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Abstract. Systems biology focuses on the study of entire biological
systems rather than on their individual components. With the emer-
gence of high-throughput data generation technologies for molecular bi-
ology and the development of advanced mathematical modeling tech-
niques, this field promises to provide important new insights. At the
same time, with the availability of increasingly powerful computers,
computer algebra has developed into a useful tool for many applications.
This article illustrates the use of computer algebra in systems biology
by way of a well-known gene regulatory network, the Lac Operon in the
bacterium E. coli.

1. Systems Biology

Molecular biology has undergone a dramatic revolution during the second
half of the twentieth century, beginning with the discovery of the structure
of DNA. Since then a series of technological advances has given experimen-
talists the ability to make ever-more detailed measurements of an increasing
number of molecular components of the cell. DNA microarrays, for in-
stance, are small silicon chips spotted with short segments of DNA that can
be used to measure the activity levels of thousands of different genes in tis-
sue samples simultaneously. Soon it might be possible to make large-scale
quantitative measurements in a single cell. Being able to take such global
snapshots of molecular processes has opened up the possibility of studying
the changes that are constantly going on in cells as a coherent dynamical
system with intricately interacting parts, rather than studying the parts in
isolation. Thus, the new field of systems biology has emerged [1; 11; 21].

Biological networks tend to be highly complex, with many variables that
interact with each other in nonlinear ways, making it difficult to study such
systems without the help of sophisticated mathematical tools and concepts.
It is even unclear what the right formal language should be for the descrip-
tion of molecular systems [14]. A characteristic feature of systems biology
research is its heavy use of mathematical methods. One tool which has
been applied recently to biological problems is computer algebra, a field of
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mathematics that combines the ability of computers to carry out symbolic
calculations with concepts from abstract algebra. Computer algebra has
been used in the life sciences in a variety of ways, such as the construction
of phylogenetic trees encoding the evolutionary relationship between differ-
ent species [5; 6], or the construction and analysis of models of intracellular
biochemical networks [13; 22]. For many more such applications see [3; 17].

2. Computer Algebra

Computer algebra provides tools for computing with symbols rather than
with floating point numbers. Software systems for computer algebra include
familiar commercial packages, such as Maple, Mathematica, or Magma, as well
as a wide range of more specialized systems, many of which are free and often
run faster on specialized tasks. One important theme in computer algebra
is the solution of non-linear algebraic equations. In the context of systems
biology, this problem arises when one wishes to compute the steady states
of a dynamic model. As an example, consider the following system of two
equations where x and y are the unknowns and k1 and k2 are parameters:

x2 + k1xy − 1 = y2 + k2xy − 1 = 0.

Using a computer algebra technique known as Gröbner bases [8; 17; 19], the
two given equations can easily be rewritten in the following equivalent form:

(k1k2−1)y4 + (k2
2−k1k2+2)y2−1 = k2x+(1−k1k2)y

3+(k1k2−k2
2−1)y = 0.

The first equation involves no x. Using the quadratic formula, we can there-
fore express y in terms of the parameters k1, k2. The second equation gives
x in terms of y and k1, k2. Further analysis reveals that there are always
four real solutions (x, y) if k1k2 < 1 but only two real solutions if k1k2 > 1.

For a second example, consider the following equations in five unknowns
which are derived from the discrete model for the Lac Operon in Section 4:

M = A,B = M,A = A+LB+ALB,L = P +L+LB+LP +LPB,P = M.

Here we are seeking solutions whose coordinates are 0 or 1 and where 1 + 1
is redefined to be 0. Thus, we are working over the field with two elements.
A Gröbner basis for the given system consists of the simplified equations

B = A = M = P 2 = LP = P,

and from this we see that there are precisely three solutions:

(M,B,A,L, P ) = (0, 0, 0, 0, 0), (0, 0, 0, 1, 0), and (1, 1, 1, 1, 1).

Of course, this answer could have been found easily without Gröbner bases,
for instance, by plugging in all 32 binary vectors of length 5. However, the
types of discrete dynamical systems that are of interest in biology are now
much more complex (due to advances in the experimental technologies as
argued above). For such systems, naive approaches will not work, and more
sophisticated tools, such as computer algebra, are needed for the analysis.
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3. The Lac Operon

We illustrate the use of computer algebra in systems biology by way of
a gene regulatory network which was discovered by Jacob and Monod [9],
who received the 1965 Nobel Prize in Medicine for this discovery. The
E(scherichia) coli Lac(tose) Operon is one of the earliest and best under-
stood examples of gene expression regulation [12; 15; 16]. Gene regulation in
bacteria serves the cells to adjust to changes in the nutritional environment
so that their growth and division can be optimized. E. coli can use glucose
or lactose as energy and source of carbon. When cells grow in glucose-based
medium, the activity of the enzymes involved in the metabolism of lactose
is very low, even if lactose is available. However, when glucose is exhausted
from the medium and lactose is present, the activity of enzymes involved in
lactose metabolism increases. This process is called induction [15].

Figure 1. The Lac operon.

A group of genes that are regulated by a common promoter and oper-
ator is called an operon. Such genes are typically organized in a tandem
arrangement. Operons also contain control elements – transcription factors
– that bind to regulatory elements in the DNA and activate or inhibit the
transcription of structural genes. Transcription factors that stimulate tran-
scription are called inducers. They bind to regulatory elements in DNA
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called promoters. Repressors, on the other hand, bind to elements in DNA
called operators and they are involved in the repression of transcription.

The lac operon (Figure 1) contains structural genes for three enzymes
involved in the metabolism of lactose (LacZ, LacY, LacA), one structural
gene encoding a repressor protein (LacR), and three control elements in-
volved in the regulation of transcription. The LacY gene encodes lactose
permease, which is involved in the transport of lactose into the cell, LacZ
encodes β-galactosidase, an enzyme that converts lactose into glucose and
galactose, sugars that will be further metabolized by the cell, and LacA en-
codes thiogalactoside transacetylase, an enzyme of still unknown function.

How is the lac operon regulated? The structural genes LacZ, LacY and
LacA are only expressed when lactose is present in the cell. In the absence
of lactose, the lac-repressor R binds to the operator region O, and RNA
polymerase, bound to the promoter P , is unable to move past this region.
Hence, no transcription of LacZ, LacY and LacA occurs (Figure 1.A). When
lactose enters the cell, it is converted into a similar molecule (isomer) called
allolactose, also by the action of β-galactosidase. Allolactose is the inducer of
the lac operon, binding to the lac-repressor R and inducing a conformational
change that prevents R from binding to the operator region. The RNA
polymerase is able to move along the DNA, transcription of the three genes
occurs, and lactose is metabolized (Figure 1.B).

4. A Discrete Model

We first present a discrete model for this gene regulation network, in
the form of a Boolean network, taken from [18]. Like all models, it is very
simplified in its representation of biological details and mechanisms. What
we are attempting here is to capture a basic dynamic feature of the Lac
Operon, namely its bistability. Simply speaking, this means that the operon
is either ON or OFF, each resulting in a single steady state of the system.

The model has five variables, representing the concentrations of (1) mRNA
for the genes LacZ, LacY, and LacA (M), (2) intracellular allolactose (A),
(3) β-galactocidase (encoded by LacZ) (B), (4) intracellular lactose (L), and
(5) lactose permease (P ). The model is qualitative, in the sense that it uses
a very coarse-grained measurement of these concentrations, keeping track
only of the absence (0) or presence (1) of these chemical species.

The model assumes that the molecular mechanisms leading from activa-
tion of a gene to the production of the corresponding protein (transcription
plus translation) happen in one time step, as does mRNA and protein degra-
dation. It also assumes that extracellular lactose is always available. The
relationships between the variables are expressed in terms of logical formu-
las, one for each variable. For instance, the biological mechanisms leading
to transcription of the LacZ, LacY, and LacA genes depend on the presence
of allolactose, needed to block the action of the repressor gene. That is, the
Boolean function controlling the state of the Boolean variable M is fM = A.
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Similarly, the structure of the other functions can be derived as follows:

fB = M, fA = A ∨ (L ∧ B), fL = P ∨ (L ∧ ¬B), fP = M.

The function fA, for instance, indicates that allolactose is present at time
t+1 if it was present at time t, or if lactose and β-galactosidase were present
at time t, which then react to produce allolactose at time t + 1.

We now show that this simple model, based on very few assumptions,
displays a dynamic behavior that captures an essential feature of the lac
operon, namely, bistability. Our analysis is tantamount to examining the
long term dynamics, or steady states and periodic states, of the model. A
state of the system is represented through a binary 5-tuple (M,B,A,L, P ),
such as (0, 0, 1, 0, 1). This particular 5-tuple indicates a state in which allo-
lactose and lactose permease are present and all other molecular species are
absent. We compute the time evolution of the system by applying the five
Boolean functions to this state. This results in the terminating trajectory

(0, 0, 1, 0, 1) → (1, 0, 1, 1, 0) → (1, 1, 1, 1, 1) → (1, 1, 1, 1, 1).

That is, the system reaches the steady state in which all substances are
present. We would like to compute all such steady states for the system. This
can be done polynomial computation tools provided by computer algebra.

We translate the Boolean functions in the model into polynomials. This
uses the binary field F2 = {0, 1}, that is, arithmetic modulo 2. To translate
a Boolean function into a polynomial function, we observe first that every
Boolean function is expressed using the logical operators ∧,∨, and ¬. These
can be translated into polynomial operations by simply observing that the
functions a ∧ b and a · b take on the same Boolean values for given values
of the variables, that is, both functions take on the value 1 precisely if both
a and b take on the value 1, otherwise the functions take on the value 0.
Similarly, we see that a ∨ b = a + b + a · b and ¬a = a + 1. If we apply this
dictionary to the Boolean functions in our model we obtain the following:

fM = A,

fB = M,

fA = A + LB + ALB,

fL = P + L + LB + LP + LPB,

fP = M.

A steady state of the system is one for which the functions do not change
the value of the variables. That is, if (M,B,A,L, P ) is a steady state, then
fM(M,B,A,L, P ) = M , and similarly for the other four functions. A steady
state is therefore a solution to the system of polynomial equations

fM = M, fB = B, fA = A, fL = L, fP = P.

We solved this system in Section 2 and found a total of three steady states:

(1, 1, 1, 1, 1), (0, 0, 0, 0, 0), (0, 0, 0, 1, 0).
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The first steady state was observed in our trajectory. The second one
also makes sense, but the third one is biologically not meaningful since it
would imply that the bacterium does not metabolize the intracellular lactose
present. This is an indication that our model is not entirely accurate and
needs to be modified. A first step is to compare model dynamics to known
biological properties. Another test could be to see if the model fits available
experimental data, which is beyond the scope of this paper. Our model
is so small that we can depict (in Figure 2) all possible state transitions.
Construction of such a diagram is impossible for larger models.

 0 0 0 0 0  0 0 0 0 1

 0 0 0 1 0

 0 0 0 1 1  0 0 1 0 0

 1 0 1 0 0

 1 1 1 0 1

 0 0 1 0 1

 1 0 1 1 0

 1 1 1 1 1

 0 0 1 1 0  0 0 1 1 1

 0 1 0 0 0

 0 1 0 0 1

 0 1 0 1 0

 0 1 0 1 1  0 1 1 0 0

 0 1 1 0 1

 0 1 1 1 0

 0 1 1 1 1

 1 0 0 0 0  1 0 0 0 1  1 0 0 1 0  1 0 0 1 1

 1 0 1 0 1  1 0 1 1 1

 1 1 0 0 0  1 1 0 0 1

 1 1 0 1 0  1 1 0 1 1

 1 1 1 0 0  1 1 1 1 0

Figure 2. The dynamics of the first model.

Studying the lac operon further, we see that one problem with the model
is that it does not represent all of the molecular species that influence the
dynamics. We leave it to the reader to verify that the following model is
biologically more accurate, for instance, using the biological materials posted
at the website [16]. The new model, presented in [18], has eight variables
measuring the concentration of (1) mRNA for the genes LacZ, LacY, and
LacA (M), (2) intracellular allolactose (A), (3) β-galactocidase (encoded by
LacZ) (B), (4) the lac repressor (encoded by LacI) (R), (5) intracellular
lactose (L), and (6) lactose permease (P ). We also need variables for (7)
intracellular glucose (G), and (8) extracellular lactose (E).

The logical functions encoding the model structure are as follows:

fM = (¬R) ∧ (¬G), fA = E ∨ (L ∧ B), fB = M,

fR = ¬A, fL = P ∧ E, fP = M, fE = E, fG = G.

Note that E and G do not depend on the other variables. External lactose
is either present or absent and similarly for internal glucose.

If we now analyze the model dynamics, either through the use of computer
algebra methods as before or enumeration of all state transitions (which is
possible in this case, using tools like the one at http://dvd.vbi.vt.edu)
we see that the model is more faithful to the biology of the system. For
instance, if external lactose is available (E = 1) and internal glucose is
absent (G = 0), then we obtain the unique steady state

(M,B,A,L, P,E,G) = (1, 1, 1, 1, 1, 1, 1, 0),

which is what one would expect from biological considerations.
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5. A Continuous Model

As the oldest known gene regulation network, the lac operon has been
studied extensively and many different mathematical models have been con-
structed for it [20]. The most common type of model is based on ordinary
differential equations. For a model from the recent literature see [22]. We
discuss here the very simple dynamical systems model described in Section
5.2 of the undergraduate text book [4]. It consists of three equations, mod-
eling the concentration of R and the rates of change of M and A (with
variable meanings as in the last section). The three equations are:

R =
1

1 + An
,

dM

dt
= c0 + c(1 − R) − γM,

dA

dt
= ML − δA −

vMA

h + A
.

Here c0, c, γ, v, δ, h and L are certain model parameters, n is a fixed positive
integer, and the concentrations R,M and A are functions of time t.

This model is also based on several assumptions. For instance, we do not
distinguish between intracellular and extracellular lactose, and denote both
by L. Another assumption is that β-galactosidase is proportional to operon
activity M and is not represented explicitly. The concentration of the repres-
sor R is represented by a sigmoid function, a so-called Hill function. When
extracellular lactose is present and is transported to the intracellular envi-
ronment by lactose permease, produced by the activity of the operon, the
allolactose concentration increases and inhibits the repressor R. The rate of
change of the gene transcripts M is composed of a baseline activity repre-
sented by the constant c0, the concentration A of allolactose (which inhibits
the repressor R), and a degradation term γM . The concentration of allolac-
tose A increases with the activity M of the operon genes in conjunction with
the presence of lactose L. Its degradation (the terms on the right-hand side
with minus signs) is represented by a Michaelis-Menten type enzyme sub-
strate reaction composed of two terms. The parameters c0, c, γ, v, δ, h and L
need to be estimated using biological considerations or numerical methods,
to ensure that the model is consistent with experimental data.

This model is also quite simplified, both from a biological and a mathe-
matical point of view. But even a simple model can be useful. The purpose
of modeling is to identify the essence of a system, that is to identify the
components and dynamics that are key to conferring the biological func-
tion. This is like identifying that the engine is what pushes the bus forward.
The art of constructing mathematical models of biological systems (or any
other type of system, for that matter) is to incorporate the most important
features and mechanisms and discard the irrelevant ones. Comparing the
model to the Boolean network model constructed in the previous section,
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we can see certain basic similarities, even though the mathematics is differ-
ent. We have a time-discrete finite dynamical system on the one hand and
a continuous-time system given by differential equations on the other hand.

It is now time to analyze the dynamics of the continuous model, just as we
analyzed the discrete model, by computing its steady states. We do this by
again phrasing the problem in way that makes it amenable to using algebra,
namely by setting the right hand sides of the differential equations to zero:

c0 + c · (1 −
1

1 + An
) − γ · M = M · L − δ · A −

vMA

h + A
= 0.

This is a system of two algebraic equations in two variables A and M , which
depends on the various parameters. Note that the steady state values for
the missing variable R are determined by the equation R = 1/(1 + An).

Following the discussion in [4, Section 5.2], we leave the concentration L
of lactose unspecified while the other parameter values are fixed as follows:

c = γ = v = 1, c0 =
1

20
, h = 2, m = 5, δ =

1

5
.

We also set n = 5. Our algebraic equations now take the form

1

20
+

A5

1 + A5
− M = M · L −

1

5
· A −

MA

2 + A
= 0.

By clearing denominators and eliminating the unknown M , we find that

4A7 + (29 − 21L)A6 − 42LA5 + 4A2 + (9 − L)A − 2L = 0.

This is a polynomial of degree 7 in A. The discriminant of this polynomial
in A is a complicated polynomial of degree 12 in the parameter L. This
discriminant has precisely two positive roots, which we determine to be

L1 = 0.68453896581348... and L2 = 1.5105398398447....

For all values of L between L1 and L2, there are three positive steady states.
For example, if L = 1 then the steady states (R,M,A) of our system are

(0.2272, 0.0506, 0.9994) , (0.6907, 0.1859, 0.8642) , (2.3717, 1.0368, 0.0132).

The above expression 4A7 +(29− 21L)A6 + · · · is the equation of the bifur-
cation diagram in the (A,L)-plane which is depicted in [4, Figure 5.3(b)]. It
describes the steady-state allolactose concentration A as a function of the
lactose concentration L. As argued in [4, Section 5.3], the emergence of these
three steady states shows that this model correctly captures key features of
the lac operon. Computer algebra allows us to vary other parameters and
enables us to conduct a very careful analysis of the dynamics of this model.
In particular, using computer algebra, we can derive a precise algebraic de-
scription of the region in parameter space for which the dynamical system
has more than one stationary point, and we can identify parameter values
at which interesting phenomena (e.g. Hopf bifurcations [10]) might occur.
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6. Discussion

It is generally agreed that modern molecular biology can benefit greatly
from the use of new mathematical techniques that allow the construction
of system-level sophisticated models of biological networks. Conversely, the
problems that arise in today’s biological research can provide important
stimuli for mathematical research. This is aptly expressed in the title Math-
ematics is Biology’s Next Microscope, Only Better; Biology is Mathematics’
Next Physics, Only Better of a recent article [7]. We have attempted here
to describe through mathematical models of the lac operon how algebra
can contribute to a formal description and an analytical understanding of
biological phenomena. One goal was to show that different types of mathe-
matical models (discrete and continuous) can provide insight into biological
mechanisms. Furthermore, we have demonstrated that computer algebra,
not traditionally used in biology, is a powerful tool that can help construct
and analyze biological models. Thus, this paper should be viewed as an
advertisement for an in-depth study of the relationship between computer
algebra in particular, and mathematics in general, and systems biology. The
marriage between the two promises to be extremely fruitful for both.

One forum for such interactions is the annual international conference
series on Algebraic Biology [2] which was started in 2005. Another one is
the special program on Algebraic Methods in Systems Biology and Statistics
which will be held at the Statistical and Applied Mathematical Sciences
Institute (SAMSI) in North Carolina during the academic year 2008-09.
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