see the definition of the

Nikolskii norm and lemma 2.2.

2.5 Examples for the convex case

As examples for energy densities which satisfy the convexity inequality (11) we consider the energy
densities of linear elastic materials, of a variational functional from the deformation theory of
plasticity and the energy density which corresponds to the p-Laplace equation.

2.5.1 Linear elasticity

The energy density for linear elastic materials with elasticity tensor C ∈ R
(d×d)×(d×d), symmetric

and positive definite, is given by W (ε) = 1
2Cε : ε for ε ∈ R

d×d
sym . Obviously, it holds due to the

positive definiteness of C that

W (ε1)−W (ε2)−DW (ε2) : (ε1 − ε2) > c |Cε1 −Cε2|2

and thus p = 2, s = 0, r = 2 in (11).

Corollary 2.11. Let Ω ⊂ R
d be an admissible domain and let u be a solution of the minimisation

problem for linear elasticity. It follows for every δ > 0 that σ = Cε(u) ∈ N 1
2
,2(Ω) ⊂W

1
2
−δ,2(Ω).

This result is well known for boundary value problems with pure Dirichlet or pure Neumann
conditions [10]. For polyhedral domains Ω, the behaviour of displacement and stress fields near
corners and edges can be characterised completely by asymptotic expansions [21, 11, 24]. Let
Ω ⊂ R

2 be a polygon with mixed boundary conditions and suppose that C describes an isotropic
material. It is shown in [25, 27] by a careful study of the asymptotic expansions that σ ∈W

1
2
,2(Ω)

if Ω is an admissible domain, i.e. if ](ΓD,ΓN ) < π at every point S ∈ ΓD ∩ ΓN . Moreover,
if S ∈ ΓD ∩ ΓN with ](ΓD,ΓN ) > π, then weak solutions exist with σ ∈ Wα−δ,2(Ω) for an
appropriate 0 < α < 1

2 and every δ > 0 but not for δ = 0. The parameter α depends on the
material parameters and the opening angle at S. This example shows the optimality of corollary
2.11 for admissible domains.

2.5.2 Hencky elasto-plasticity with linear hardening

For ε ∈ R
d×d
sym we define as in [16]

W (ε) =
1

2
κ0(tr ε)

2 + g0(
∣

∣εD
∣

∣), (49)
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where κ0 > 0 and εD = ε − 1
d
tr εI is the deviatoric part of ε. It is assumed that g0 ∈ C1(R) ∩

C2(R\{t0}) for some t0 > 0 and the left and right limits of g′′0 exist at t0. The quantity g
′
0(t0) may

be interpreted in this context as yield stress. Furthermore, we suppose that there exist constants
κ1, κ2 > 0 such that for every t ∈ R

κ1 6 min{g′′0 (t), t−1g′0(t)} 6 max{g′′0 (t), t−1g′0(t)} 6 κ2. (50)

It follows with Taylor’s expansion that c0t
2 − c1 6 g0(t) 6 c2(1 + t2) for every t and constants

ci > 0. Note that the energy density

Wη(ε) =
1

2
Cε : ε− 1

4µ(1 + η)
max{0,

∣

∣(Cε)D
∣

∣ − σy}2, ε ∈ R
d×d
sym (51)

from [5] is a special case of (49). Here, C is the elasticity tensor for isotropic materials, µ > 0
a Lamé constant, σy > 0 the yield stress and η > 0 the modulus of hardening. The variational
problem related to energy density (49) is:

Find u ∈W 1,2(Ω) with u
∣

∣

ΓD
= g
∣

∣

ΓD
such that for every v ∈ W 1,2(Ω) with v

∣

∣

ΓD
= g
∣

∣

ΓD

I(u) 6 I(v) =

∫

Ω

1

2
κ0(tr ε(v))

2 + g0(
∣

∣εD(v)
∣

∣) dx−
∫

Ω

fv dx− 〈h, v〉
W

1
2
,2(ΓN )

. (52)

Functionals of this type describe in the framework of deformation theory of plasticity the behaviour
of materials with linear hardening. The local regularity of stress fields corresponding to minimisers
of (52) is studied in [16, 32].

Lemma 2.12. Energy density W from (49) satisfies the convexity inequality (11) on R
d×d
sym

with
s = 0 and r = 2.

Proof. Let ε1, ε2 ∈ R
d×d
sym , ε1 6= ε2 and θ(s) = ε2 + s(ε1 − ε2), s ∈ [0, 1]. Note that there are at

most two elements si ∈ [0, 1] with |θ(si)| = t0. Therefore we may apply Taylor’s expansion at
least piecewise on [0, 1] and obtain

W (ε1)−W (ε2)−DW (ε2) : (ε1 − ε2)

=
1

2
κ0 |tr(ε1 − ε2)|2 +

∫ 1

0

(1− s)
g′′0 (
∣

∣θD(s)
∣

∣)

|θD(s)|2
(

θD(s) : (ε1 − ε2)
D
)2

ds

+

∫ 1

0

(1− s)
g′0(
∣

∣θD(s)
∣

∣)

|θD(s)|

(

∣

∣εD1 − εD2
∣

∣

2 − (θD(s) : (εD1 − εD2 ))
2

|θD(s)|2

)

ds

(50)

>
1

2
κ0 |tr(ε1 − ε2)|2 +

∫ 1

0

(1− s)κ1(θ
D(s) : (εD1 − εD2 ))

2
∣

∣θD(s)
∣

∣

−2
ds

+

∫ 1

0

(1− s)κ1

(

∣

∣εD1 − εD2
∣

∣

2 − (θD(s) : (εD1 − εD2 ))
2
∣

∣θD(s)
∣

∣

−2
)

ds

=
1

2

(

κ0 |tr(ε1 − ε2)|2 + κ1
∣

∣εD1 − εD2
∣

∣

2
)

. (53)

In a similar way it follows again by (50) that there exists a constant c > 0 with

|DW (ε1)−DW (ε2)| 6
∫ 1

0

∣

∣D2W (θ(s))(ε1 − ε2)
∣

∣ ds

6 c(|tr(ε1 − ε2)|+
∣

∣εD1 − εD2
∣

∣). (54)

Combining (53) and (54) finishes the proof.

Corollary 2.13. Let Ω ⊂ R
d be an admissible domain and let u ∈W 1,2(Ω) be a minimiser of (52)

with data f, g, h = H~n as in theorem 2.9 (p = 2). Then σ = DW (ε(u)) ∈ N 1
2
,2(Ω) ∩W 1

2
−δ,2(Ω)

for every δ > 0.
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2.5.3 The p-Laplace equation

The energy density corresponding to the p-Laplace equation is given by

W (A) =
1

p
|A|p , A ∈ R

d. (55)

If p > 2, then energy density W satisfies monotonicity inequality (4) with r = 2 and s = p − 2
[5]. Lemma 2.3 implies that the convexity inequality holds also. Furthermore, the following global
regularity result is available for weak solutions u : Ω→ R, u ∈ W 1,p(Ω) of the p-Laplace equation
on admissible domains (p > 2) [31, 13]:

u ∈W 1+ 1
p
−δ,p(Ω)

for every δ > 0. By the Sobolev embedding theorems we get ∇u ∈ Lα−δ(Ω) with α = dp
d−1 > p.

Corollary 2.14. Let m = 1, p > 2 and u ∈ W 1,p(Ω) be a minimiser of (25) with energy density
(55) on an admissible domain Ω ⊂ R

d. Let the data f, g, h = H~n be given according to theorem

2.9 with α = dp
d−1 . Then σ = DW (∇u) ∈ W

1
2
−δ,τ (Ω) for every δ > 0 and τ = 2α

α+p−2 .

Remark 2.15. Let Ω ⊂ R
2 be an admissible polygon and assume that σ = DW (∇u) is a weak

solution of the p-Laplace equation with p > 2 of the form σ = rγσ0(ϕ), where (r, ϕ) are polar
coordinates with respect to a corner point S and σ0 6≡ 0. By [30, Lemma 2.3.1] we obtain for

δ, τ as in corollary 2.14 that σ ∈ W
1
2
−δ,τ (Ω) if and only if γ >

1−p
p

. In [3] a weak solution u is

constructed for a domain with a crack and smooth right hand sides, where γ = 1−p
p

. This indicates
the optimality of theorem 2.9 also for nonlinear elliptic equations of p-structure.

3 Regularity for stresses of some nonconvex variational

problems

Nonconvex variational problems may fail to have minimisers and a relaxed problem is studied
instead. This relaxed problem is in general defined through an energy density which is the quasi-
convex envelope of the nonconvex energy density. Weak cluster points of infimising sequences
of the nonconvex problem are minimisers of the relaxed problem [9, 1, 15]. Moreover, if the
nonconvex problem has a minimiser, then this minimiser is also a minimiser of the relaxed problem
and the corresponding stress fields coincide under suitable assumptions on the energy densities.
This relation is the key for carrying over regularity results from the convex case to minimisers
of nonconvex problems. After a short description of these relations we formulate the regularity
theorem and illustrate it with some examples.

3.1 Regularity for stress fields of nonconvex variational problems

Let W ∈ C(Rm×d,R) be an energy density satisfying growth condition (9) for some p > 1 and let
I be the energy functional related to W , see (25). By W qc and W c we denote the quasi-convex
and convex envelope of W , respectively, i.e. for A ∈ R

m×d

W qc(A) = sup{g(A) : g 6 W and g is quasi-convex}

and similar for W c. For a definition of quasi-convexity we refer to B. Dacorogna’s book [9].
Furthermore, we define for v ∈W 1,p(Ω)

Iqc(v) =

∫

Ω

W qc(∇v) dx −
∫

Ω

fv dx− 〈h, v〉
W

1− 1
p
,p
(ΓN )

,

where f, h are given as in theorem 2.4; Ic is analogously defined. The following well-known theorem
describes the relation between minimisers of Iqc and infimising sequences of I . For convenience
we formulate it here for our situation.
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Theorem 3.1. [9, 1, 15] Let W ∈ C(Rm×d,R) satisfy (9) for p > 1, g ∈ W 1,p(Ω), f ∈ Lp′(Ω),

h ∈ W
− 1

p′
,p′
(ΓN ) and assume that f, h satisfy solvability condition (24) if ΓD = ∅. Then the

minimisation problem for Iqc on g + V , where V is the space defined in (5), has a minimiser
uqc ∈ g + V and it holds

inf
v∈g+V

I(v) = Iqc(uqc).

Furthermore, every weak cluster point of infimising sequences of I is a minimiser of I qc. In
particular, every minimiser u of I is also a minimiser of Iqc.

This theorem follows immediately from [9, Thm. 5.2.1]. Note that it is still valid for functionals
I with energy density W (ε(u)) instead of W (∇u). In this case, W qc(ε) = W̃ qc(ε), where W̃ qc is
the quasiconvex envelope of W̃ (A) =W ( 12 (A+A>)), A ∈ R

d×d, [9, Thm. 5.1.1, Thm. 5.2.1]. Due
to theorem 3.1 we have

Lemma 3.2. Let the assumptions of theorem 3.1 be satisfied and suppose that u ∈ g + V is
a minimiser of I. Then W (∇u) = W qc(∇u) almost everywhere in Ω. Furthermore, let M =
{A ∈ R

m×d : W (A) = W qc(A)} and assume that W and W qc are differentiable on an open
neighbourhood of M. Then

DW (∇u) = DW qc(∇u) a.e. in Ω.

Proof. Let u be a minimiser of I . Due to theorem 3.1, u is also a minimiser of I qc and I(u) =
Iqc(u). Taking into account the definition of W qc we obtain immediately the first assertion of
lemma 3.2. In order to show the second assertion we only have to prove that DW (A) = DW qc(A)
for every A ∈M. Let A ∈M, H ∈ R

m×d be arbitrary. Then

DW (A) : H = lim
t↘0

t−1(W (A+ tH)−W (A)) = lim
t↘0

t−1(W (A+ tH)−W qc(A))

> lim
t↘0

t−1(W qc(A+ tH)−W qc(A)) = DW qc(A) : H

and in the same way

DW (A) : H = lim
t↗0

t−1(W (A + tH)−W (A)) 6 DW qc(A) : H.

Since H is arbitrary we obtain DW (A) = DW qc(A).

Combining lemma 3.2 and regularity theorem 2.9 implies the following regularity theorem for
stress fields in the nonconvex case:

Theorem 3.3. Let Ω ⊂ R
d be an admissible domain and letW ∈ C(Rm×d,R) satisfy (9) for p > 1.

Moreover, let W be differentiable on a neighbourhood of M with M as in lemma 3.2. Assume
that the data f, g,H is given as in regularity theorem (2.9). Furthermore, we suppose that the
convex envelope and the quasi-convex envelope of W coincide, W qc = W c, and that W c satisfies
H1, H2 and convexity inequality H3 with s > 0, r > 1 and τ = rp

p+s
> 1. Let u be a minimiser of

the minimisation problem for I and assume that DW c(∇u) ∈ Lγ(Ω) with γ = max{p′, τ}. Then
DW (∇u) = DW c(∇u) and for every δ > 0

σ = DW (∇u) ∈ N 1
r
,τ (Ω) ⊂W

1
r
−δ,τ (Ω).

Furthermore, σ is unique, which means that DW (∇u1) = DW (∇u2) for any two minimisers ui
of I.

The assumption W qc = W c is automatically satisfied if m = 1 or d = 1. In the next section
we give an example with W qc = W c and min{m, d} > 2. Note that theorem 3.3 holds also if ∇u
is replaced with ε(u) in the definition of I .
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3.2 Nonconvex examples

We show in this section that the nonconvex examples from [5] are covered by the global regularity
theorem 3.3. To this end we only have to verify that the convex envelopes of the energy densities
satisfy the convexity inequality.

3.2.1 Scalar two-well potential, m = 1

The energy density of the scalar two-well potential reads for A ∈ R
d and fixed A1 6= A2 ∈ R

d

W (A) = |A−A1|2 |A− A2|2 .

Since m = 1, the convex and the quasi-convex envelopes W c and W qc coincide and [6]

W c(A) = max
{

|A− F |2 − |G|2 , 0
}2

+ 4
(

|G|2 |A− F |2 − (G · (A− F ))
2
)

,

where G = (A2 − A1)/2 and F = (A1 + A2)/2. It is shown in [6] that W c satisfies monotonicity
inequality (4) with p = 4 and r = s = 2.

Lemma 3.4. There exists a constant c > 0 such that it holds for every A ∈ R
d

|A| 6 c(1 + |DW c(A)| 13 ). (56)

Therefore, W c satisfies convexity inequality (11) with p = 4 and r = s = 2 due to lemma 2.3.

Proof. For A 6= F it holds

|DW c(A)| = sup
H∈Rd\{0}

DW c(A) : H |H |−1 > DW c(A) : (A− F ) |A− F |−1

> 4max
{

|A− F |2 − |G|2 , 0
}

|A− F | .

Assume now that |A− F | > |G|. Young’s inequality yields for every δ > 0

|DW c(A)| > 4 |A− F |3 − δ−14 |G|2 δ |A− F | >
(

4− δ3

3

)

|A− F |3 − 16

3
|G|3 δ− 3

2 .

For δ0 = 2
2
3 it holds c1 := 4− δ30

3 > 0. Moreover, it follows for |A− F | 6 |G| that
(

4− δ30
3

)

|A− F |3 − 16

3
δ
− 3

2

0 |G|3 6 0.

Therefore

|DW c(A)| > c1 |A− F |3 − c1

for every A ∈ R
d. With |A− F | > |A|− |F | and applying once more Young’s inequality we obtain

finally (56).

Corollary 3.5. Let Ω ⊂ R
d be an admissible domain and let u be a minimiser of I or Ic. Then

it follows for the corresponding stress field for every δ > 0: σ ∈ N 1
2
, 4
3 (Ω) ⊂W

1
2
−δ, 4

3 (Ω).
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3.2.2 A vectorial two-well potential, m = d

For ε1 6= ε2 ∈ R
d×d
sym we consider the following energy densities

Wi(ε) =
1

2
C(ε− εi) : (ε− εi) +W 0

i , ε ∈ R
d×d
sym , i = 1, 2, (57)

where C is the elasticity tensor for linear elastic materials and W 0
i ∈ R. Let

W (ε) = min{W1(ε),W2(ε)}, ε ∈ R
d×d
sym . (58)

The nonconvex function W describes in a geometrically linear framework the elastic strain energy
density of a two-phase material with stress-free strains εi, see e.g. [20, 19]. It is assumed that both
phases have identical elasticity tensors. If the strains ε1 and ε2 are compatible, i.e. if there exist
a, b ∈ R

d with

ε1 − ε2 =
1

2
(a⊗ b+ b⊗ a),

then the convex and quasi-convex envelopes of W coincide and are given by [20]

W c(ε) =











W2(ε) if W2(ε) + γ 6 W1(ε),

W3(ε) if |W1(ε)−W2(ε)| 6 γ,

W1(ε) if W1(ε) + γ 6 W2(ε),

(59)

where γ = 1
2C(ε1 − ε2) : (ε1 − ε2) and

W3(ε) =
1

2
(W2(ε) +W1(ε))−

1

4γ
(W2(ε)−W1(ε))

2 − γ

4
. (60)

It is shown by C. Carstensen and P. Plecháč in [7] that W c satisfies the monotonicity inequality
with p = r = 2 and s = 0. We prove directly that W c satisfies also the convexity inequality.

Lemma 3.6. W c satisfies convexity inequality (11) with p = r = 2 and s = 0.

Proof. Let A 6= B ∈ R
d×d
sym and ϕ(t) = W c(B + t(A − B)) for t ∈ R. Then ϕ ∈ C1(R) and ϕ′ is

piecewise continuously differentiable. Moreover, the interval (0, 1) can be split into at most three
open, disjoint sub-intervals Ii = (ti1, t

i
2) such that ϕ(t) = Wi(B + t(A − B)) for t ∈ Ii. Taylor’s

expansion yields

W c(A)−W c(B)−DW c(B) : (A−B) =

∫ 1

0

(1− t)
d2

dt2
ϕ(t) dt

=
2
∑

i=1

∫

Ii

(1− t) dt |A−B|2
C

+

∫

I3

(1− t) dt

(

|A−B|2
C
− 1

2γ
(C(ε1 − ε2) : (A−B))2

)

, (61)

where we use the notation |A|2
C

= CA : A. On the other hand it follows again with Taylor’s
expansion that

DW c(A)−DW c(B) = (|I1|+ |I2|)C(A−B)

+ |I3|
(

C(A−B)− 1

2γ
(C(ε1 − ε2) : (A−B))C(ε1 − ε2)

)

and thus, by Young’s inequality,

|DW c(A)−DW c(B)|2
C−1 6 2(|I1|+ |I2|)2 |A−B|2

C

+ 2 |I3|2
∣

∣(A−B)− 1

2γ
(C(ε1 − ε2) : (A−B)) (ε1 − ε2)

∣

∣

2

C
. (62)
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The second term in (62) reduces to

∣

∣(A−B)− 1

2γ
(C(ε1 − ε2) : (A−B)) (ε1 − ε2)

∣

∣

2

C

= |A−B|2
C
− 1

2γ
(C(A−B) : (ε1 − ε2))

2
. (63)

Note finally that |Ii|2 = (ti2 − ti1)
2 6 2(ti2 − ti1) = 4

∫

Ii
(1 − t) dt for 0 6 ti1 6 ti2 6 1. Combining

(61) and (62) finishes the proof of lemma 3.6.

Corollary 3.7. Let Ω ⊂ R
d be an admissible domain and u a minimiser of I or Ic with energy

density W from (58) and W c from (59), respectively. Assume that the data f, g,H is given
according to theorem 2.9 with p = 2. Then the corresponding stress field is independent of u.
Furthermore, σ ∈ N 1

2
,2(Ω) ⊂W

1
2
−δ,2(Ω) for every δ > 0.

3.2.3 A special case of the Ericksen James energy

The last example deals with a special case of the two dimensional Ericksen James energy function
[8]. Let κ1, κ2 > 0. For A ∈ R

2×2 and C = A>A we consider the function

W (A) = κ1(trC − 2)2 + κ2c
2
12 = κ1(|A|2 − 2)2 +

κ2
4
(a(A,A))2, (64)

where the bilinear form a(·, ·) is defined as

a(A,B) = a11b12 + a12b11 + a21b22 + a22b21, A,B ∈ R
2×2. (65)

Note that 2c12 = a(A,A). The complete Ericksen James energy has the additional term

κ3

(

1

4

(

a211 + a221 − a212 − a222
)2 − ε2

)2

, κ3 > 0

and is applied to model crystalline microstructure, see [8] and the references therein. In this con-
text, u : Ω→ R

2 is the deformation field, W (∇u) the stored energy function of a two dimensional
crystal and C = ∇u>∇u the right Cauchy-Green strain tensor. Let us emphasise that we consider
here only the case κ3 = 0. It is shown by M. Bousselsal and B. Brighi in [4] that the convex and
the quasiconvex envelopes W qc and W c of W from (64) coincide and have the form

W c(A) = Φi(A) for A ∈Mi, 1 6 i 6 4, (66)

where R
2×2 = ∪4i=1Mi with

M1 = {A ∈ R
2×2 : |a(A,A)| 6 2− |A|2},

M2 = {A ∈ R
2×2 : κ2 |a(A,A)| 6 4κ1(|A|2 − 2)},

M3 = {A ∈ R
2×2 : κ2a(A,A) > 4κ1(|A|2 − 2) > 0 or a(A,A) > 2− |A|2 > 0},

M4 = {A ∈ R
2×2 : −κ2a(A,A) > 4κ1(|A|2 − 2) > 0 or − a(A,A) > 2− |A|2 > 0}

and

Φ1(A) = 0, Φ2(A) = W (A),

Φ3(A) = Φ4(A) =
κ1κ2

4κ1 + κ2

(

|A|2 − 2 + |a(A,A)|
)2
.

Lemma 3.8. W c from (66) satisfies convexity inequality (11) with p = 4, r = 2, s = 2.
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Corollary 3.9. Let Ω ⊂ R
d be an admissible domain and u a minimiser of I or Ic with energy

density W (∇u) from (64) and W c from (66), respectively. Assume that the data f, g,H is given

according to theorem 2.9 with p = 4. Then the stress field σ satisfies σ ∈ N 1
2
, 4
3 (Ω) ⊂ W

1
2
−δ, 4

3 (Ω)
for every δ > 0. Moreover, σ is unique.

Proof of lemma 3.8. The proof of lemma 3.8 is quite technical and we split it into two parts.
In the first step we show that Φi satisfies the convexity inequality for every A,B ∈Mi, 1 6 i 6 4.
Putting these estimates together we show in the second step that W c satisfies the convexity
inequality for arbitrary A,B ∈ R

2×2 = ∪4i=1Mi.
Let i = 2 and A,B ∈M2, A 6= B. It follows

Φ2(A)− Φ2(B)−DΦ2(B) : (A−B)

= κ1(|A|2 − |B|2)2 +
κ2
4
(a(A,A) − a(B,B))2

+ 2κ1(|B|2 − 2) |A−B|2 + κ2
2
a(B,B)a(A−B,A−B) (67)

= s1 + . . .+ s4,

where a(·, ·) is defined in (65). Let T (A) = ( a12 a11
a22 a21

) and note that T (A) : B = a(A,B) and
DAa(A,A) = 2T (A). Young’s inequality yields

|DΦ2(A)−DΦ2(B)|2 =
∣

∣4κ1(|A|2 − |B|2)A+ κ2(a(A,A) − a(B,B))T (A)+

+ 4κ1(|B|2 − 2)(A−B) + κ2a(B,B)T (A−B)
∣

∣

2

6 c
(

(|A|2 − |B|2)2 |A|2 + (a(A,A) − a(B,B))2 |A|2
)

+ c
∣

∣4κ1(|B|2 − 2)(A−B) + κ2a(B,B)T (A−B)
∣

∣

2

= c(t1 + t2) + ct3. (68)

Obviously, there exists a constant c > 0 such that

t1 + t2 6 c(1 + |A|2 + |B|2)(s1 + s2). (69)

It remains to show that

t3 6 c(1 + |A|2 + |B|2)(s3 + s4). (70)

If a(B,B)a(A −B,A−B) > 0, then

(1 + |A|2 + |B|2)a(B,B)a(A −B,A−B) > (|B|2 − 2)a(B,B)a(A−B,A−B), (71)

(1 + |A|2 + |B|2)(|B|2 − 2) |A−B|2 > (|B|2 − 2)2 |A−B|2
B∈M2

>
κ22
16κ21

a2(B,B) |A−B|2 . (72)

Evaluating t3 and taking into account estimates (71) and (72) finally implies (70).
If a(B,B)a(A−B,A−B) < 0, then

s3 + s4 =
(

2κ1(|B|2 − 2)− κ2
2
|a(B,B)|

)

|A−B|2

+
κ2
2
|a(B,B)|

(

|A−B|2 − |a(A−B,A−B)|
)

(73)

and both terms are nonnegative. On the other hand

t3 = 4
(

2κ1(|B|2 − 2)− κ2
2
|a(B,B)|

)2 |A−B|2

+ 8κ1κ2(|B|2 − 2) |a(B,B)|
(

|A−B|2 − |a(A−B,A−B)|
)

(74)
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and since B ∈M2, we have

(

2κ1(|B|2 − 2)− κ2
2
|a(B,B)|

)2

6 c
(

2κ1(|B|2 − 2)− κ2
2
|a(B,B)|

)

(1 + |A|2 + |B|2) (75)

for a constant c > 0 which is independent of A,B. Combining (73)-(75) results in (70) and
convexity inequality (11) is proofed for Φ2 on M2 with r = s = 2.

Let i = 3. For A,B ∈ M3, A 6= B, it holds

(4κ1 + κ2)(κ1κ2)
−1 (Φ3(A)− Φ3(B)−DΦ3(B) : (A−B)) (76)

= (|A|2− |B|2+ a(A,A)− a(B,B))2+ 2
(

|B|2− 2 + a(B,B)
)(

|A−B|2+ a(A−B,A−B)
)

and both summands are nonnegative. On the other hand, by Young’s inequality, there exists a
constant c > 0 such that

c |DΦ3(A) −DΦ3(B)|2 6
(

|A|2 − |B|2 + a(A,A)− a(B,B)
)2 |A+ T (A)|2

+
(

|B|2 − 2 + a(B,B)
)2(

2 |A−B|2 + a(A−B,A−B)
)

. (77)

B ∈ M3 implies 0 6 |B|2 − 2 + a(B,B) 6 2(1 + |A|2 + |B|2) and therefore, combining (76) and
(77), it follows that Φ3 satisfies the convexity inequality onM3. The case i = 4 can be treated in
the same way.

In order show that the convexity inequality is valid for every A,B ∈ R
2×2 note first that there

exists a J0 ∈ N such that it holds for every A,B ∈ R
2×2: there exist real numbers 0 = t0 < t1 . . . <

tJ = 1, J 6 J0, and numbers i0, . . . , iJ−1 ∈ {1, . . . , 4} such that F (t) = B + t(A − B) ∈ Mij for
t ∈ [tij , tij+1

]. We obtain

W c(A)−W c(B)−DW c(B) : (A−B)

=

J
∑

j=1

W c(F (tj))−W c(F (tj−1))−DW c(F (tj−1)) : (F (tj)− F (tj−1))

+

J
∑

j=1

(

DW c(F (tj−1))−DW c(F (0))
)

: (F (tj)− F (tj−1))

= s1 + s2. (78)

Since W c is convex, the derivative DW c is a monotone function and thus

s2 =

J
∑

j=2

tj − tj−1
tj−1

(

DW c(F (tj−1)−DW c(F (0)
)

: (F (tj−1)− F (0)) > 0.

Moreover, F (tj−1), F (tj) ∈ Mij−1
and therefore the convexity inequality may be applied to every

summand of s1 separately due to the first part of this proof:

s1 > c

J
∑

j=1

(1 + |F (tj)|2 + |F (tj−1)|2)−1 |DW c(F (tj))−DW c(F (tj−1))|2 .

Note that (1 + |F (tj)|2 + |F (tj−1)|2)−1 > 1
4 (1 + |A|

2 + |B|2)−1 and
∑J

j=1 |Bj |2 > J−1
∣

∣

∣

∑J
j=1 Bj

∣

∣

∣

2

for Bj ∈ R
2×2 and thus, since J 6 J0,

s1 >
c

4J0
(1 + |A|2 + |B|2)−1 |DW c(A) −DW c(B)|2 .

This finishes the proof.
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A Appendix: Proof of lemma 2.8

The two dimensional case

Let Ω ⊂ R
2 be a Lipschitz-polygon and assume that 0 ∈ ΓD ∩ ΓN . Then there exists R > 0 such

that BR(0)∩∂Ω does not contain any further corner point of ∂Ω. Assume further that ΓN ∩BR(0)
is a subset of the positive x1-axis and that there exists Φ > 0 such that Ω∩BR(0) = {x ∈ BR(0) :
0 < ϕ < Φ} (polar coordinates, x = |x| (cosϕ, sinϕ)>).

1. Case: Let ](ΓD ,ΓN) < π, i.e. Φ < π. Choose ΩN = {x ∈ BR(0) : π < ϕ < 2π},
ΩD = {x ∈ BR(0) : Φ < x < π} and K = {x ∈ R

2 : Φ < x < π}. Then conditions (28)-(29) of
definition 2.7 are satisfied and thus Ω is an admissible domain.

2. Case: Assume that Ω is admissible. We have to show that Φ < π. Let K,ΩD and ΩN be the
cone and domains of (28)-(29) in definition 2.7 corresponding to the corner 0 ∈ ΓD∩ΓN . It follows
from ΓN ∩ BR(0) ⊂ (∂ΩN ∩ BR(0)) ⊂ positive x1-axis together with (28) that K is completely
contained in the upper half plane, i.e. K = {x ∈ R

2 : Φ1 < ϕ < Φ2} and 0 6 Φ1 < Φ2 6 π.
Furthermore, (29) together with ΓD ∩BR(0) ⊂ {x ∈ R

2 : ϕ = Φ} implies Φ 6 Φ1 and thus Φ < π.

The three dimensional case

Let Ω ⊂ R
3 be a Lipschitz-polyhedron according to part 2 of lemma 2.8 and let x0 ∈ ΓD ∩ ΓN .

There exists R > 0 and a polyhedral cone K̃ with vertex in x0 such that Ω coincides with K̃ on
BR(x0):

Ω ∩ BR(x0) = K̃ ∩ BR(x0).

We assume that K̃ has exactly three faces Γi, 1 6 i 6 3, which intersect at x0 and which satisfy
(Γ1 ∪ Γ2) ∩ BR(x0) ⊂ ΓN and Γ3 ∩ BR(x0) ⊂ ΓD. Furthermore we assume that ](Γ1,Γ2) 6= π.
The remaining cases can be treated similarly. Let ni be the exterior unit normal vector on Γi and
denote by Hi = {x ∈ R

3 : (x − x0)ni < 0} the “interior” half space with respect to Γi and ni.
Due to the assumption ](ΓD,ΓN ) < π it follows that (Ω ∪ ΓN) ∩ BR(x0) ⊂ H3. Therefore we
have exactly the following two cases for K̃:

K̃ = H1 ∩H2 ∩H3 or K̃ = (H1 ∪H2) ∩H3.

In order to show that Ω is an admissible domain we have to construct domains ΩD, ΩN and a
cone K according to (28)-(29) of definition 2.7. We define

ΩD = {x ∈ BR(x0) : (x− x0)n3 > 0}, ΩN = BR(x0)\(ΩD ∪ Ω).

Since ](ΓD ,ΓN) < π it follows that ΩD ∩ Ω = ∅ and ΩN 6= ∅. Let e1 be tangential to Γ1 ∩ Γ3,
e2 be tangential to Γ2 ∩ Γ3 and e3 tangential to Γ1 ∩ Γ2. The the orientation of the vectors ei is
chosen in such a way that

e1n2 < 0, e2n1 < 0, e3n3 > 0. (79)

This choice is always possible since ](Γ1,Γ2) 6= π and ](ΓN ,ΓD) < π. Note that {e1, e2, e3} is a
basis of R

3. We define the cone K by

K = {v ∈ R
3 : v =

3
∑

i=1

λiei, λi > 0}.

Then ΩD, ΩN and K satisfy (28)-(29) of definition 2.7, which can be seen as follows:
Choose x ∈ ΩD and v =

∑

i λiei ∈ K such that x + v ∈ BR(x0). Since e1n3 = 0, e2n3 = 0 we
get from the definition of ΩD and (79) that

(x + v − x0)n3 = (x− x0)n3 + λ3e3n3 > 0

and therefore x + v ∈ ΩD and (29) is proved. For the proof of (28) choose x ∈ Ω ∩ BR(x0) =
K̃ ∩ BR(x0) and v =

∑

i λiei ∈ K such that x + v ∈ BR(x0). If λ3 > −(x − x0)/e3n3 then
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(x+ v − x0)n3 > 0 which yields x+ v ∈ ΩD and (28) holds for this case. If λ3 < −(x− x0)/e3n3
then x+ v ∈ H3 and we have to show that x+ v ∈ K̃ in order to verify (28).

1. Case: K̃ = H1 ∩H2 ∩H3. It follows for i, j ∈ {1, 2} with i 6= j from the definitions of K,
Hi and from (79) that

(x+ v − x0)ni = (x− x0)ni + λjejni < 0

and therefore x+ v ∈ H1 ∩H2 ∩H3.
2. Case: K̃ = (H1 ∪H2) ∩H3. It follows for i, j ∈ {1, 2}, i 6= j as before that

(x+ v − x0)ni = (x− x0)ni + λjejni.

Since x ∈ H1 ∪H2 we have (x−x0)n1 < 0 or (x−x0)n2 < 0. Together with λjejni 6 0 we obtain
finally (x + v − x0)n1 < 0 or (x+ v − x0)n2 < 0 which shows that x+ v ∈ H1 ∪H2.
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problem between the Lamé system and the plate equation, I: Regularity of the solution. Ann.
della Scuola Normale Sup. di Pisa 19 (1992), 327–361.

[26] Nikol’skii, S. M. Approximation of functions of several variables and imbedding theorems.
Springer-Verlag, 1975.
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