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Abstract

We study the global spatial regularity of solutions of elasto-plastic models with
linear hardening. In order to point out the main idea, we consider a model prob-
lem on a cube, where we describe Dirichlet and Neumann boundary conditions on
the top and the bottom, respectively, and periodic boundary conditions on the re-
maining faces. Under natural smoothness assumptions on the data we obtain u ∈
L∞((0, T ); H

3
2−δ(Ω)) for the displacements and z ∈ L∞((0, T ); H

1
2−δ(Ω)) for the in-

ternal variables. The proof is based on a difference quotient technique and a reflection
argument.

1 Introduction

In this note we study the global spatial regularity of solutions of elasto-plastic models
with linear hardening. The results are in particular applicable to elasto-plasticity with
linear kinematic hardening. In order to keep the presentation as clear as possible and in
order to point out the main idea, we consider a model problem on a cube Ω ⊂ Rd, where
we describe Dirichlet and Neumann boundary conditions on the top and the bottom,
respectively, and periodic boundary conditions on the remaining faces. In a forthcoming
paper, we will extend the investigations to bounded domains with smooth boundaries and
to more general rate independent models.

Let u(t, x) ∈ Rd be the displacement of the point x ∈ Ω at time t, σ(t, x) ∈ Rd×d
sym the

Cauchy stress tensor and z(t, x) ∈ RN the vector of the internal variables. Assuming
small strains, the behavior of the body is described by the quasistatic balance of forces
(1.1), Hooke’s law (1.2), which relates the stress with the elastic part of the strain, and
the principle of maximal plastic work, which determines the evolution law for the internal
variable z (1.3):

divx σ + f = 0 in (0, T )× Ω, (1.1)

σ = Ã(ε(u)− B̃z) in (0, T )× Ω, (1.2)

∂tz ∈ ∂χK(B̃>σ − Lz) in (0, T )× Ω. (1.3)

The convex set K ⊂ RN is the set of admissible generalized stresses. These equations are
completed with the initial condition

z(0, x) = z0(x), x ∈ Ω (1.4)
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and with Dirichlet conditions on ΓD, Neumann conditions on ΓN and periodic boundary
conditions on the remaining faces Γper:

u
∣∣
ΓD

= hD on (0, T )× ΓD, (1.5)

σ~n = hN on (0, T )× ΓN . (1.6)

The functions f and hN are given volume and surface force densities and hD prescribes
the displacements on the Dirichlet boundary. The tensor ε(u) = 1

2(∇u + (∇u)>) ∈ Rd×d
sym

is the linearized strain tensor, Ã ∈ Lin(Rd×d
sym ,Rd×d

sym) the fourth order elasticity tensor
and B̃ ∈ Lin(RN ,Rd×d

sym) maps the vector z of internal variables on the plastic strain
εp = B̃z. Moreover, L ∈ Lin(RN ,RN ) is a positive definite symmetric tensor describing
the hardening properties.

The goal of the paper is to show that under natural smoothness assumptions on the
volume forces and the boundary data, we obtain higher spatial regularity for the displace-
ments and the internal variables. In particular we prove the following theorem:

Theorem 1.1. Let z0 ∈ H1
Γper

(Ω), f ∈ W1,1(S; L2(Ω)), hD ∈ W1,1(S; H
3
2
per(ΓD)) and

hN ∈ W1,1(S; H
1
2
per(ΓN )) and let (u, σ, z) be a solution to (1.1)–(1.6). Then for every

δ > 0 we have

u ∈ L∞(S; H
3
2
−δ(Ω)), σ ∈ L∞(S; H

1
2
−δ(Ω)), z ∈ L∞(S; H

1
2
−δ(Ω)).

Let us give a short overview on regularity results in the literature. To the author’s
knowledge, the only global spatial regularity result for elasto-plastic models with linear
hardening was derived recently by Alber and Nesenenko in [AN08]. Under similar as-
sumptions on the data as in Theorem 1.1 they obtained for C2-smooth domains and with
∂Ω = ΓD the regularity

u ∈ L∞(S; H
4
3
−δ(Ω)), σ ∈ L∞(S; H

1
3
−δ(Ω)), z ∈ L∞(S; H

1
3
−δ(Ω)). (1.7)

In a first step the authors of [AN08] proved a tangential result and showed that this implies
that u ∈ L∞(S; H

5
4
−δ(Ω)). By an iteration procedure they finally arrive at (1.7).

Local regularity results for elasto-plasticity with linear hardening and for variants of
this model, like the Prandtl-Reuss model, were derived by several authors [BF96, Dem07,
FL07, Shi99, Ser92]. Here, one typically finds

σ ∈ L∞(S; H1
loc(Ω)).

Furthermore, global results are available for time discretized versions of (1.1)–(1.6) and
variants of it, see e.g. [Rep96, KN08] and the references therein. Here, it is possible to
prove for smooth domains

σ(tk) ∈ H1(Ω)
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for every time step tk. But up to now it is unknown how to derive a uniform bound of the
type suptime step τ>0,kτ≤T ‖σ(kτ)‖H1(Ω) ≤ c, which would allow to carry over the result of
the discretized model to the continuous one.

Let us finally remark that for the stationary Hencky model we have the global result
σ ∈ H

1
2
−δ(Ω) on Lipschitz domains, which satisfy additional conditions near those points,

where the type of the boundary conditions changes, see [Kne06].
The paper is organized as follows. In Section 2 we introduce the notation and state the

main regularity result, Theorem 2.2. We prove Theorems 1.1 and 2.2 in two steps. In the
first step (Section 3) we study a pure periodic problem and derive two global regularity
results depending on different smoothness assumptions on the data. The proof is carried
out with a difference quotient technique and relies essentially on a priori estimates for
solutions of the elasto-plastic model. In this step we apply techniques from [AN08, Nes06].

In the second step (Section 4) we prove first that the solution pair (∇u, z) of the original
model is differentiable in directions which are tangential to the Dirichlet and Neumann
boundary (Theorem 4.1). This result refines slightly a result from [AN08]. The essential
new idea in this paper is to use a reflection argument in order to obtain also a result
concerning the differentiability of (∇u, z) perpendicular to ΓD and ΓN . We extend the
problem described above by reflection to the periodic case and derive in this way Theorem
1.1 and Theorem 2.2 as special cases of the results for the pure periodic case. The right
hand side of the extended problem contains extensions of the data f and z0 and addi-
tional terms, which include partial derivatives of ∇u and z that are taken parallel to ΓD

and ΓN . Theorem 4.1 on tangential regularity of (u, z) guarantees that the data of the
extended problem is smooth enough such that the regularity Theorem 3.4 for purely peri-
odic structures may be applied. We carry out these considerations for vanishing Dirichlet
and Neumann data, first. In Section 4.3 we extend the results to the general case with
non-zero boundary data.

Let us remark that the reflection technique applied to the elastic equation (1.1)–(1.2),
only, and neglecting the coupling with the evolution equation (e.g. by assuming that
B̃ = 0) would lead to u(t) ∈ H2(Ω). We discuss this in more detail in Section 4.2. It
remains an open question whether the result of Theorem 1.1 is optimal or whether one
should expect u ∈ L∞(S; H2(Ω)).

2 Setting up of the model and main result

For d > 1 and ` > 0 let Ω = (−`, `)d−1 × (0, `) ⊂ Rd be a half cube with side length 2`.
Throughout the paper we will use the notation x = (x′, xd) for x ∈ Rd and define the
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boundary sets

Γ0 = {x ∈ Rd ; x′ ∈ (−`, `)d−1, xd = 0 },

Γ1 = {x ∈ Rd ; x′ ∈ (−`, `)d−1, xd = ` },

Γper = ∂Ω\(Γ0 ∪ Γ1).

We assume that periodic boundary conditions are prescribed on Γper, while for the other
parts of the boundary we assume that ΓD = Γ1 and ΓN = Γ0.

We denote by

H1
Γper

(Ω,Rn) = {u ∈ H1(Ω,Rn) ; ∃ũ ∈ H1
loc(Rd−1 × (0, `)) with u = ũ

∣∣
Ω

and ũ(y′, xd) = ũ(x′, xd) ∀y′ ∈ x′+2`Zd−1}

the space of H1-functions which are periodic with respect to Γper. Assuming vanishing
Dirichlet data on ΓD, the set of admissible displacements is given by

V = {u ∈ H1
Γper

(Ω,Rd) ; u|ΓD
=0 },

while Z = L2(Ω,RN ) denotes the space for the internal variables.
We will discuss the case of non-vanishing boundary data in section 4.3. The reduction

of the model with non-zero boundary data to a model with vanishing data leads to more
general force terms than those given in (1.1)–(1.6). We therefore study here an energy
which already includes these additional force terms.

Given a volume force density ` ∈ W1,1([0, T ];V ′) and F ∈ W1,1(S; L2(Ω)), we consider
the energy functional

E(t, u, z) =
∫

Ω
W (∇u, z) dx− 〈`(t), u〉V +

∫
Ω
F (t) · z dx

for displacement fields u ∈ V , internal variables z ∈ Z and time t ∈ S = [0, T ].
The stored energy density W : Rd×d × RN → R is assumed to be quadratic with

W (D, z) = 1
2A(D −Bz) : (D −Bz) + 1

2Lz · z (2.1)

for D ∈ Rd×d and z ∈ RN . The tensors A ∈ Lin(Rd×d,Rd×d), B ∈ Lin(RN ,Rd×d) and
L ∈ Lin(RN ,RN ) depend on the material properties. The term Bz can be interpreted as
the plastic strain tensor, while the term 1

2Lz ·z leads to an elasto-plastic model with linear
hardening. The tensors A and L shall satisfy the following assumptions

(A1) A = S∗ÃS, where S : Rd×d → Rd×d
sym , S(D) = 1

2(D + D>) maps the displace-
ment gradient on the linearized strain tensor, S∗ is the adjoint operator and Ã ∈
Lin(Rd×d

sym ,Rd×d
sym) is symmetric and positive definite.

(A2) L ∈ Lin(RN ,RN ) is symmetric and positive definite.
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The tensor Ã is the usual elasticity tensor.
Let K ⊂ RN be nonempty, closed, convex with 0 ∈ K. We denote by K ⊂ Z, K =

{ z ∈ Z ; z(x) ∈ K a.e. } the set of the admissible generalized stresses. The characteristic
functional with respect to K is given by χK(z) = 0 if z ∈ K and χK(z) = ∞ otherwise.
Finally, ∂χK is the subdifferential of χK with respect to Z in the sense of convex analysis.

The elasto-plastic problem consists in determining a displacement field u : S → V and
internal variables z : S → Z which satisfy

z(0) = z0, (2.2)

DuE(t, u(t), z(t)) = 0 for all t ∈ S, (2.3)

∂tz(t) ∈ ∂χK(−DzE(t, u(t), z(t))) for a.e. t ∈ S. (2.4)

Here, DuE and DzE denote the variational derivatives of E with respect to V and Z,
respectively. Relations (2.2)–(2.4) may equivalently be written as

z(0) = z0, (2.5)∫
Ω
A(∇u(t)−Bz(t)) : ∇v dx = 〈`(t), v〉V for all v ∈ V, t ∈ S, (2.6)

∂tz ∈ ∂χK(−Lz +B>A(∇u−Bz)− F (t)) for a.e. t ∈ S. (2.7)

The stress tensor can be calculated via σ = A(∇u − Bz). Relations (2.5)–(2.7) are a
slightly more general version of the model (1.1)–(1.6), but with vanishing Dirichlet data.
Altogether the relations (2.5)–(2.7) describe small-strain elasto-plasticity with linear hard-
ening. This model comprises kinematic hardening, while pure isotropic hardening is ex-
cluded since in that case, the tensor L is positive semidefinite, only.

It is shown in [Mie05], see also [Ste08], that an equivalent formulation for (2.6)–(2.7) is
to find a displacement field u : S → V and internal variables z : S → Z with z(0) = z0,
which for every t ∈ [0, T ] satisfy the following global stability condition (S) and the energy
balance (E)

(S) E(t, u(t), z(t)) ≤ E(t, v, ζ) +R(ζ − z(t)) for all v ∈ V, ζ ∈ Z,
(E) E(t, u(t), z(t)) +

∫ t
0 R(ż(τ)) dτ = E(0, z0) +

∫ t
0 ∂tE(τ, u(τ), z(τ)) dτ.

Here, the dissipation pseudo potential R is defined through R(η) = χ∗K(η), where χ∗K is
the functional related with χK by convex conjugation in Z.

For the applied forces ` and F and for the initial value z0 of the internal variables we
assume

(A3) ` ∈ W1,1(S;V ′), F ∈ W1,1(S;Z), z0 ∈ Z and there exists u0 ∈ V such that
DuE(0, u0, z0) = 0 and −DzE(0, u0, z0) ∈ K.

Since, by the assumptions on the coefficients A, B and L and the choice of V the
functional E : V × Z → R is strictly convex, coercive and strongly continuous and since
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the dissipation potential R : Z → R is convex, lower semi continuous and homogeneous of
degree one, the following existence theorem is a standard result [DL72, Joh78, HHLN88,
HR99, AC04, Bré73]

Theorem 2.1. If (A1), (A2) and (A3) are satisfied, then there exists a unique solution
pair (u, z) ∈ W1,1(S;V )×W1,1(S;Z), which solves (2.5)–(2.7) and (S) & (E).

In order to obtain higher regularity of the solution, more regularity is required for the
data. We assume that the force term ` ∈ W1,1(S;V ′) is of the special structure

〈`(t), v〉V ≡
∫

Ω
f(t) · v +H(t) : ∇v dx (2.8)

for v ∈ V . A sufficient condition for (A3) to hold is

(A3’) f ∈ W1,1(S; L2(Ω)), H ∈ W1,1(S; L2(Ω)), F ∈ W1,1(S;Z), z0 ∈ Z and there exists
u0 ∈ V such that DuE(0, u0, z0) = 0 and −DzE(0, u0, z0) ∈ K.

The next theorem is the main result of this paper.

Theorem 2.2. Assume that (A1), (A2) and (A3’) are satisfied. If in addition z0 ∈
H1

Γper
(Ω,RN ), f ∈ W1,1(S; L2(Ω)), H ∈ W1,1(S; H1

Γper
(Ω)) and F ∈ W1,1(S; H1

Γper
(Ω)),

then the solution (u, z) to (2.5)–(2.7) with `(t) as in (2.8) satisfies for every δ > 0

u ∈ L∞(B
3
2
2,∞(Ω)) ⊂ L∞(S; H

3
2
−δ(Ω)), (2.9)

z ∈ L∞(B
1
2
2,∞(Ω)) ⊂ L∞(S; H

1
2
−δ(Ω)). (2.10)

Moreover, ∂iu ∈ L∞(S; H1
Γper

(Ω)), ∂iz ∈ L∞(S; L2(Ω)) for 1 ≤ i ≤ d− 1.

Here, Bs
p,q(Ω) are Besov spaces and we refer to [Tri83] for a precise definition. Note that

for s > 0, s /∈ N and for every δ > 0 the following continuous embeddings are valid

Hs(Ω) ⊂ Bs
2,∞(Ω) ⊂ Hs−δ(Ω).

Furthermore, we recall that v ∈ Bs
2,∞(Ω) for s ∈ (0, 1) if and only if v ∈ L2(Ω) and

supeΩbΩ, h∈R\{0}, i∈{1,...,d}
|h|−s ‖4hei

v‖
L2(eΩ)

<∞.

Here, ei is the i-th coordinate vector and 4hei
v(x) = v(x + hei) − v(x). This charac-

terization of Bs
2,∞ gives the link between estimates of difference quotients and regularity

properties.
As already discussed in the introduction, the global results (2.9)–(2.10) seem to be new,

whereas the tangential result is known for Dirichlet boundaries (see [Nes06]). We give it
here for completeness and since it is the basis for the global result.

For proving Theorem 2.2 we derive in a first step a regularity result for a purely periodic
situation by estimating difference quotients of ∇u and z. These considerations will be
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carried out in Section 3. In the second step, Section 4, we extend the problem described
above by reflection to the periodic case and derive in this way Theorem 2.2. The right
hand side of the extended problem contains extensions of f and z0 and additional terms,
which include partial derivatives of ∇u and z that are taken parallel to ΓD and ΓN . The
regularity of tangential derivatives guarantees that the data of the extended problem is
smooth enough such that the regularity theorem for purely periodic structures may be
applied.

3 A pure periodic model problem

In the whole section we assume that conditions (A1) and (A2) are satisfied.

3.1 Definition of the pure periodic model

Let ΩP = (−`, `)d. We denote by H1
per(ΩP ) the space of H1-functions which are periodic

with respect to ΩP . The space of admissible displacements is given by

VP = {u ∈ H1
per(ΩP ) ;

∫
ΩP

u dx = 0 }.

We consider the same energy as in the previous section, namely

EP (t, v, ζ) =
∫

ΩP

W (∇v, ζ) dx−
∫

ΩP

f(t) · v +H : ∇v dx+
∫

ΩP

F (t) · ζ dx

for v ∈ VP , ζ ∈ Z = L2(ΩP ; RN ) and with W from (2.1). The periodic problem under
consideration is to find a displacement field u : S → VP and internal variables z : S → Z
with z(0) = z0 and satisfying for a.e. t ∈ S and all v ∈ H1

per(ΩP ) the relations∫
ΩP

A(∇u−Bz) : ∇v dx =
∫

ΩP

f(t) · v +H(t) : ∇v dx, (3.1)

∂tz(t) ∈ ∂χK(−DzEP (t, u(t), z(t))). (3.2)

This problem is again equivalent to (S) & (E) formulated with EP and VP instead of E
and V . We assume that

(A4) z0 ∈ Z, f ∈ W1,1(S; L2(ΩP )) with
∫
ΩP

f dx = 0; H ∈ W1,1(S; L2(ΩP ,Rd×d));
F ∈ W1,1(S; L2(ΩP )) and there exists u0 ∈ VP such that DuEP (0, u0, z0) = 0 and
−DzE(0, u0, z0) ∈ K.

As before, we have the following existence result

Theorem 3.1. If (A1), (A2) and (A4) are satisfied, then there exists a unique solution
pair (u, z) for problem (3.1)–(3.2) with u ∈ W1,1(S;VP ) and z ∈ W1,1(S;Z).
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3.2 The reduced problem and a-priori estimates

We introduce the linear, elliptic operator

A : VP → V ′P with 〈A(u), v〉VP
=
∫

ΩP

A∇u : ∇v dx

for every u, v ∈ VP . Note that A is self adjoint and that there exists a constant cA > 0
such that for all u ∈ VP we have 〈A(u), u〉VP

≥ cA ‖u‖2
H1(ΩP ). Thus A is an isomorphism

and we can define the linear and bounded operator

L : Z → Z, L(z) = Lz +B>A
(
∇A−1 divABz +Bz

)
,

where the operator div : L2(ΩP ,Rd×d) → V ′P is given by

〈div η, v〉 = −
∫

ΩP

η : ∇v dx,

for η ∈ L2(ΩP ,Rd×d) and v ∈ VP .
Let Ê(u, z) =

∫
ΩP

W (∇u, z) dx. The operator L is the Schur complement operator
associated with

D(u,z)Ê(u, z) =

(
A divAB(·)

−B>A∇(·) L+B>AB

)(
u

z

)
.

The properties of Ê imply therefore that L is self adjoint and coercive with respect to Z,
i.e. we have

〈Lz1, z2〉Z = 〈Lz2, z1〉Z , 〈Lz, z〉Z ≥ cL ‖z‖2
Z (3.3)

for every z, z1, z2 ∈ Z and some constant cL > 0. Finally we define

F̃ (t) = F (t) +B>A∇A−1(divH(t)− f(t)). (3.4)

Note that f(t), H(t) and F (t) in L2(ΩP ) imply that F̃ (t) ∈ L2(ΩP ).
With these definitions, problem (3.1)–(3.2) is equivalent to

A(u(t)) = f(t)− divH − divABz(t), (3.5)

∂tz(t) ∈ ∂χK(−L(z(t))− F̃ (t)), z(0) = z0. (3.6)

We will focus the discussion on the reduced equation (3.6). Let us remark that one
possibility to prove the existence Theorem 3.1 is to apply Prop. 3.4 of [Bré73] to relation
(3.6).

The following a-priori estimates are the basis for proving our regularity results.

Lemma 3.2 (A-priori estimates). Assume that for i ∈ {1, 2} the functions zi
0 ∈ Z,

F̃i ∈ L∞(S;Z) and zi ∈ W1,1(S;Z) satisfy for a.e. t ∈ S the relation

∂tzi(t) ∈ ∂χK(−Lzi(t)− F̃i(t)), zi(0) = zi
0. (3.7)
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Then there exists a constant c > 0, which is independent of the data, such that for every
t ∈ S we have

c ‖z1(t)− z2(t)‖2
Z ≤

∥∥z1
0 − z2

0

∥∥2

Z + ‖z1 − z2‖W1,1(S;Z)

∥∥F̃1 − F̃2

∥∥
L∞((0,t);Z)

. (3.8)

If furthermore F̃i ∈ W1,1(S;Z), then there exists c > 0 such that

‖z1 − z2‖L∞(S;Z) ≤ c
( ∥∥z1

0 − z2
0

∥∥
Z +

∥∥F̃1 − F̃2

∥∥
W1,1(S;Z)

)
. (3.9)

Proof. Let zi
0, F̃i and zi be given as in Lemma 3.2. Then relation (3.7) implies that for

a.e. t ∈ S we have

〈∂t(z1(t)− z2(t)),L(z1(t)− z2(t))〉Z ≤ −〈∂t(z1(t)− z2(t)), F̃1(t)− F̃2(t)〉Z .

Integration with respect to t and using the properties of L from (3.3), we see that there
is a constant c > 0 such that

c ‖z1(t)− z2(t)‖2
Z ≤

∥∥z1
0 − z2

0

∥∥2

Z −
∫ t

0
〈∂t(z1(s)− z2(s)), F̃1(s)− F̃2(s)〉Z ds.

Partial integration in the last term, Young’s inequality and the properties of traces of
W1,1(S;Z)-functions lead to estimate (3.9), while Hölder’s inequality applied to the last
term results in inequality (3.8).

3.3 Regularity in the pure periodic case

Before we state the regularity result in the periodic case, we introduce some further nota-
tion. For a function v : ΩP → Rn we denote by ṽ : Rd → Rn the periodic extension of v
to Rd, i.e. ṽ(x+ y) = v(x) for all x ∈ ΩP and y ∈ (2`Z)d. Moreover, for h ∈ Rd we define
the shift by h as vh : ΩP → Rn, vh(x) = ṽ(x+ h) and set 4hv(x) = vh(x)− v(x). Finally

Fi = { v ∈ L2(ΩP ) ; ∂iv ∈ L2(ΩP ) and v is periodic w.r. to the i-th coordinate }

with ‖v‖Fi
= ‖v‖L2(ΩP ) + ‖∂iv‖L2(ΩP ). For every h ∈ R the mapping Fi → Fi defined

via v 7→ vhei
, where ei is a unit vector of the i-th coordinate direction, is an isometric

isomorphism. Moreover, H1
per(ΩP ) = ∩1≤i≤dFi.

Theorem 3.3. Let z0 ∈ Fi and F̃ ∈ L∞(S;Fi) for some i ∈ {1, . . . , d} and assume that
z ∈ W1,1(S;Z) satisfies (3.6). Then there exists a constant c > 0 such that

sup
t∈S, h∈R\{0}

|h|−
1
2 ‖z(t, ·+ hei)− z(t, ·)‖L2(ΩP ) ≤ c. (3.10)

If furthermore F̃ ∈ W1,1(S;Fi), then

z ∈ L∞(S;Fi). (3.11)
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This theorem shows that the time regularity of F̃ has a strong influence on the spatial
regularity of z.

Proof. We prove Theorem 3.3 by estimating difference quotients of z.
Let z ∈ W1,1(S;Z) satisfy (3.6) with data z0 ∈ Fi and F̃ ∈ L∞(S;Fi). Let furthermore

ei denote the corresponding unit vector. Due to the periodicity assumptions on the data
it holds that for every h ∈ R the shifted functions z0,hei

and F̃hei
have the same regularity

as z0 and F̃ . Moreover, z satisfies (3.6) with respect to z0 and F̃ if and only if zhei
satisfies

(3.6) with respect to the data z0,hei
and F̃hei

. Inequality (3.8) with z1 = z and z2 = zhei

implies that there exists a constant c > 0, which is independent of h and t, such that

c ‖4hei
z(t)‖2

Z ≤ ‖4hei
z0‖2

Z + ‖4hei
z‖W1,1(S;Z)

∥∥4hei
F̃
∥∥

L∞(S;L2(ΩP ))
.

From the regularity assumptions on the data we conclude that the right hand side can
further be estimated as (see e.g. [GT77])

r.h.s. ≤ |h|2 ‖z0‖2
Fi

+ 2 |h| ‖z‖W1,1(S;Z)

∥∥F̃∥∥
L∞(S;Fi)

.

This proves estimate (3.10).
Assume now that F̃ has the additional temporal regularity F̃ ∈ W1,1(S;Fi). Now,

estimate (3.9) implies that

‖4hei
z‖L∞(S;Z) ≤ c |h|

(
‖z0‖Fi

+
∥∥F̃∥∥

W1,1(S;Fi)

)
.

From Lemma 7.24 in [GT77] it follows that z ∈ L∞(S;Fi).

As a conclusion we obtain the following result for the full periodic problem.

Theorem 3.4 (Regularity in the periodic case).

(a) Let the pair (u, z) ∈ L∞(S;VP ) × W1,1(S;Z) satisfy (3.1)–(3.2) with z0 ∈ Fi, f ∈
W1,1(S; L2(ΩP )),

∫
ΩP

f(t) dx = 0, H ∈ W1,1(S;Fi) and F ∈ W1,1(S;Fi) for some
i ∈ {1, . . . , d}. Then

∂iu ∈ L∞(S; H1
per(ΩP )), z ∈ L∞(S;Fi).

(b) Assume that the pair (u, z) ∈ L∞(S;VP )×W1,1(S;Z) satisfies (3.1)–(3.2) with z0 ∈
B

1
2
2,∞(ΩP ), f ∈ L∞(S; L2(ΩP )) with

∫
ΩP

f(t) dx = 0, H ∈ L∞(S;Fi) and F ∈
L∞(S;Fi) for some i ∈ {1, . . . , d}. Then there exists a constant c > 0 such that

sup
t∈S, h∈R\{0}

|h|−
1
2 ‖4hei

∇u(t)‖L2(ΩP ) ≤ c,

sup
t∈S, h∈R\{0}

|h|−
1
2 ‖4hei

z(t)‖L2(ΩP ) ≤ c.

Here, ei is the unit vector of the i-th coordinate direction.
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If the assumptions of part (b) are satisfied for every i ∈ {1, . . . , d}, then

u ∈ L∞(S; B
3
2
2,∞(ΩP )), z ∈ L∞(S; B

1
2
2,∞(ΩP )).

Part (a) of the previous Theorem is closely related to a result in [Nes06] for periodic
structures.

Proof. Assume that the regularity assumptions of part (a) are valid. Elliptic regularity
theory implies that the function F̃ defined in (3.4) belongs to W1,1(S;Fi). Thus it follows
from Theorem 3.3 that z ∈ L∞(S;Fi). The result for u follows again by elliptic regularity
theory on the basis of relation (3.5).

If the data has the regularity described in Theorem 3.4(b), then F̃ ∈ L∞(S;Fi). Theo-
rem 3.3 and elliptic regularity results lead to the results for z and u.

4 Proof of the regularity properties of the original problem

In this section we prove regularity theorem 2.2. The tangential regularity of u and z

described in Theorem 2.2 follows in the same way as part (a) of Theorem 3.3 and we
reformulate the result in Section 4.1. The essential new idea in this paper is the proof of the
higher differentiability in directions orthogonal to the Dirichlet and Neumann boundary.
This is carried out in section 4.2, where we extend the elasto-plastic model by reflection
with respect to the Dirichlet and Neumann boundary to a problem which is periodic in
the ed direction. For deriving the regularity properties with respect to the ed direction,
we apply part (b) of Theorem 3.4. The tangential regularity result from Theorem 4.1
guarantees that the extended data satisfy the assumptions of part (b) of Theorem 3.4.

4.1 Regularity tangential to Γ0 and Γ1

Theorem 4.1 (Tangential regularity). Assume that (A1), (A2) and (A3’) are satis-
fied and that z0 ∈ H1

Γper
(Ω), f ∈ W1,1(S; L2(Ω)), H ∈ W1,1(S; H1

Γper
(Ω)) and F ∈

W1,1(S; H1
Γper

(Ω)). Then the solution (u, z) of the partially periodic problem (2.5)–(2.7)
satisfies for 1 ≤ i ≤ d

∂iu ∈ L∞(S; H1
Γper

(Ω)), z ∈ L∞(S;∩1≤j≤d−1Fj(Ω)).

Proof. Like in Section 3.2 one can derive a reduced formulation for the partially periodic
problem and prove Theorem 4.1 in the same way as Theorem 3.4(a).

4.2 Proof of higher regularity in normal direction

Let (u, z) ∈ W1,1(S;V ×Z) be the solution to (2.5)–(2.7) with data according to Theorem
2.2. We recall that u

∣∣
Γ1

= 0.

11



Let ϕ ∈ C∞([0, `]) with ϕ(xd) = 1 in a neighborhood of 0, ϕ(xd) = 0 in a neighborhood
of ` and 0 ≤ ϕ ≤ 1. By γ0 we denote the trace operator from H1(Ω) to L2(Γ0) and define

û(t, x) := ϕ(xd)(γ0u(t))(x′) for x = (x′, xd) ∈ Ω, t ∈ S.

The tangential regularity of u leads to the following regularity for û:

Lemma 4.2. It holds û ∈ L∞(S; H1
Γper

(Ω)) and ∂dû ∈ L∞(S; H1
Γper

(Ω)).

Proof. Since u ∈ W1,1(S;V ) ⊂ L∞(S; H1(Ω)), the trace theorem implies that û ∈
L∞(S; L2(Ω)). Moreover, from Theorem 4.1 we conclude that for all h ∈ R, for all
i ∈ {1, . . . , d− 1} and a.e. t ∈ S it holds

‖4hei
û(t)‖L2(Ω) ≤

√
2` ‖4hei

γ0u(t)‖L2(Γ0)

≤ c ‖4hei
u(t)‖H1(Ω) ≤ c |h| ‖∂iu(t)‖H1(Ω) .

In the second inequality we have used the continuity of the trace operator γ0. Since all the
estimates are uniform with respect to h, it follows that û ∈ L∞(S;∩1≤i≤d−1Fi(Ω)). Obvi-
ously, for k ∈ N it holds ∂(k)

d û(t, x) = ϕ(k)(xd)(γ0u(t))(x′), and the previous considerations
show that ∂(k)

d û ∈ L∞(S; H1
Γper

(Ω)), which finishes the proof.

Let R = I− 2ed ⊗ ed ∈ Rd×d describe the reflection at the boundary Γ0. For functions
v : Ω → Rd we will use the notation

∇′v(x) := (∂1v(x), . . . , ∂d−1v(x), 0) = 1
2(∇v(x))(R+ I) ∈ Rd×d.

We consider the following extensions to ΩP = (−`, `)d:

uP (t, x) =

u(t, x)− û(t, x) x ∈ Ω+ = Ω

−u(t, Rx) + û(t, Rx) x ∈ Ω− = RΩ
.

For the internal variable we use an even extension:

zP (t, x) =

z(t, x) x ∈ Ω+

z(t, Rx) x ∈ Ω−
, z0,P (x) =

z0(x) x ∈ Ω+

z0(Rx) x ∈ Ω−
.

The extended volume forces are defined as

fP (t, x) =

f(t, x) x ∈ Ω+

−f(t, Rx)−
(
div
(
(A(∇u−Bz)−H)(R+ I)

))
◦R x ∈ Ω−

.

Note that in the definition of fP only tangential derivatives of ∇u, z and H are involved.
Finally, we define

θP (t, x) =

∇û(t, x) x ∈ Ω+

−∇(û ◦R) + 2∇′(u ◦R) x ∈ Ω−

12



and set

HP (t, x) = −AθP (t, x) +

H(t, x) x ∈ Ω+

H(t, Rx) x ∈ Ω−
,

FP (t, x) = −B>AθP (t, x) +

F (t, x) x ∈ Ω+

F (t, Rx) x ∈ Ω−
.

Lemma 4.3. Under the assumptions of Theorem 2.2 the above defined functions have the
following regularity

uP ∈ L∞(S;VP (ΩP )),

zP ∈ W1,1(S; L2(ΩP )), z0,P ∈ H1
per(ΩP ),

fP ∈ L∞(S; L2(ΩP )),
∫

ΩP

fP (t) dx = 0,

θP ,HP , FP ∈ L∞(S;Fd).

Proof. The assertions for zP and z0,P are obvious. It follows from Lemma 4.2 that
uP

∣∣
Ω±

∈ L∞(S; H1
Γper

(Ω±)). Moreover, we have γ0(uP

∣∣
Ω+

) = 0 = γ0(uP

∣∣
Ω−

) and therefore
uP ∈ L∞(S;VP (ΩP )).

The higher tangential regularity of u and z, see Theorem 4.1, guarantees that fP ∈
L∞(S; L2(ΩP )). By partial integration we conclude that∫

Ω+

div
(
(A(∇u−Bz)−H)(R+ I)

)
dx = 0

for a.e. t ∈ S, since on Γ0∪Γ1 it holds (R+I)~n = 0 and on Γper we may use the periodicity
conditions. Thus,

∫
ΩP

fP (t) dx = 0 for a.e. t ∈ S.
Lemma 4.2 and Theorem 4.1 imply that ∂dθP

∣∣
Ω±

∈ L∞(S; L2(Ω±)) and we only have
to check whether the traces on Γ0 coincide and whether θP

∣∣
Γ1

= θP

∣∣
RΓ1

. Straight forward
calculations, using integration by parts on Ω+ and Ω− separately and taking into account
that u

∣∣
Γ1

= 0, show that for every ψ ∈ C∞
per(ΩP ) it holds∫

ΩP

θP : ∂dψ dx =
∫

Ω−

∂d(2∇′(u ◦R)−∇(û ◦R)) : ψ dx+
∫

Ω+

∂d∇û : ψ dx.

This proves the assertions on θP and finally on HP and FP .

Lemma 4.4. For almost all t ∈ S and every v ∈ H1
per(ΩP ) the above defined functions

uP ∈ L∞(S;VP ) and zP ∈ W1,1(S;Z) satisfy zP (0) = z0,P and∫
ΩP

A(∇uP (t)−BzP (t)) : ∇v dx =
∫

ΩP

fP (t) · v +HP (t) : ∇v dx, (4.1)

∂tzP (t) ∈ ∂χK(−LzP (t) +B>A(∇uP (t)−BzP (t))− FP (t)). (4.2)

Thus, supt∈S,h∈R\{0} |h|
− 1

2
(
‖4hed

∇uP (t)‖L2(ΩP ) + ‖4hed
zP (t)‖L2(ΩP )

)
≤ c .
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Proof. Relations (4.1)–(4.2) show that the extended functions uP and zP are solutions
of a pure periodic model. The regularity of uP and zP therefore follows from part (b) of
Theorem 3.4. Due to Lemma 4.3 the extended functions fP , FP , HP and z0,P have the
required regularity properties for i = d.

We prove now that (4.1) and (4.2) are valid.
Relation (4.2) follows immediately from the definitions taking into account that the

convex set K does not depend on x.
Relation (4.1) can be verified as follows: for every v ∈ VP it holds∫

ΩP

A(∇uP −BzP ) : ∇v dx =
∫

Ω+

A(∇u−Bz) : ∇(v − v◦R) dx

−
∫

Ω+

A∇û : ∇v dx

+
∫

Ω+

A(∇ûR−∇u(R+ I)) : ∇(v◦R)R dx

+
∫

Ω+

(
A(∇u−Bz)

)
(R+ I) : ∇(v◦R) dx. (4.3)

Note that (v − v◦R)
∣∣
Ω+

∈ V (Ω+) and therefore we may use relations (2.6) and (2.8) to
replace the first term on the right hand side of (4.3). This yields∫

ΩP

A(∇uP −BzP ) : ∇v dx =
∫

Ω+

f · (v − v◦R) dx

+
∫

Ω+

(
A(∇u−Bz)−H)(R+ I) : ∇(v◦R) dx

+
∫

Ω+

H : (∇v +∇(v◦R)R) dx

−
∫

Ω+

A∇û : ∇v dx

+
∫

Ω−

A(∇(û◦R)−∇(u◦R)(R+ I)) : ∇v dx.

Transforming the terms with v◦R back to Ω− and applying the Gauss Theorem to the
second term on the right hand side finally proves relation (4.1). Note that the boundary
terms vanish due to the periodicity properties on Γper and since (R+I)~n = 0 on Γ0∪Γ1.

The main regularity theorem, Theorem 2.2, is now an immediate consequence of the
previous lemma:

Corollary 4.5. Let the assumptions of Theorem 2.2 be satisfied.
Then u ∈ L∞(S; B

3
2
2,∞(Ω)) and z ∈ L∞(S; B

1
2
2,∞(Ω)).

Proof. Let uP and zP be the extensions of u and z as defined above. By Lemma 4.4 we
have

sup
t∈S, eΩbΩ,h∈R\{0}

|h|−
1
2
(
‖4hed

∇u(t)‖
L2(eΩ)

+ ‖4hed
z(t)‖

L2(eΩ)

)
≤ c.
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Combining this estimate with the tangential regularity in Theorem 4.1 proves Corollary
4.5 and Theorem 2.2.

Assume that B = 0. Then the problem (2.5)–(2.7) decouples into an elliptic equa-
tion (2.6) for u and an evolution inclusion (2.7) for z. If f ∈ W1,1(S; L2(Ω)) and
H ∈ W1,1(S; H1

Γper
(Ω)), then standard results for linear elliptic systems guarantee that

u ∈ W1,1(S; H2(Ω)). This result is usually obtained by first proving a tangential re-
sult like in Theorem 4.1 and then by solving the equation for the missing derivatives:
∂d(A∇u)d = −f − divH − 1

2 div((A∇u)(R + I)). Due to the tangential regularity, the
right hand side belongs to W1,1(S; L2(Ω)), and thus ∂2

du(t) ∈ L2(Ω). For pure elliptic
systems this argument is equivalent to the reflection argument which we applied in the
proof of Lemma 4.4.

Note finally that in the decoupled case, i.e. B = 0, and under the assumptions of
Theorem 2.2 the internal variable has the regularity z ∈ L∞(S; H1

Γper
(Ω)). This follows

since for B = 0 the extended function FP belongs to W1,1(S; L2(Ω)) and not only to
L∞(S; L2(Ω)), and therefore part (a) of Theorem 3.4 can be applied.

4.3 Non-zero boundary conditions

We consider now the case with non-vanishing Dirichlet datum hD ∈ W1,1(S; H
1
2
per(Γ1))

and Neumann datum hN ∈ W1,1(S; (H
1
2
per(Γ0))′). The task is to find a pair (u, z) ∈

W1,1(S; H1
Γper

(Ω)×L2(Ω)) with u(t)
∣∣
Γ1

= hD(t) and z(0) = z0 such that for all v ∈ V and
a.e. t ∈ S we have∫

Ω
A(∇u(t)−Bz(t)) : ∇v dx =

∫
Ω
f(t) · v dx− 〈hN (t), v〉Γ0 , (4.4)

∂tz(t) ∈ ∂χK(−Lz(t) +B>A(∇u(t)−Bz(t))). (4.5)

Assume that

hD ∈ W1,1(S; H
3
2
per(Γ1)), hN ∈ W1,1(S; H

1
2
per(Γ0)). (4.6)

By the trace theorem there exists uD ∈ W1,1(S; H2
Γper

(Ω)) with uD

∣∣
Γ1

= hD. Moreover,
there exists uN ∈ W1,1(S;V ∩H2

Γper
(Ω)) with∫

Ω
A∇uN : ∇v dx = 〈hN (t), v〉Γ0

for all v ∈ V . It follows that the pair (u, z) solves (4.4)–(4.5) if and only if u = u0 + uD

with u0(t) ∈ V and the pair (u0, z) satisfies for every v ∈ V∫
Ω
A(∇u0(t)−Bz(t)) : ∇v dx =

∫
Ω
f(t) · v +A(∇uN (t)−∇uD(t)) : ∇v dx, (4.7)

∂tz(t) ∈ ∂χK(−Lz(t) +B>A(∇u0(t)−Bz(t)) +B>A∇uD(t)). (4.8)
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From (4.6) we conclude that

H := A(∇uN −∇uD) ∈ W1,1(S; H1
Γper

(Ω)),

F := −B>A∇uD ∈ W1,1(S; H1
Γper

(Ω)).

Thus, the next theorem and Theorem 1.1 follow immediately from Theorem 2.2.

Theorem 4.6 (Non-vanishing boundary data). Let z0 ∈ H1
Γper

(Ω), f ∈ W1,1(S; L2(Ω)),
hD and hN with (4.6) and assume that the pair (u, z) ∈ W1,1(S; H1

Γper
(Ω)×L2(Ω)) satisfies

(4.4)–(4.5). Then

u ∈ L∞(S; B
3
2
2,∞(Ω)), z ∈ L∞(S; B

1
2
2,∞(Ω)).
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