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2 Introduction

Gröbner bases provide a powerful tool for a wide variety of problems in commutative
algebra, algebraic geometry and many other areas of science and engineering. For
example, it can be interpreted as a generalization of the Gaussian elimination
to the polynomial case [12]. 1965, Buchberger introduced the theory of Gröbner
bases together with an algorithm to compute them [2]. Later, he presented two
criteria to improve his algorithm finding superfluous reductions a priori. Since then,
many mathematicians like Lazard, Gebauer and Möller, Faugère, Gao, Volny and
Wang steadily worked on finding more such criteria or new methods to compute
Gröbner bases more efficiently. Thereby, Lazard used techniques from linear algebra
[12]. Gebauer and Möller used syzygies to find superfluous reductions. Moreover,
Möller et al. extended their work and created the first signature-based algorithm to
compute Gröbner bases [15]. Faugère has found a signature-based algorithm, called
F5, that is many times more efficient than the previous algorithms when compared
by benchmarks [5]. Now, many papers were published trying to simplify the F5
algorithm. The goal, of course, is also to develop an algorithm that is faster than F5
on benchmark systems. Indeed, Gao, Wang and Volny invented the so-called G2V
algorithm that seems to be faster than F5 on benchmark systems according to [6]
(two to ten times faster to be more precise). Based on G2V, the GVW algorithm was
created which again seems to be faster than G2V [7]. Both G2V and GVW not only
compute a Gröbner basis of an ideal but also one for its syzygy module. Thus, the
algorithm is also a candidate for computing resolutions. Moreover, there are various
papers about adapting the GVW algorithm to different mathematical applications
or to make it more efficient. For instance, in [13], the authors are interested in
adapting the GVW algorithm to principal ideal domains. For efficiency, in [14],
the authors use an approach from linear algebra to implement the GVW algorithm
with the help of matrix operations. There, they attack one major weakness of
the GVW algorithm: all performed reductions must obey a certain restricting
rule which leads to the fact that some elements that may be reduced according
to other theories are not allowed to be reduced anymore. Thus, the algorithm
becomes more inefficient as these elements will lead to more elements that need
to be considered. However, the authors in [14] suggest a substituting method to
create sparser matrices for signature-based algorithms by storing equivalent but
sparser polynomials. They also demonstrate the efficiency of their algorithm. There
are also so-called Hibert-driven signature-based algorithms which use the Hilbert

7



2 Introduction

function to make the algorithm more efficient [17]. Moreover, there are approaches
to deal with inhomogeneous ideals, too, introducing the concept of mutant pairs
[18].
Another major part of this thesis is dealing with involutive bases, which are
Gröbner bases with additional combinatorial properties. They originate from
the works of Janet on the algebraic analysis of partial differential equations [11].
Zharkov and Blinkov introduced the notion of involutive polynomial bases using
related works of Pommaret [20]. Later, Gerdt and Blinkov introduced involutive
divisions [9]. Of special interest are Pommaret bases as one can read of many
properties of an ideal like dimension, depth and Castelnuovo-Mumford regularity
[16]. These properties remain unchanged after coordinate transformations, which
is very important from a computational point of view as Pommaret bases do not
always exist [16],[10]. However, Hashemi, Schweinfurter and Seiler have shown
in [10] that a finite Pommaret basis of a homogenous ideal for the degree reverse
lexicographical order exists after finitely many coordinate transformations of a
certain type. Gerdt pointed out the special relationship between the Janet and
Pommaret divisions in [8]. From further works on the relationship, we know that a
Janet basis is also a Pommaret basis if it exists (see [16, Thm 4.3.15]). Thus, Seiler
presents two approaches for computing a Pommaret basis of homogeneous ideals
for the degree reverse lexicographical order: One can compute a Janet basis which
always exists as the Janet division is Noetherian [16, Lem 3.1.19]. If a Pommaret
basis exists, we already have computed it. Otherwise, he suggests to perform a
coordinate transformation and compute a Janet basis of the transformed system
and iterate this procedure. The second approach is to compute a Pommaret basis
in a direct way and check during the algorithm whether a finite Pommaret basis
exists, i.e. if the ideal is in quasi-stable position. If it is not quasi-stable, one may
interrupt the algorithm, perform a coordinate transformation and start over again
[16, S. 130].
Binaei, Hashemi and Seiler published in [1] a semi-involutive1 version of the GVW
algorithm and proved the termination by relating it to Gerdt’s algorithm [1, Thm
6]. However, the proof is only given for Noetherian divisions, and thus, not for the
Pommaret division. Also, their claim in [1, Thm 5] itself has flaws which we will
point out in this thesis.
Moreover, we will develop a semi-involutive version of the GVW algorithm, but
also a full involutive variant, where we will compute a (weak) Pommaret basis of
the syzygy module. For both variants, we will give a proof of correctness for the
Pommaret division and Janet division. In the case of the Pommaret division, we
also give a proof of termination using coordinate transformations and a bound for

1i.e. they aimed to compute an involutive basis of an ideal and a Gröbner basis of its syzygy
module.
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the regularity of the ideal; and for the Janet division, we refer to results in [1].
Therefore, we can present two ways to compute a Pommaret basis of a homogeneous
ideal: In both strategies, we start using the Janet version of the involutive GVW
algorithm. From there we get an upper bound q for the regularity of the ideal
[16, Cor 5.5.18]. Next, we check if the output is already a Pommaret basis. If
not, we perform a coordinate transformation. As transformed syzygies are still
syzygies, we can use them to make the algorithm in the next run more efficient
because syzygies can be used for detecting superfluous reductions. Nevertheless, we
can go in two different ways from there. First, we could iterate the Janet version.
Secondly, we can use one of our Pommaret versions of the GVW algorithm (going
only at most to the degree bound q + 2). However, we will introduce criteria where
the algorithm may stop earlier with an error message that the ideal (or, in the
full involutive case, its syzygy module) is not quasi-stable. Then, we perform a
coordinate transformation and start over. Thus, this thesis is organized as follows:

In the next chapter, we give the theoretical fundamentals we use for the theory
of Gröbner bases, syzygy modules, involutive bases and the GVW algorithm. Then,
we will develop an involutive version of the GVW algorithm, first discussing the
more complex Pommaret case. There, we also introduce an index of safety which
supports us finding a suitable coordinate transformation for the restart. In the
subsequent section, we gain a Janet version and prove its correctness. Afterwards,
we give some remarks on implementation and introduce the index of safety. There,
we also discuss the benefits and issues of the usage of a POT- or TOP-lift and
present some statistics from the implementation of the algorithm in Maple 18.
Lastly, we resume our obtained results and give an outlook for future works that
may be based on the presented theory.
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3 Theoretical Fundamentals

In this chapter, we will introduce the main tools for the following theory about the
involutive GVW algorithm and its properties. First, we go into some of the details
for the theory of Gröbner bases. Afterwards, we spend some time in recalling the
original GVW algorithm. Furthermore, we will discuss some of the properties of
the GVW algorithm in subsection 3.4.1 that were not mentioned in [6] and [7].

3.1 Gröbner Bases

Gröbner bases are the fundamental tool to describe the following theory. Thus,
our first task is to present the corresponding notions and to introduce the used
notations. The theory we present in this and the next section about Gröbner bases
and syzygies can be found in [4] and [3].

Throughout the whole thesis, let R := K[x1, . . . , xn] be a ring of polynomials in
n variables and K a field with char(K) = 0.
Furthermore, let f1, . . . , fm ∈ R and F := {f1, . . . , fm}. Moreover, we introduce

I := 〈F 〉 =

{∑m
i=1 uifi

∣∣∣∣u1, . . . , um ∈ R} as the ideal of F . Also, we call a product

xµ :=
∏n

i=1 x
µi
i ∈ R a term, where µ1, . . . , µn ∈ N0. We define the degree of xµ as

deg(xµ) := |µ| =
∑m

i=1 µi. For c ∈ K, we call cxµ a monomial. We denote by Tn
the set of all terms of R. For 0 6= f :=

∑k
i=1 citi ∈ R with ci ∈ K and ti ∈ Tn we

call supp(f) := {ti | ci 6= 0} the support of f . If f is only a term xµ, the support is
defined as supp(xµ) := {xi | µi > 0}.
Next, we introduce the notion of term orders.

Definition 3.1.1
A term order on R is a total order ≺ on Tn such that

(i) ∀ r ∈ Tn : 1 � r and

(ii) ∀ r, s, t ∈ Tn : s ≺ t⇒ rs ≺ rt.

≺ is called degree compatible, if in addition

(iii) ∀ s, t ∈ Tn : deg(s) < deg(t)⇒ s ≺ t holds.
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3 Theoretical Fundamentals

For a given term order ≺ on R and f ∈ R\{0} we write lt≺(f) := max≺{supp(f)}
for the leading term of f . The coefficient of lt≺(f) is called leading coefficient and
is denoted by lc≺(f). The so-called leading monomial is the product of the two, i.e.
lm≺(f) := lc≺(f) · lt≺(f). Furthermore, if lt≺(f) = xµ we write le≺(f) := µ for the
leading exponent.
Moreover, we define the set lt≺(N) := {lt≺(f) | f ∈ N \ {0}} for a finite subset
∅ 6= N ⊆ R. Also, we denote by lt≺(I) := 〈lt≺(f) | f ∈ I \ {0}〉 the leading ideal
of I. Lastly, we may note that if ≺ is known from the context we leave it out in
the index.
One very important example of a degree compatible term order is the degree

reverse lexicographic term order ≺degrevlex: We say xµ ≺degrevlex x
ν , if |µ| < |ν|

applies or if |µ| = |ν| and the first non-vanishing entry in µ− ν is positive.
Next, we introduce the notion of Gröbner bases. There are several possible

definitions, however, the following is the one most used in this work.

Definition 3.1.2
A finite setG ⊆ I is called Gröbner basis of I for a term order≺, if lt≺(I) = 〈lt≺(G)〉.

Buchberger showed one equivalent statement that can be achieved computationally.
Before we can go to his theorem (see proposition 3.1.5), we first have to introduce
some more notions.

Definition 3.1.3
Let p1, . . . , pr, g ∈ R and r ∈ N. We set P := {p1, . . . , pr}.

(i) g is reducible by pi ∈ P , if lt≺(pi) | lt≺(g). Otherwise g is called irreducible
by pi. We call g reducible by P , if g is reducible by some pi ∈ P . Otherwise
g is called irreducible by P .

(ii) If g is reducible by pi, a reduction step is given by h1 := g − lm≺(g)
lm≺(pi)

pi. We
also write g →pi h1 for the reduction step.

(iii) g reduces to h by P , if there is a sequence i1, . . . , is ∈ {1, . . . , r} of indices
such that

g →pi1
h1 →pi2

h2 →pi3
...→pis

hs = h

and h is irreducible by P . We denote the reduction steps by g →+
P h and call

h a normal form of g by P 1.

Now we will shortly recall the notion of S-polynomials which were first introduced
by Buchberger.

1A normal form is unique if and only if P is a Gröbner basis.
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3.1 Gröbner Bases

Definition 3.1.4
Let f, g ∈ R \ {0} and t = lcm(lt≺(f), lt≺(g)). Then

S(f, g) :=
t

lm≺(f)
f − t

lm≺(g)
g

is the S-polynomial of f and g.

Proposition 3.1.5 (Buchberger)
Let G ⊆ R be finite and I = 〈G〉. Then G is a Gröbner basis of I for a term order
≺ if and only if S(f, g)→+

G 0 for every f, g ∈ G with f 6= g.

This proposition results in the following algorithm: The basic idea is to reduce
S-polynomials of any two distinct elements in F and add a normal form to F , if it
is not zero. Then, the S-polynomial will reduce to zero by the updated F . However,
one now has to look at more S-polynomials that are introduced by the normal
form that entered F . Therefore, proof of termination is not trivial. The main idea
is to produce an ascending chain of ideals which must become stationary as R is
Noetherian.

The Buchberger Algorithm
Input: A finite subset F = {f1, . . . , fm} ⊆ R, ≺ on R
Output: A Gröbner basis G for I = 〈F 〉 and ≺
Step 1: G← F
Step 2: S ← {{g1, g2} | g1, g2 ∈ G with g1 6= g2}
Step 3: while S 6= ∅ do
Step 4: Choose a pair {g1, g2} ∈ S.
Step 5: S ← S \ {g1, g2} and calculate a normal form ḡ of S(g1, g2)

by G.
Step 6: if ḡ 6= 0 then
Step 7: S ← S ∪ {{g, ḡ} | g ∈ G},

G← G ∪ {ḡ}
Step 8: end if
Step 9: end while
Return: G

In general, a Gröbner basis is not unique. However, a Gröbner basis G with
the properties supp≺(g) * 〈lt≺(G \ {g})〉 and lc≺(g) = 1 for all g ∈ G is called
reduced Gröbner basis and is indeed unique. A reduced Gröbner basis can be
computed with the help of autoreductions. In this regard, g ∈ G is reducible by
G\{g} if any element in its support is divisible by lt≺(G\{g}). The corresponding
reduction step will then eliminate the appropriate term in the support of g. And

13



3 Theoretical Fundamentals

G is autoreduced if no g ∈ G is reducible. Apart from autoreductions, we only
consider reductions eliminating leading terms. Sometimes they are referred to
as top-reductions. Performing only such reduction steps we can achieve a head
autoreduced version of G.

3.2 Syzygies

In this section, we want to introduce syzygies and the term orders of our interest.
The syzygy module of F = {f1, . . . , fm} is defined as

H := Syz(F ) :=

{
(u1, . . . , um) ∈ Rm

∣∣∣∣ m∑
i=1

uifi = 0

}
.

An element u ∈ H is called syzygy of F . As syzygies are vectors, we need to extend
our notions of reduction steps and term orders to higher dimensions. First, we
recall the notion of (vector) terms. Let ei with 1 ≤ i ≤ m be the unit vectors in
Rm. Then we call xνej a (vector) term, where xµ ∈ Tn. The set of all such terms
is denoted by Tmn . We define deg(xµei) := deg(xµ).

Definition 3.2.1
A term order on Rm is a total order ≺ on Tmn with

(i) ∀xµ ∈ Tn \ {1}, t ∈ Tmn : t ≺ xµt

(ii) ∀xµ ∈ Tn, s, t ∈ Tmn : s ≺ t⇒ xµs ≺ xµt

≺ is called degree compatible, if in addition

(iii) ∀ s, t ∈ Tmn : deg(s) < deg(t)⇒ s ≺ t applies.

Next, we say that a vector term xµei is divisible by another vector term xνej
if i = j and xν | xµ. With this notion, the extension of reduction steps for vector
polynomials is straight forward and will be skipped in this section. However, it can
be found in [4], [3]. In this thesis, we will focus on so-called POT- and TOP-lifts2.
In the next example, we will specify the variant which we will use.

Example 3.2.2
Let ≺ be a term order on Tn. Then we define

xµei ≺POT xνej ⇔ i < j or (i = j and xµ ≺ xν)

2These are abbreviations for “position over term” and “term over position”.
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3.3 Involutive Bases

and

xµei ≺TOP xνej ⇔ xµ ≺ xν or (xµ = xν and i < j).

Also, we want to mention the Schreyer order. Let S := {s1, . . . , sk} ⊆ R be finite
and ordered set of polynomials. Then

xµei ≺S xνej ⇔
(
lt≺(xµfi) ≺ lt≺(xνfj)

)
or

(
lt≺(xµfi) = lt≺(xνfj) and j < i

)
defines the Schreyer order.

3.3 Involutive Bases

In this section, we briefly recall the notion of involutive bases and introduce in
particular the Pommaret and Janet division. This section is based on [16]. First,
we define the notion of involutive cones.

Definition 3.3.1
An involutive division L is defined on (Nn

0 ,+), if for every finite subset B ⊆ Nn
0

and every set NL,B(v) ⊆ {1, . . . , n} of multiplicative indices of v ∈ B and the set
L(v,B) := {µ ∈ Nn

0 | ∀j /∈ NL,B(v) : µj = 0} the following two conditions for the
involutive cone CL,B(v) := v + L(v,B) are satisfied:

(i) If two involutive cones intersect each other, then one of them must contain
the other.

(ii) For any subset B′ ⊆ B we have NL,B(v) ⊆ NL,B′(v) for all v ∈ B′.

For µ, ν ∈ Nn
0 , we say µ is an involutive divisor of ν, written as µ |L,B ν, if

ν ∈ CL,B(µ) applies. The involutive span of B ⊆ Nn
0 is

〈B〉L :=
⋃
v∈B

CL,B(v). (3.3.1)

Furthermore, we denote by N̄L,B(v) the set of non-multiplicative indices of v ∈ B.

We want to point out a special type of involutive divisions, namely the global
divisions, that are independent of the set B.
Now, one can relate involutive divisibility to the common notion of divisibility by

µ |L,B ν ⇔: xµ |L,B xν and xµ |L,B xν ⇒ xµ | xν .

15



3 Theoretical Fundamentals

Given the set of multiplicative indices, we can introduce the set of multiplicative
variables of g ∈ G ⊆ R for a term order ≺ and a finite set G:

XL,G,≺(g) := {xi | i ∈ NL,le≺(G)(le≺g)},

where le≺(G) := {le≺(g) | 0 6= g ∈ G}. The finite product of multiplicative variables
is called multiplicative term. The involutive span of G is denoted by

〈G〉L,≺ :=
∑
g∈G

K[XL,G,≺(g)] · g ⊆ 〈G〉.

Definition 3.3.2
Let L be an involutive division on (Nn

0 ,+).

(i) A subset B ⊆ Nn
0 is a weak involutive basis of B for L, if 〈B〉L = 〈B〉 holds.

In particular, B is called strong involutive basis, if in addition the union in
(3.3.1) is disjoint. We call any set B ⊆ B′ ⊆ Nn

0 with 〈B′〉L = 〈B〉 a (weak)
involutive completion of B.

(ii) A set G ⊆ I is called weak/strong involutive basis of I, if le≺(G) is a
weak/strong involutive basis of le≺(I) := 〈le≺(f) | f ∈ I \ {0}〉, where we
additionally require for a strong basis that two distinct elements of G never
possess the same leading exponents.

Since we have introduced involutive divisions in general, it is easy to extend our
notions of reduction steps etc. from the previous sections to the involutive case.
Thus, we will instead discuss the two major divisions which are important for this
thesis.

Example 3.3.3
It will turn out that the Pommaret division is global. Therefore, it is more
convenient for our purpose to define it through terms. For a term xµ :=

∏n
j=k x

µj
j

with µj ∈ N0 and a µk 6= 0 we define the class of xµ as cls(xµ) := k. Then the
set XP (xµ) = {xi | i ≤ cls(xµ)} is the set of multiplicative variables of xµ for the
Pommaret division.

For the Janet division, we first introduce certain subsets of the given set B ⊆ Nn
0 :

(dk, . . . , dn) := {v ∈ B | vi = di, k ≤ i ≤ n}.

Thus all elements in (dk, . . . , dn) have the same “k-tail”. Now, the index n is
multiplicative for v ∈ B, if vn = maxµ∈B{µn}. An index k < n is multiplicative for
v, if vk = maxµ∈(vk+1,...,vn){µk}.

16



3.3 Involutive Bases

It is straight forward to see that the Janet division is not global, and thus more
complex to use and implement than the Pommaret division. Still, it has some
advantages over the Pommaret division. Nevertheless, the more interesting division
for us is the Pommaret division since it provides us several theoretically interesting
values. For example, from a Pommaret basis one can read off the dimension, depth
and Castelnuovo-Mumford regularity of the ideal as mentioned in the introduction.
But as we pointed out, a Pommaret basis does not always exists, whereas a Janet
basis does. But because the two divisions are linked in some sense (see [8], [16]),
there are ways to use Janet bases to compute Pommaret bases (as one can read in
the introduction).

17



3 Theoretical Fundamentals

3.4 The GVW algorithm

In this section, we aim to compute a Gröbner basis of I = 〈F 〉 for ≺1, and of
Syz(F ) for ≺2 under some assumptions on the relation between the two term
orders. This section is obtained from [6] and [7]. The fundamental object we are
working on is the set M , defined in:

Definition 3.4.1
We set

M := {(u, v) ∈ Rm ×R : uf T = v},

where u = (u1, . . . , um) and f = (f1, . . . , fm) are row vectors in Rm.

Note, that (u, 0) represents a syzygy u. In general, u encodes how to get v out
of F .

Lemma 3.4.2
M = 〈(ei, fi) : 1 ≤ i ≤ m〉 is a R-submodule of Rm ×R, where ei denotes the i-th
unit vector of Rm.

Because we operate on M , the term orders ≺1 and ≺2 must be compatible in
some sense:

Definition 3.4.3
Let ≺1 be a term order on R and ≺2 one Rm. We say ≺2 is compatible to ≺1 if for
arbitrary terms xµ, xν in R the equivalence

xµ ≺1 x
ν ⇔ xµei ≺2 x

νei ∀1 ≤ i ≤ m

holds.

Remark 3.4.4
From now on we use compatible term orders ≺1 and ≺2 on R and Rm, respectively.
In particular, for v ∈ R and u ∈ Rm we have the property

lt≺2(v · u) = lt≺1(v) · lt≺2(u),

coinciding with the law of a product of two polynomials in R. Hence, there will be
no mistakes generated when we leave out the indices for the sake of simplicity.
Furthermore, we write lt(v) = 0, if v = 0 and lt(u) = 0, if u = 0.

Next we define reduction steps on M and introduce two classes of reduction steps
that will play a major role for this thesis.

18



3.4 The GVW algorithm

Definition 3.4.5
Let p1 = (u1, v1), p2 = (u2, v2) ∈ Rm ×R. We say p1 is reducible by p2 if

(i) v1 6= 0 6= v2 and lt(v2) | lt(v1),

(ii) lt(tu2) � lt(u1) with t = lt(v1)
lt(v2)

.

We set c := lc(v1)
lc(v2)

. Then a reduction step of p1 by p2 is given by a reduction step in
the v-part performed on M , i.e.

s := p1 − ctp2 = (u1 − ctu2, v1 − ctv2) =
(
u1 − lm(v1)

lm(v2)
u2, v1 − lm(v1)

lm(v2)
v2

)
. (3.4.1)

Moreover, we call lt(u1) the signature of p1. If the signature of p1 stays the same
after a reduction step, the reduction is called regular, and super otherwise.
Also, we call p1 regular/super reducible by N ⊆ Rm × R, if p1 is regular/super
reducible by some p ∈ N . Furthermore, we denote by Sig(N) the set of all signatures
of elements in N .

Lemma 3.4.6
A reduction step of p1 by p2 defined in (3.4.1) is super if and only if

lt(tu2) = lt(u1) and
lc(v1)
lc(v2)

=
lc(u1)

lc(u2)
.

Definition 3.4.7
Let p1, p2 ∈ Rm ×R with v2 = 0 (so u2 is a syzygy). We say p1 is reducible by a
syzygy p2 = (u2, 0) if

u1 6= 0 6= u2 and lt(u2) | lt(u1).

A reduction step of p1 by p2 is given by a reduction step of u1 by u2 performed on
M , i.e.

h := p1 − lm(u1)
lm(u2)

p2 =
(
u1 − lm(u1)

lm(u2)
u2, v1

)
.

Such a reduction step always reduces the signature of p1, and hence, a reduction
by a syzygy is always called super.

Remark 3.4.8
We want to note, that for any super reduction lt(u2) | lt(u1) applies. Moreover, it
is worth mentioning that a syzygy, by definition, is only reducible by a syzygy.

Now, as we are only discussing regular and super reductions, it is straight forward
to see, that we save information about the signature the longer the more regular
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reductions we perform before we perform a super reduction as the signature is
invariant under regular reduction steps. Hence, our goal will be to first compute
a regular normal form, i.e. the result of only regular reductions until no regular
reduction is possible anymore. A regular normal form does not have to be unique
as we are, in general, not reducing regular with respect to a Gröbner basis in
the v-part. Having a regular normal form, the u-part encodes the “history” of
our reductions, and the signature contains the information where we started the
reduction steps.
Next, we want to “lift” the notion of a Gröbner basis to M .

Definition 3.4.9
A finite subset G ⊆M is called strong Gröbner basis of M , if every non-zero pair
in M is reducible by G.

Now we present an important proposition that justifies the notion of a strong
Gröbner basis. As we will give a very similar proof for the involutive version in
chapter 4 we will skip it in this section. Nevertheless, it can be found in [6], [7].

Proposition 3.4.10
Let G = {(u1, v1), . . . , (uk, vk)} be a strong Gröbner basis of M . Then

(i) G0 := {ui | vi = 0, 1 ≤ i ≤ k} is a Gröbner basis of Syz(F ).

(ii) G1 := {vi | 1 ≤ i ≤ k} is a Gröbner basis of I = 〈F 〉.

With that proposition we are interested in knowing if one can calculate a strong
Gröbner basis efficiently. Indeed, Gao et al. presented an algorithm to compute a
strong Gröbner basis as we are going to see. In particular, in the next chapter we
aim to lift the theorems to involutive divisions.

Definition 3.4.11
Let N ⊆ Rm ×R and p = (u1, v1) ∈M .

• p is called eventually super reducible by N , if a regular normal form of p is
super reducible. As p can be regular irreducible, we call p also eventually
super reducible, if it only is super reducible and not regular reducible at all.

• p is called covered by q = (u2, v2) ∈ N if lt(u2) | lt(u1) and lt(u1)
lt(u2)

lt(v2) ≺ lt(v1)
holds. We also may just say that p is covered by N .

If p is covered by q, this means that lt(u1)
lt(u2)

q has the same signature as p but a
smaller v-part. Hence, we have found a way to reduce p indirectly to a pair with
smaller v-part and we may not have to look at p anymore. But this is a claim
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3.4 The GVW algorithm

worth proving. Indeed, the next theorem asserts that this is a good way to look at
it. But before we present it, lets introduce one last notion.

Definition 3.4.12
Let p1 = (u1, v1), p2 = (u2, v2) ∈ Rm ×R and v1 6= 0 6= v2.
For i, j ∈ {1, 2} we set ti := lt(vi) and tij := lcm(ti, tj). Furthermore, we define

T := max
≺
{ t12
t1
lt(u1),

t12
t2
lt(u2)}.

Without loss of generality, let T = t12
t1
lt(u1). Now, if for c = lc(v1)

lc(v2)

lt( t12
t1
u1 − c t12t2 u2) = T (3.4.2)

applies, we denote by t12
t1
p1 the J-pair of p1 and p2. Moreover, a reduction step is

given by

t12
t1
p1 − c t12t2 p2 = ( t12

t1
u1 − c t12t2 u2,

1
lc(v1)

S(v1, v2)), (3.4.3)

and is regular by definition (see (3.4.2)). Here, S(v1, v2) is the S-polynomial of v1
and v2 from definition 3.1.4.

So instead of calling the pair in (3.4.3) J-pair, Gao et al. suggest to go one step
back in the reduction process and calling t12

t1
p a J-pair. Doing so, we have two

things worth pointing out: First, we do not have to look at all S-polynomials as
some of them may did not come from a regular reduction step and hence, will not
satisfy (3.4.2). Moreover, by definition we can use the property that a J-pair is
at least once regular reducible. This will be important for the proof of the next
theorem. However, we will provide a proof for the involutive J-criteria in the next
chapter. Thus, we just refer to [7] for the proof in this section. Also, it might be
interesting to mention it at this point that our involutive J-pairs in general will
not be involutive regular reducible at least once. Hence, we will be forced to give
a proof for the involutive case where we cannot use that involutive J-pairs are
involutive regular reducible by definition.
But let us first focus on the given case. From the next theorem, we will be able to
generate an algorithm for computing a strong Gröbner basis.

Theorem 3.4.13 (J-criteria)
Let G := {(u1, v1), . . . , (uk, vk)} ⊆M be a finite subset ofM such that 〈Sig(G)〉 = Tmn .
Then the following statements are equivalent

(i) G is a strong Gröbner basis of M
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(ii) Every J-pair of elements in G is eventually super reducible by G

(iii) Every J-pair of elements in G is covered by G

The corresponding algorithm is the following3.

GVW algorithm
Input: F = {f1, . . . , fm} ⊆ R, compatible term orders on R and Rm,

A head autoreduced set H0 of syzygies of F , where H0 = ∅ is
allowed, too.

Output: A Gröbner basis V of I = 〈f1, . . . , fm〉 and a Gröbner basis H of
Syz(F )

Variables: U is an ordered set of ui of pairs (ui, vi) ∈M
V is an ordered set of vi with (ui, vi) ∈M
H is the set of syzygies found so far
JP is a set of J-pairs t(ui, vi) of (ui, vi) and (uj, vj) for a j 6= i
and a corresponding term t.

Step 1: U ← {e1, . . . , em}, V ← {f1, . . . , fm}, H ← H0

Step 2: Compute the J-pairs of (e1, f1), . . . , (em, fm) and fill JP .
Step 3: while JP 6= ∅ do
Step 4: Take the J-pair t(ui, vi) with smallest signature from JP ,

JP ← JP \ {t(ui, vi)}
Step 5: if t(ui, vi) is not covered by (U, V ) ∪ (H, 0) then
Step 6: Compute a regular normal form (u, v) of t(ui, vi) by (U, V )
Step 7: if v = 0 then
Step 8: H ← H ∪ {u}.
Step 9: else
Step 10: U ← U ∪ {u}, V ← V ∪ {v}
Step 11: Compute new J-pairs of (u, v) and (uj, vj) for

1 ≤ j ≤ |U | − 1 and add them to JP
Step 12: end if
Step 13: end if
Step 14: end while
Return: V und H

3We have already included some optimization. For instance, if a J-pair is reducible by a syzygy
it is also covered by it, and hence, can be discarded (the proof is really short and does not
differ much from the involutive case – see lemma 4.1.1).
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3.4 The GVW algorithm

This algorithm is correct and terminates according to [7]. It is worth mentioning,
that in the thesis from Volny (see [19]), the covered-criteria (statement c) of the
J-criteria) was not discovered, yet. There, one had only the equivalence of (i) and
(ii) from theorem 3.4.13. Therefore, it is generic that some J-pairs were first regular
reduced and then discarded as the computed regular normal forms were found to
be super reducible. However, this cannot happen with this version of the algorithm
as a J-pair that is not covered is not eventually super reducible either4. Still, facing
the problem of calculating unnecessary regular normal forms in Volny’s thesis, he
presents an idea to minimize the computational effort: In a first run, one only keeps
the signatures rather than the whole u-part. This is sufficient for deciding whether
or not a pair is regular or super reducible. So, the work in the u-part is minimized.
With a second run of the algorithm, one knows already which J-pair reductions
are superfluous and hence will avoid them5. Indeed, as we have the output of the
first run, it will be enough to compute all u-parts of pairs with signatures less
than the ones of syzygies from the output6. Still, this would mean to compute the
v-parts again. So, this strategy may only pay off if many J-pairs are discarded,
relatively speaking. If we knew the greatest signature of a syzygy a priori, it would
make sense for our algorithm to keep only the signature once we have exceeded the
greatest syzygy-signature. However, it might not be easy to give a good bound for
leading terms of a Gröbner basis. For involutive bases on the other hand, it is a
feasible task as we will discuss in the next chapter.
But first we enter the next subsection, where we will discuss if the algorithm will
provide a minimal Gröbner basis of I or Syz(F ), respectively.

3.4.1 Minimal Gröbner Basis with the GVW algorithm

Very briefly saying, the basic idea of the GVW algorithm is to compute J-pairs
and append regular normal forms to G := (U, V ) ∪ (H, 0), as they are covered
by it. The covered-criteria allows us to avoid some unnecessary reduction steps.
However, the covered J-pairs may were superfluous for the computation of V in
the first place, and only important for the computation of Syz(F ) (see the next
example). So, one should not think that the covered-criteria will necessarily save
calculations for computing V . Also, because of 〈Sig(G)〉 = Tmn , we are forced to
keep (a regular autoreduced version of) F contained in G. Hence, in general the
strong Gröbner basis will not produce a minimal Gröbner basis for I. Moreover, the

4This is given by the fact that a J-pair is regular reducible at least once by definition and
therefore the non involutive variant of lemma 4.1.2 can be applied.

5We will not discuss the details as they are not important for our case where we have the covered
criteria.

6It might be worth mentioning that the strategy induced by step 4 is called strategy of smallest
signature.
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signature may not allow the reduction to ordinary normal forms. For example let
S(f1, f2) = xf3 for the elements in F := {f1, f2, f3}. If we choose now a POT-Lift,
xf3 may not be regular reducible by f3 and will be inserted to V . Indeed, even
regular autoreductions may not change this fact as the following example shows.

Example 3.4.14
Let K be a field and R = K[x, y, z]. We define f1 = xy + z, f2 = x2, f3 = z and
F = {f1, f2, f3}. We take ≺degrevlex on R and a POT-Lift of it as a compatible
term order on R3, where ei ≺ ej for i < j is the convention we use. We follow the
strategy of smallest signature like suggested in [7] and will only keep the signatures
instead of the whole u-part. Also, the J-pair of pi and pj is denoted by Jij , and we
start with pk = (ek, fk) for k = 1, 2, 3. We set G := {p1, p2, p3}. All reduction steps
we will perform are regular. So, we will truncate our notion of regular reduction
steps for this example.
We have to look at J12 = (ye2, yx

2) first. It reduces by p1 to (ye2, xz) which is not
regular reducible by G. Hence, we will call it p4 and insert it to G. Next, we have
to look at J14 = (y2e2, xyz) which reduces by p1 to (y2e2, z

2). This pair is also not
regular reducible by the current G. So, we call it p5 and add it to G, which still
is regular autoreduced. Fortunately, the next J-pair J24 = (xye2, x

2z) is reducing
by p2 to a syzygy with signature xye2. This syzygy covers all next J-pairs Ji5 for
i = 1, 2, 3, 4. Hence, the next J-pair to consider is J34 = (xe3, xz) which reduces
by p4 to a syzygy with signature xe3. Lastly, this syzygy will cover the last two
J-pairs J13 and J23 so that, due to theorem 3.4.13, we obtain with

G = {(e1, f1), (e2, f2), (e3, f3), (ye2 − xe1, xz), (y
2e2 − ze1, z

2), (s1, 0), (s2, 0)}

a strong Gröbner basis ofM , where s1 = (xy−z)e2−xe1 and s2 = xe3−ye2 +xe1

are calculated by keeping track of the whole u-part during the computations above.
But obviously, we will not get a minimal Gröbner basis of I. In particular, we
started with a Gröbner basis of I and the algorithm created new elements for it in
order to compute Syz(F ).

However, we are able to show that H is a minimal Gröbner basis of Syz(F ) if
we make the signatures in the algorithm monic.

Corollary 3.4.15
The GVW algorithm returns a minimal Gröbner basis H for Syz(F ) if the leading
coefficients of the signatures are 1. This still holds if during the algorithm regular
head autoreductions are performed using the strategy of smallest signature.

Proof. Assume, for a proof by contradiction, that u1,u2 ∈ H and u1 is reducible
by u2, i.e. lt(u2) | lt(u1). Then lt(u2) � lt(u1). Because of the strategy of smallest
signatures u1 has entered H later than u2 if it is a regular normal form of a J-pair.
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3.4 The GVW algorithm

Indeed, u2 cannot enter after u1 through regular head autoreductions, either, as
at the time we consider u1, regular autoreductions will only effect elements with
greater signature than lt(u1). Assume first, that u1 is the u-part of a regular
normal form of a J-pair. Now, since u2 was in H first, the J-pair corresponding to
u1 is covered by (u2, 0) and hence would have been discarded.
Next assume that u1 came from regular autoreductions and not from a J-pair.
Then lt(u2) ≺ lt(u1). Hence, u1 must be the u-part of a regular normal form of
a (ei, fi). Then lt(u2) | lt(u1) = ei, which implies lt(u2) = ei. This would mean
that we have computed a regular normal form of (ei, fi) twice in two different
ways, which will not happen during the algorithm as we are replacing (ei, fi) by
the computed regular normal form during regular autoreductions.
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In this chapter we will develop an involutive version of the GVW algorithm. For
this purpose, we first adjust some of the definitions made in the previous chapter.
Here, we will be able to prove a “full” involutive version of the GVW algorithm,
i.e. one where also the division in the u-part is involutive. We will then prove the
termination and present the semi-involutive GVW algorithm, where we use the
classical division on the u-part and an involutive one in the v-part. We will show
that the full involutive version for the Pommaret division will provide us weak
Pommaret bases of I and Syz(F ) whereas the semi-involutive variant only produces
a Gröbner basis for Syz(F ), in theory. However, we will prove the termination of
the semi-inv. variant only for the case where we focus on finding the Pommaret
basis of I and then stop the computation (a Gröbner basis of Syz(F )). Still, there
might be a proof for the general case.
Thus, in our implementation one can choose whether or not the whole u-part shall
be computed. If a Gröbner basis H of Syz(F ) is computed during the algorithm,
iteration of the algorithm with H in the v-part will eventually produce a weak
involutive basis after adapting the algorithm for module inputs. Also, the criteria
we will provide are stronger in the semi-involutive variant, which implies a faster
termination of the algorithm.
Recall, that we are looking at an ideal I := 〈f1, . . . , fm〉EK[x1, . . . , xn] and the set
M := {(u, v) | uTf = v}, where f is the vector with entries fi. Furthermore we
set ≺1=≺degrevlex on Tn and choose a compatible term ≺2 of type ω, i.e. between
any two terms there are only finitely many terms.
For the whole chapter, let G ⊆M be a finite set and Bu ×Bv ⊆ Nm

0 × Nm
0 , where

Bu is the set of exponents of signatures in G and Bv the set of leading exponents
of elements in the v-part of G.

Definition 4.0.1
We write pi := (ui, vi) for i = 1, 2. Let in particular p1 ∈M and p2 ∈ G. Finally,
let L be an involutive division.

a) p1 is involutively covered by p2 if

lt(u2) |L,Bu lt(u1) and
lt(u1)

lt(u2)
lt(v2) ≺ lt(v1).
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We say that p1 is involutively covered by G ⊆M if it is involutively covered
by some element in G.

b1) p1 is called involutively regular reducible by p2 if the following conditions hold:

(i) v1 6= 0 6= v2,

(ii) lt(v2) |L,Bv lt(v1) and

(iii) for (u, v) := p1 − lm(v1)
lm(v2)

p2 we have lt(u) = lt(u1).

Moreover, we say that p1 is involutively super reducible by p2 if the conditions
(i), (ii), and

(iii’) lt(u2) |L,Bu lt(u1) and lt(u) ≺ lt(u1) are satisfied.

b2) If p2 is a syzygy, i.e. v2 = 0, then p1 is called involutively super reducible by
p2 if

u1 6= 0 6= u2 and lt(u2) |L,Bu lt(u1).

For an involutive super reduction we perform a reduction of the u-part,
analogously to the previous chapter.

b3) p1 is called involutively reducible by p2 if it is reducible in the sense of b1) or
b2). Moreover, p1 is involutively reducible by G if it is involutively reducible
by some element in G.

c) A pair p ∈ M is called eventually involutively super reducible by G ⊆ M if
there is a chain – a length of zero is allowed – of involutive regular reduction
steps by G leading to an involutive regular normal form1 of p which in turn
is involutively super reducible by G.

d) We write p2 |L,B p1 if lt(u2) |L,Bu lt(u1) and lt(v2) |L,Bv lt(v1).

Remark
Note that in b1)(iii’) the condition lt(u2) |L,Bu lt(u1) is essentially. Therefore, in
contrast to the previous chapter, the conditions b1)(i)-(ii) and

lm(v1)

lm(v2)
lt(u2) � lt(u1)

do not imply involutive reducibility. In particular, it can happen that from this
conditions we face a super reduction which is not involutive, i.e. we have p2 | p1
but not p2 |L,B p1. Furthermore, from now on we may write the abbreviation “inv.”
whenever we should write “involutive(ly)”.

1This means that no more involutive regular reduction steps are possible.
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Next, we translate the definition of a strong Gröbner basis to the involutive case.

Definition 4.0.2
A finite setG ⊆M is called strong L-basis ofM , if any non-zero pair p = (u, v) ∈M
is inv. reducible by G.

Gao et al. achieved a computational access to obtain a strong Gröbner basis based
on S-polynomials which are associated with a criterion for computing Gröbner
bases (see definition 3.4.12). In our case, the involutive pendant is encoded in
[16, Def. 4.1.1, Prop. 4.1.4]. Hence, we get the following definition for involutive
J-pairs.

Definition 4.0.3
Let p := (u, v) ∈ G and v 6= 0. Let X̄L,Bv(v) be the set of non-multiplicative
variables of lt(v). Then every element of the set

{xkp | xk ∈ X̄L,Bv(v)}

is called involutive J-pair of p. Furthermore, every term that is multiplicative for
lt(u) and lt(v) is called a multiplicative term for p.

4.1 Involutive J-Criteria (I) for the Pommaret
Division

With the notions from the last section we now can go to our first theorem. It
will later be discussed however that this version will not be our basis for the
implementation. For the purpose of a better reading flow we first prove some
lemmas.
First, we want to recall small lemmas combining some notions used in the

definitions above. Furthermore, some of these lemmas are just the involutive
version of results in [7].

Lemma 4.1.1
A pair (u, v) ∈M with v 6= 0 that is inv. super reducible by a syzygy (u1, 0) ∈ G
is also inv. covered by it.

Proof. It applies lt(u1) |L,Bu lt(u) and lt(u1)
lt(u) · 0 = 0 ≺ lt(v).

Lemma 4.1.2
Let p := (u, v) ∈ M be inv. regular reducible at least once by G. If a regular
normal form (u′, v′) of p is an element of G, then p is inv. covered by (u′, v′).
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Proof. From our assumptions we know that lt(u′) = lt(u) and lt(v′) ≺ lt(v).
Therefore, we get lt(u′) |L,Bu lt(u) and lt(u)

lt(u′) lt(v
′) = lt(v′) ≺ lt(v).

Lemma 4.1.3
The relations “inv. covered by”, “inv. reducible by a syzygy” and “inv. super reducible
by a non-syzygy” are transitive on G.

Proof. Let (ui, vi) ∈ G for i = 1, 2, 3. Now assume that (uj, vj) is inv. covered by
(ui, vi) for 1 ≤ i < j ≤ 3. Then lt(u1) |L,Bu lt(u2) |L,Bu lt(u3) and

lt(u2)

lt(u1)
lt(v1) ≺ lt(v2) and

lt(u3)

lt(u2)
lt(v2) ≺ lt(v3)

This implies

lt(u3)

lt(u1)
lt(v1) =

lt(u3)

lt(u2)

lt(u2)

lt(u1)
lt(v1) ≺

lt(u3)

lt(u2)
lt(v2) ≺ lt(v3).

Next, we assume that (uj, vj) is inv. super reducible by (ui, vi) for 1 ≤ i < j ≤ 3.
If v1 = v2 = 0, then lt(u1) |L,Bu lt(u2) |L,Bu lt(u3) and we are done.
So, let’s go to the next part of the claim, where we have vi 6= 0 for 1 ≤ i < j ≤ 3.
Since a syzygy is only inv. reducible by another syzygy we obtain v3 6= 0, too. By
definition, this implies

lt(u1) |L,Bu lt(u2) |L,Bu lt(u3)

and
lt(v1) |L,Bv lt(v2) |L,Bv lt(v3).

In addition, we get

lm(u2)

lm(u1)
=

lm(v2)

lm(v1)
and

lm(u3)

lm(u2)
=

lm(v3)

lm(v2)
.

We multiply both sides of the equations with each other and obtain

lm(u3)

lm(u1)
=

lm(v3)

lm(v1)
,

and thus, we are done.

For the next Lemma, we have to extend the spectrum of our notions a bit.
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Definition 4.1.4
If for (u, v) ∈ M there is a (u′, v′) ∈ G with lt(u′) |L,Bu lt(u), lt(v′) | lt(v), and
lt(u)
lt(u′) = lt(v)

lt(v′) , we call (u, v) pseudo reducible by (u′, v′).

Although, the next lemma may not look very interesting, it will be used in later
proofs for optimization of the final algorithms for the Pommaret division. Hence,
we will only prove it for this division. Now, as the Pommaret division is global, we
are not bound by G.

Lemma 4.1.5
Let (u, v) ∈M with v 6= 0, G ⊆M finite and L = P be the Pommaret division.

a) If (u, v) is eventually inv. super reducible by G where at least one inv.
reduction is regular, then it is inv. covered by G. This stays true for arbitrary
involutive divisions L.

b) If (u, v) is inv. covered by some pair (u′, v′) ∈M which in turn is inv. super
reducible by G, then (u, v) is inv. covered by G.

c) If (u, v) is pseudo reducible by (u′, v′) ∈M and if (u′, v′) is inv. covered by
G, then (u, v) is inv. covered by G.

Proof. ad a): We calculate an inv. regular normal form p1 := (u1, v1) of (u, v). Note
that lt(u) = lt(u1) and lt(v1) ≺ lt(v) since we only performed regular reductions.
According to our assumptions, p1 is inv. super reducible by some p2 := (u2, v2) ∈ G.
In the case of v2 = 0, this implies

lt(u2) |L,Bu lt(u1) = lt(u) and
lt(u1)

lt(u2)
lt(v2) = 0 ≺ lt(v).

Therefore p is inv. covered by p2. For v2 6= 0 it follows that

lt(u2) |L,Bu lt(u1) = lt(u) and
lt(u1)

lt(u2)
lt(v2) =

lt(v1)
lt(v2)

lt(v2) = lt(v1) ≺ lt(v).

Hence, p is always inv. covered by G.
ad b): If (u′, v′) is inv. super reducible by a syzygy (u2, 0), then (u, v) is inv. covered
by the same syzygy since lt(u2) |P lt(u′) |P lt(u). Hence, we assume as in part
a) that (u2, v2) is not a syzyzgy. Then lt(u2) |P lt(u′) and lt(u′)

lt(u2)
= lt(v′)

lt(v2)
. Because

(u, v) is inv. covered by (u′, v′) we have lt(u′) |P lt(u) and lt(u)
lt(u′) lt(v

′) ≺ lt(v).
Hence, we have

lt(u2) |P lt(u′) |P lt(u) and
lt(u)

lt(u2)
lt(v2) =

lt(u)

lt(u′) lt(v2)
lt(v′)

lt(v2) =
lt(u)

lt(u′)
lt(v′) ≺ lt(v),
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and thus, (u, v) is inv. covered by G.
ad c): As p′ is inv. covered by G, there exists a pair (u2, v2) ∈ G such that

lt(u2) |P lt(u′) and
lt(u′)
lt(u2)

lt(v2) ≺ lt(v′).

From lt(u)
lt(u′) = lt(v)

lt(v′) it follows that

lt(u2) |P lt(u′) |P lt(u) and
lt(u)

lt(u2)
lt(v2) =

lt(u′) lt(v)
lt(v′)

lt(u2)
lt(v2) ≺

lt(v)

lt(v′)
lt(v′) = lt(v).

Therefore, we are done.

The next lemma is very important for both divisions. And of course, we aim to
find a computational approach to compute strong L-bases. The following lemma is
the first step towards this goal. Later, we will make a few more assumptions to
show that the statements indeed are equivalent. Nevertheless, without any further
assumptions being made, we obtain the following result already.

Lemma 4.1.6
Let L be an involutive division. Let G ⊆M be a finite set. Then the implications
“a)⇒ b)⇒ c)” hold, where

a) G is a strong L-basis of M .

b) Every involutive J-pair of elements of G is eventually inv. super reducible by
G.

c) Every involutive J-pair of elements of G is inv. covered by G or inv. super
reducible by G.

Proof. We first prove “a)⇒ b)”. Suppose, G is a strong L-basis. Now let p be an
involutive J-pair of an element of G. Since p ∈ M , we know that p is involutive
reducible. If the reduction is super, we are done. Otherwise the reduction is regular,
and we calculate an inv. regular normal form which lies again in M . Therefore, it is
still inv. reducible and now it must be an inv. super reduction. Hence, b) is shown.
Now suppose b) is true. We write again p := (u, v) ∈ M for an arbitrary

involutive J-pair. By definition of a J-pair we know v 6= 0.
Applying b), we can conclude that p is eventually inv. super reducible by G. If no
regular reduction is possible, p is inv. super reducible and c) is true. However, if
an inv. regular reduction is possible, we apply lemma 4.1.5 a) and we are done.

We need one more rather technical lemma before we come to the actual result of
this section.

32
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Lemma 4.1.7
Let L = P be the Pommaret division. Let G ⊆ M be a finite set. Suppose that
every J-pair in G is inv. covered or inv. super reducible by G.
Let (u, v) ∈ M be non-zero and suppose there is a pair p1 := (u1, v1) ∈ G with
v1 6= 0 such that

(i) lt(u1) |P lt(u) and

(ii) tlt(v1) := lt(u)
lt(u1)

lt(v1) is minimal under all elements inG that satisfy condition (i).

Then the following statements are true:

a) tp1 is not inv. covered by G.

b) If t contains a non-multiplicative variable for lt(v1) then there exists a pair
p′ := (u′, v′) ∈ G such that v′ 6= 0 and tp1 is inv. super reducible by p′.

c) If G is inv. head autoreduced w.r.t. the v-part then tp1 is not inv. regular
reducible by G.

Proof. Since (u, v) 6= (0, 0) we conclude lt(u) 6= 0. Now lets go into the first
statement.
ad a): Assuming that a) is false we will provide a contradiction as follows.

We assume that tp1 is inv. covered by a pair (u2, v2) ∈ G. But this implies
lt(u2) |P tlt(u1) = lt(u) and lt(u)

lt(u2)
lt(v2) ≺ tlt(v1), violating condition (ii).

ad b): By our assumptions t is multiplicative for lt(u) and contains a non-
multiplicative variable for lt(v1). Let l := deg(t) and xk be the variable with the
largest index occurring in t. Since t contains a non-multiplicative variable, xk must
be non-multiplicative for lt(v1), too. Note, that xk |P t. Furthermore, xkp1 is an
inv. J-pair. By our assumptions there are now two possibilities.
In the first case xkp1 is inv. covered by G. Then there exists (u2, v2) ∈ G such

that
lt(u2) |P xklt(u1) and

xklt(u1)

lt(u2)
lt(v2) ≺ xklt(v1).

But because xk |P t is true and t is multiplicative for lt(u1), we obtain

lt(u2) |P tlt(u1) and
tlt(u1)

lt(u2)
lt(v2) ≺ tlt(v1),

which contradicts a).
Now, for the second case we assume that xkp1 is inv. super reducible by a pair

p3 := (u3, v3) ∈ G. If v3 = 0, then xkp1 is also inv. covered by p3 because v1 is
non-zero by our assumptions (see lemma 4.1.1). But we have just shown in the
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first case that this leads to a contradiction. Therefore, we have v3 6= 0. Now, by
definition we obtain the relations

lt(v3) |P xklt(v1) and lt(u3) |P xklt(u1) |P tlt(u1).

If in addition to this the relation lt(v3) |P tlt(v1) is true, we are done since xkp1
and tp1 have the same leading coefficients ( because then tp1 would be inv. super
reducible by p3). So let us suppose that this is not the case, i.e. there must be a
non-multiplicative variable for lt(v3) left in t

xk
. Then, we iterate our arguments, now

taking the variable xh appearing in supp( t
xk

) with the largest index and looking at
the J-pair xh(u3, v3). Note that xh |P t

xk
, or equivalently xhxk |P t holds (remember

that h ≤ k).
Then, we end up again with a pair p4 := (u4, v4) ∈ G with v4 6= 0, from which we
know that it reduces xhp3 inv. super. In particular, we have

lt(v4) |P xhlt(v3) |P xhxklt(v1) and lt(u4) |P xhlt(u3) |P xhxklt(u1) |P tlt(u1)

Repeating this procedure, we finish after at most l = deg(t) steps, obtaining a pair
which satisfies all properties that we have claimed in b).

ad c): We prove this by contradiction. Suppose, that tp1 is inv. regular reducible
by a pair p2 := (u2, v2) ∈ G. Hence, v2 6= 0. Now,we are facing three cases.
Firstly, t = 1. This leads to lt(v2) |P lt(v1), and hence, to a contradiction because
G is inv. head autoreduced w.r.t. the v-part.
Also, if t 6= 1 is a multiplicative term for lt(v1) we have lt(v1) |P tlt(v1) and still
lt(v2) |P tlt(v1). Therefore, we must have lt(v2) |P lt(v1) or lt(v1) |P lt(v2) violating
again our assumption in c).
Hence, only one case is possible: t 6= 1 contains a non-multiplicative variable for
lt(v1). But in this case, we can apply b) and obtain a pair p′ as described in b).
Then, tp1 cannot be inv. regular reducible by p′. So, we have p′ 6= p2. However,
we have lt(v′) |P tlt(v1) and lt(v2) |P tlt(v1). This again implies lt(v2) |P lt(v′) or
vice versa, both violating the condition that G is inv. head autoreduced w.r.t. the
v-part.

Note, that in lemma 4.1.7 we only used the condition “G is inv. head autoreduced
w.r.t. the v-part” for the proof of part c). This will be very important for our
following work. Because later, it will turn out that we have to drop this condition
as we cannot realize it for every input.

Nevertheless, we will prove as the first result of this master thesis an involutive
version of the J-criteria (theorem 3.4.13).
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Theorem 4.1.8 (involutive J-Criteria (I))
Let P be the Pommaret division. Let G ⊆M be a finite set and involutively head
autoreduced w.r.t. the v-part. Moreover, assume that we have 〈Sig(G)〉P = Tmn .
Then the statements of lemma 4.1.6 are equivalent, i.e. the statements

a) G is a strong P -basis of M .

b) Every involutive J-pair of elements of G is eventually inv. super reducible by
G.

c) Every involutive J-pair of elements of G is inv. covered by G or inv. super
reducible by G.

Proof. Due to lemma 4.1.6 we only must show the implication “c)⇒ a)”. And we
are doing this by reductio ad absurdum. For this purpose, suppose that G is not a
strong P -basis of M and that c) holds. Then – since G is finite – there is only one
way for G not to be a strong P-basis: There must exist a pair (0, 0) 6= (u, v) ∈M
which is not inv. reducible by G. We take the one with smallest signature. We
set T := lt(u) and observe that T 6= 0 as otherwise v would be 0, too. Now, as
〈Sig(G)〉P = Tmn is true by our assumptions, we can choose a pair (u1, v1) ∈ G with
the following two properties:

(i) lt(u1) |P lt(u) and

(ii) tlt(v1) := lt(u)
lt(u1)

lt(v1) is minimal under all elements inG that satisfy condition (i).

Note, that v1 6= 0 as otherwise (u, v) would be inv. reducible by a syzygy (u1, 0)
due to condition (i). Hence, we are in the position to apply part c) of lemma 4.1.7,
telling us that t(u1, v1) is not inv. regular reducible by G. Next, we set c := lc(u)

lc(u1)

and
(u′, v′) := (u, v)− ct(u1, v1).

First, we observe that lt(u′) ≺ lt(u) = T . For the v-part, there are several cases to
consider.
If lt(v) 6= tlt(v1), i.e. v′ 6= 0, we argue as follows: Because (u′, v′) has a smaller

signature than (u, v) it must be inv. reducible by G. For the moment, we reduce
by syzygies if possible. Doing so, we only can reduce the signature, and hence,
the remainder is still inv. reducible by G. But now, it is inv. reducible by a pair
(u2, v2) with v2 6= 0. Also note that v′ has not been changed during the reduction
process so far.
Since lt(v) 6= tlt(v1), there are two cases.
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• If lt(v) ≺ tlt(v1) is true, then we have lt(v′) = tlt(v1). Hence, we get the
relations

lt(v2) |P lt(v′) = tlt(v1) and
tlt(v1)
lt(v2)

lt(u2) � lt(u′) ≺ T = tlt(u1),

which implies that t(u1, v1) is inv. regular reducible by G leading to a
contradiction to our result above obtained from lemma 4.1.7 c).

• If, on the other hand, tlt(v1) ≺ lt(v) is true, then we get lt(v′) = lt(v).
Therefore we obtain

lt(v2) |P lt(v′) = lt(v) and
lt(v)

lt(v2)
lt(u2) � lt(u′) ≺ T = lt(u),

which now implies that (u, v) is inv. regular reducible by G leading once
again to a contradiction since (u, v) is not inv. reducible by G due to our
assumptions from the beginning of this proof.

Accordingly, there is only one possibility left, i.e. we have lt(v) = tlt(v1). If t = 1 or
if t 6= 1 is a multiplicative term for lt(v1), then lt(v1) |P lt(v), lt(u1) |P lt(u) and
lt(v)
lt(v1)

= lt(u)
lt(u1)

= t and hence, (u, v) is inv. reducible by (u1, v1) ∈ G. But this is not
possible. So t 6= 1 has at least one non-multiplicative variable for lt(v1). Applying
part b) of lemma 4.1.7 we obtain a pair (u3, v3) ∈ G such that t(u1, v1) is inv.
super reducible by (u3, v3). But because of tlt(u1) = lt(u) and tlt(v1) = lt(v), this
implies that (u, v) is involutive reducible by (u3, v3) (not necessarily inv. super
reducible since we might have lc(v)

lc(v1)
6= lc(u)

lc(u1)
), which is a contradiction to our choice

of (u, v).

Remark 4.1.9
We shall keep in mind that if we can prove lemma 4.1.7 c) under some other
assumptions, the proof of theorem 4.1.8 can stay the same. Also, we shall not
forget that all elements in M with smaller signature than tl(u1) = lt(u) would inv.
reduce to (0, 0). Hence, the strong L-basis is finished up to this signature. We will
later refer to those two facts.
But for now, we will discuss why we should change our preconditions in the

first place, and, that we cannot just discard the condition “G is involutive head
autoreduced w.r.t. the v-part”.

Let us assume that G is at least involutive regular autoreduced. For a term order
satisfying e1 ≺ e2 we discuss the ideal 〈x2, x〉EK[x]. Hence, G := {(e1, x

2), (e2, x)}
is indeed involutive regular autoreduced with 〈Sig(G)〉P = Tmn . However, there
are no involutive J-pairs to consider and the modified version of theorem 4.1.8
would tell us that G is a strong P-basis. This is of course not true since there is
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no syzygy contained in G. This shows that we cannot drop our assumptions in
theorem 4.1.8 so easily. But it shows simultaneously that there is no involutive
reduction changing G into an involutive head autoreduced set w.r.t. the v-part.
The only possible reduction would increase the signature and, thus, by definition
is not involutive. Therefore, there are some ideals for which we cannot fulfill all
needed assumptions in theorem 4.1.8. Moreover, we now know that replacing the
condition by “G is involutive regular autoreduced” is not enough.
But fortunately, we will find a way around this problem by allowing some necessary,
yet “forbidden” reductions. Of course, we want to avoid reductions as much as
possible. Thus, we will also aim to obtain some criteria how to decide whether or
not a forbidden reduction shall be done. Keep in mind that we want to do only
regular reductions if possible, because this way we have control over the signature
which is very helpful for applying our J-criteria.
We want to point out that this small example is also a counterexample for the
theorem 5 in [1], where the authors left out preconditions for the v-part of G.
Furthermore, they have used a weaker criterion in statement c) since there, a J-pair
can only be discarded if it is covered (remember that they present the semi-inv.
version), whereas we can discard inv. super reducible J-pairs, too.

Now, it is of course useful to have some criteria optimizing the test of the
statement c) of theorem 4.1.8. We have already found some of these criteria (e.g.
lemma 4.1.1), but there are more to discover. We will find some of them in the
next section.

4.2 Involutive J-Criteria (II) for the Pommaret
Division

To prepare the next result of this thesis, we will introduce some rather technical
lemmas in order to avoid an incomprehensible and long proof. In this section we
set L = P to be the Pommaret division, if not noted otherwise. Still, we shall note
that some of the lemmas remain valid for arbitrary involutive divisions even though
we show it only for L = P .

Lemma 4.2.1
If (u, v) ∈M is inv. regular reducible by (u1, v1) ∈ G and inv. super reducible by
(u2, v2) ∈ G with v2 6= 0, then there is a multiplicative term t for lt(u2) and lt(v2)
such that lt(u) = tlt(u2), lt(v) = tlt(v2) and t(u2, v2) is inv. regular reducible by
(u1, v1).

Proof. Since (u, v) is inv. super reducible by (u2, v2) with v2 6= 0, it follows that
there exists a coefficient c ∈ K, a multiplicative term for lt(u2) and lt(v2) such
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that
lt(u2) |P lt(u), lt(v2) |P lt(v) and

lm(v)

lm(v2)
=

lm(u)

lm(u2)
= ct.

In particular, tlt(v2) = lt(v) and tlt(u2) = lt(u). Now, because (u, v) is inv.
regular reducible by (u1, v1), we get lt(v1) |P lt(v) = tlt(v2). Thus, there are two
possibilities:

• tlt(v2)
lt(v1)

lt(u1) = lt(v)
lt(v1)

lt(u1) ≺ lt(u) = tlt(u2), and hence, t(u2, v2) is inv. regular
reducible by (u1, v1), or

• tlt(v2)
lt(v1)

lt(u1) = lt(v)
lt(v1)

lt(u1) = lt(u) = tlt(u2) and

lc(v)

lc(v1)
6= lc(u)

lc(u1)
. (4.2.1)

We have to prove now, that lc(v2)
lc(v1)

6= lc(u2)
lc(u1)

in order to show the claim of the
lemma.
Because (u, v) is inv. super reducible by (u2, v2), we obtain

lc(v)

lc(v2)
=

lc(u)

lc(u2)
. (4.2.2)

Starting from (4.2.1), we know lc(v) 6= lc(u)
lc(u1)

lc(v1). Plugging in (4.2.2), we
end up with

lc(u)

lc(u2)
lc(v2) 6=

lc(u)

lc(u1)
lc(v1)

and hence, with
lc(v2)
lc(u2)

6= lc(v1)
lc(u1)

,

which is exactly what we needed to show.

Lemma 4.2.2
Let L be an arbitrary involutive division. Let t ∈ Tn, (u, v) ∈ G and let t(u, v) ∈M
be inv. regular reducible by (u1, v1) ∈ G. If lt(v1) |L,Bv lt(v) then (u, v) is inv.
regular reducible by (u1, v1).

Proof. We know that t(u, v) is inv. regular reducible by (u1, v1). This, by definition,
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implies lt(v1) |L,Bv tlt(v) and

tlt(v)

lt(v1)
lt(u1) ≺ tlt(u) or

(
tlt(v)

lt(v1)
lt(u1) = tlt(u) and

lc(v)

lc(v1)
6= lc(u)

lc(u1)

)
.

(4.2.3)

In addition we have lt(v1) |L,Bv lt(v). Hence, we can write (4.2.3) without “t” and
we are done.

With this lemma we immediately can prove a first proposition aiming towards
the next result of this thesis. It collects some properties about the pair (u1, v1)
from the proof of theorem 4.1.8, some of which are written down already in lemma
4.1.7. Recall, that tlt(u1) was the smallest signature belonging to a pair in M
which is not inv. reducible by G. Also, we have discussed that we may assume that
G is at least inv. regular autoreduced.

Proposition 4.2.3
Let G ⊆ M be inv. regular autoreduced, (u1, v1) ∈ G and t multiplicative for
(u1, v1). Let t(u1, v1) not be inv. covered by G. Moreover, assume that (u, v) ∈M
inv. reduces to (0, 0) for all (u, v) with lt(u) ≺ tlt(u1).
If t(u1, v1) is inv. regular reducible by (u2, v2) ∈ G then tlt(v1) = lt(v2) and

t 6= 1.

Proof. Let t(u1, v1) be inv. regular reducible by (u2, v2). Because G is inv. regular
autoreduced, we obtain t 6= 1.
Since t is multiplicative for lt(v1) this implies lt(v1) |P tlt(v1) and, as t(u1, v1) is
inv. regular reducible, lt(v2) |P tlt(v1). Therefore, lt(v2) |P lt(v1) or vice versa.
In the first case, we can apply lemma 4.2.2 and find that already (u1, v1) is inv.
regular reducible by (u2, v2) contradicting the assumption that G is inv. regular
autoreduced.
Accordingly, lt(v1) |P lt(v2) and lt(v1) 6= lt(v2) must hold. Then, by definition, there
exists a multiplicative term t′ 6= 1 for lt(v1) such that t′lt(v1) = lt(v2). Because of
the fact that t′ and t are both multiplicative terms for lt(v1) and because of the
relation

t′lt(v1) = lt(v2) |P tlt(v1),

we know that t′ |P t. We now look at t′(u1, v1). Since t(u1, v1) is inv. regular
reducible by (u2, v2) and lt(v2) |P t′lt(v1), we can apply lemma 4.2.2 once again,
returning the statement that t′(u1, v1) is inv. regular reducible by (u2, v2).

Our aim now is to show, that t′ = t. Then we have shown everything claimed in
the proposition. For that we recall that we already know t′ |P t and thus, t′ � t.
So, suppose that we have t′ ≺ t. Then t′lt(u1) ≺ tlt(u1). By our preconditions,
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this implies that t′(u1, v1) reduces inv. to (0, 0) by G where at least one reduction
is inv. regular. Performing first all inv. regular reductions we see that t′(u1, v1) is
eventually inv. super reducible by G. From lemma 4.1.5 a) we know that t′(u1, v1)
is inv. covered by a pair (u3, v3) ∈ G. Thus, we have lt(u3) |P t′lt(u1)

t′lt(u1)

lt(u3)
lt(v3) ≺ t′lt(v1). (4.2.4)

Because of t′ |P t and t is multiplicative for lt(u1) we obtain even lt(u3) |P tlt(u1).
Finally, multiplying t

t′
to (4.2.4), we receive the fact that even t(u1, v1) is inv.

covered by (u3, v3) ∈ G, and hence, a direct contradiction to our precondition.

Now, having these results, we can tackle the main theorem. For that, we have
to introduce a certain subset of M . The order of the numbering in the following
definition might be not intuitive, however becomes meaningful when we later refer
to it.

Definition 4.2.4
Let G ⊆M be finite and inv. regular autoreduced. Then we define the set BP (G)
of bridging pairs as follows. For any (u2, v2) ∈ G we check if

(i) there exists a pair (u1, v1) ∈ G such that lt(v1) |P lt(v2), set t := lt(v2)
lt(v1)

,

(ii) t is a multiplicative term for lt(u1),

(iii) t(u1, v1) is inv. regular reducible by (u2, v2) and

(iv) t(u1, v1) is not inv. covered by G.

If and only if all four conditions are satisfied, the pair t(u1, v1) is contained in
BP (G). Furthermore, we call a bridging pair with smallest signature an essential
pair for G.

It may seem to be generic that BP (G) is the empty set because there are many
conditions the elements in BP (G) have to satisfy. However, it will turn out, that
during the computations, this set most likely is not empty and will play a major
role. Nevertheless, our goal will be to obtain a set G at the end of the algorithm,
where BP (G) = ∅ is true.
We want also to mention why this notion of bridging pairs is chosen. But this
might be more reasonable when we start to formulate the algorithm. Then, we will
see, that they are indeed “bridging” in some meaningful sense.
Now, we begin to show our next result. From our previous work we know that

all we have to do is to redo part c) of lemma 4.1.7 under the new conditions which
we will introduce in the following proposition.
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Proposition 4.2.5
Let P be the Pommaret division. Let G ⊆M be finite and inv. regular autoreduced.
Moreover, assume that BP (G) = ∅. Furthermore, assume that every J-pair of
elements in G is inv. covered or inv. super reducible by G.
Let (u, v) ∈M be non-zero and suppose there is a pair p1 := (u1, v1) ∈ G with

v1 6= 0 such that

(i) lt(u1) |P lt(u) and

(ii) tlt(v1) := lt(u)
lt(u1)

lt(v1) is minimal under all elements inG that satisfy condition (i).

Moreover, assume that (u′, v′) ∈ M inv. reduces to (0, 0) for all (u′, v′) with
lt(u′) ≺ tlt(u1). Then tp1 is not inv. regular reducible by G.

Proof. Let us suppose that tp1 is inv. regular reducible by (u2, v2) ∈ G. Then,
applying lemma 4.1.7 a) we know that tp1 is not inv. covered by G.
For the moment, suppose that t is a multiplicative term for lt(v1). With

proposition 4.2.3 we can conclude tlt(v1) = lt(v2) and t 6= 1. Hence, we collect the
following properties:

• We have lt(v1) |P lt(v2) and t = lt(v2)
lt(v1)

.

• t is multiplicative for lt(u1).

• t(u1, v1) is inv. regular reducible by (u2, v2) and

• t(u1, v1) is not inv. covered by G.

Therefore, t(u1, v1) ∈ BP (G) = ∅ leads to a contradiction. Also note, that indeed
t(u1, v1) is an essential pair for G since there cannot be any other pair in BP (G)
with smaller signature because of the following arguments: All pairs in BP (G) with
smaller signature reduce inv. to zero and there is always at least one reduction inv.
regular by definition of BP (G). Hence, the pair is eventually inv. super reducible
and at least once inv. regular reducible. Applying lemma 4.1.5 a) we know, that the
pair would be inv. covered by G contradicting one condition for being an element
in BP (G).
Thus, t is not 1 and contains a non-multiplicative variable for lt(v1). With lemma
4.1.7 b) there exists a pair p′ := (u′, v′) ∈ G such that v′ 6= 0 and t(u1, v1)
is inv. super reducible by p′. Now, applying lemma 4.2.1, we know that there
exists a multiplicative term t′ for lt(v′) and lt(u′) such that tlt(u1) = t′lt(u′) and
tlt(v1) = t′lt(v′) and such that t′(u′, v′) is inv. regular reducible by (u2, v2), too. t′
cannot be 1, as otherwise G would not be inv. regular autoreduced.
Also, t′(u′, v′) is not inv. covered by G, because it has the same leading

terms as t(u1, v1). Therefore, we are in the upper case again and we can apply
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proposition 4.2.3 and get analogously t′(u′, v′) ∈ BP (G) = ∅, leading to yet another
contradiction.

Now, the actual inv. J-Criteria becomes a corollary. Nevertheless, we will
formulate it.

Theorem 4.2.6 (Involutive J-Criteria (II))
Let P be the Pommaret division. Let G ⊆M be finite and inv. regular autoreduced.
Moreover, assume that we have 〈Sig(G)〉P = Tmn and that BP (G) = ∅. Then the
following statements are equivalent:

a) G is a strong P -basis of M .

b) Every involutive J-pair of elements of G is eventually inv. super reducible by
G.

c) Every involutive J-pair of elements of G is inv. covered by G or inv. super
reducible by G.

Proof. According to lemma 4.1.6 we only have to show “c) ⇒ a”. Remark 4.1.9
tells us that for this purpose we only need to show a modified version of lemma
4.1.7 c) and that proposition 4.2.5 is that modified version.

4.3 Algorithm: Strong P-Basis

Finally, we are able to formulate an algorithm that is suitable for computing a
strong P -basis.
In order to not waste too much time on computations we choose the strategy of
smallest signature since by this our set G will not change already treated pairs due
to inv. regular autoreductions.
Let JP (G) be the set of all inv. J-pairs of a set G. We start with a set

G := {(ei, fi) | 1 ≤ i ≤ m}

satisfying the precondition 〈Sig(G)〉P = Tmn . Since elements in JP (G) ∪ BP (G)
cannot be syzygies we can extract them from G and collect them in a set H. Next,
we will attack JP (G) and BP (G) simultaneously always searching for the element
p ∈ JP (G) ∪BP (G) with smallest signature. Our goal for p ∈ JP (G) is to add, if
not already existing, a pair p1 to G ∪H such that p is inv. covered by p1 or inv.
super reducible by it. For this, p1 is set to be an inv. regular normal form of p.
Then p is eventually inv. super reducible by p1 and by applying lemma 4.1.6 we
know, that we can discard p from JP (G).
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For p ∈ BP (G) we always take an essential pair because of the strategy of the
smallest signature. And this is exactly what we need to do by our proof of
Proposition 4.2.5. Then, we calculate one of its inv. regular normal forms and add
it to G ∪ H. Hence, p is now inv. covered by G ∪ H (see lemma 4.1.2) and not
contained in BP (G) anymore.
Adding an element to G may extend the set JP (G) ∪ BP (G) and thus we are
interested in finding criteria to discard as much pairs as possible from these sets.
Indeed, we have the following lemma.

Lemma 4.3.1
Let p ∈ JP (G) ∪BP (G).

a) If p is inv. covered by JP (G) ∪BP (G), or

b) if p ∈ JP (G) is inv. super reducible by (JP (G) ∪BP (G)) \ {p}, or

c) if p ∈ BP (G) is inv. super reducible by BP (G) \ {p}, or

d) if p is pseudo reducible by p′ := (u′, v′) ∈ BP (G) \ {p},

then it can be discarded. In particular, for every G there is an unique essential
pair.

Proof. Since all these relations are transitive by lemma 4.1.3, we may assume that
p is the only element we have to consider.
ad a): Since we will add an element g to G ∪H such that p is inv. covered or inv.
super reducible by g we know by lemma 4.1.5 a) and b) that p will be inv. covered
by the new G ∪H.
ad b): Let p be inv. super reducible by p′. Then, we will provide a g for G ∪H
such that p′ is inv. covered or – if p′ ∈ JP (G), inv. covered or inv. super reducible –
by the new G∪H. Applying lemma 4.1.5 b), we know that p is inv. covered by the
new G ∪H or – if p′ ∈ JP (G), inv. covered or inv. super reducible by it. Hence, it
can be discarded.
ad c) and d): We will provide a g for G∪H such that p′ is inv. covered by the new
G ∪H. Hence, by lemma 4.1.5 we are done.
Now, we want to show, that for any signature occurring in BP (G) there will

be only one element left in BP (G) after applying a)-d) to each element one
by one. To see this, assume that for a given signature, there are to elements
(u1, v1) 6= (u2, v2) ∈ BP (G) with lt(u1) = lt(u2). According to a), we must have
lt(v1) = lt(v2) as otherwise one of the two would be inv. covered by the other.
Note, that since both elements are bridging pairs, the v-parts are not zero. Now,
applying d), we know that the first pair considered would have been discarded.
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Remark 4.3.2
Because we now know, that the essential pair is unique, its notion may become
more transparent. Also, if we look back to the proof of the involutive J-criteria,
we worked with the essential pair of G. However, when we look at bridging pairs
in general, it turns out that we need them to perform a forbidden reduction step.
Every time a regular normal form p has a v-part that is not an inv. normal form,
we may enter an element to BP (G) with the same leading term in the v-part as
p, and with the property that is now inv. regular reducible. Hence, for an inv.
irreducible element p with reducible v-part we have introduced a bridging pair with
the same leading term in the v-part, allowing us to continue the reduction with
inv. regular reduction steps. Also note, the pair p is not important anymore for
our inv. bases in the sense that neither its v-part nor its u-part will appear in it.
However, its J-pairs might be necessary – and the same holds for the bridging pairs
introduced with the help of p.

By the way, it is easy to see, that by theorem 4.2.6, G ∪H is a strong P -basis
for M if BP (G) = ∅ and every element in JP (G) is inv. covered or inv. super
reducible by G ∪ H. However, since we are aiming to compute two Pommaret
bases the proof of termination is not trivial. Based on this issue, one may think
of dropping the goal to compute a Pommaret basis for Syz(F ). This approach,
we will follow in the subsection 4.3.2. But for now, we first prove an important
proposition which is the involutive version of proposition 3.4.10.

Proposition 4.3.3
Let G = {(u1, v1), . . . , (uk, vk)} be a strong P-basis of M . Then

(i) G0 := {ui | vi = 0, 1 ≤ i ≤ k} is a weak Pommaret basis of Syz(F ).

(ii) G1 := {vi | vi 6= 0, 1 ≤ i ≤ k} is a weak Pommaret basis of I = 〈F 〉.

Proof. For (i), let u ∈ Syz(F ) \ {0} be a syzygy. Then (u, 0) ∈ M . As G is a
strong P-basis of M , (u, 0) is inv. reducible by some (ui, vi) ∈ G. Since a syzygy is
only inv. reducible by a syzygy, we obtain vi = 0 which implies ui ∈ G0. Moreover,
the reduction is inv. super, and hence, lt(ui) |P lt(u). But this means that G0 is a
weak Pommaret basis of Syz(F ).
For the second part of this proof, we look at v ∈ I \ {0}. Then, v must be a linear
combination of F . Therefore, there exists a u := (u1, . . . , um) ∈ Rm \ {0}, such
that v = ufT . This implies (u, v) ∈M . Of all possible u we choose the one with
minimal lt(u).
Now, as G is a strong P-basis of M , (u, v) is inv. reducible by a pair (ui, vi) ∈ G.
Let us suppose that vi = 0.
Then we obtain by definition lt(ui) |P lt(u). The corresponding inv. super reduction
leads to an element (u′, v) ∈ M with lt(u′) ≺ lt(u) violating the assumption of

44



4.3 Algorithm: Strong P-Basis

lt(u) being minimal.
So, we must have 0 6= vi ∈ G1. But as (u, v) is inv. reducible by (ui, vi) and vi 6= 0,
this gives us lt(vi) |P lt(v). Accordingly, G1 is a weak Pommaret basis of I.

Now, we want to note here that this proposition would provide us with a Gröbner
basis of Syz(F ) if we were in the semi-involutive case. Indeed, it is enough to
compute only a generating system of Syz(F ) as we could iterate the algorithm
to compute a Pommaret basis of Syz(F ) starting with the obtained generating
system from the first run. Moreover, if we use a semi-involutive variant of our inv.
J-criteria potentially more element will be discarded. This is one of the reasons
why we will focus on this variant of the GVW algorithm.
But first, we put together the results from this section in an algorithm presented
as a pseudo code for the full involutive case. Before we go into the details, we want
to mention that we now restrict to homogeneous ideals as the proof of termination
is easier to show. However, one may adopt this theory to the affine case through
homogenization and dehomogenization arguments.
Before we present the involutive algorithm, we want to point out one notion. If I
is homogeneous, Syz(F ) is too in some sense:

All we have to do is to introduce another notion of degrees of a vector term. For
a term xµ ∈ Tn we set degF (xµei) := deg(xµ) + deg(fi). In particular, this means
for an (u, v) ∈ M that degF (lt(u)) = deg(lt(v)) if v 6= 0. Thus, if the v-part is
homogeneous, the u-part is too.
Also, we want to note an optimization presented in [7]: If (u1, v1) 6= (u2, v2) ∈ G
are two different elements in G, then v2(u1, v1) − v1(u2, v2) is a so-called trivial
syzygy that we can add to the syzygies found so far. However, if we decided to
only keep signatures rather than the whole u-part it is important to note, that
the signatures of the two pairs may cancel each other out, and thus, we know
nothing about the u-part of the syzygy. In such a case, we therefore add nothing
to G. Furthermore, when trivial syzygies are used in the algorithm, inv. super
autoreductions of the set of syzygies found so far is reasonable. Without them, we
can avoid such autoreductions due to our arguments in corollary 3.4.15 as long as
we do not have to perform coordinate transformations.
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InvGVW(F,H0,≺1,≺2, P, q) (Pommart Version)
Input: A set F = {f1, . . . , fm} ⊆ R of homogeneous polynomials, ≺1=≺degrevlex

on R and a compatible term order ≺2 on Rm of type ω, P Pommaret
division, a degree bound q for elements in a Pommaret basis of I. An
autoreduced set H0 of syzygies of F , where H0 = ∅ is possible.

Output: A weak Pommaret basis for I = 〈F 〉, that also contains a Pommaret basis
as a subset; and a weak Pommaret basis of Syz(F ) or an error message
that I or Syz(F ) is not quasi-stable.

Variables: G is an ordered set of pairs (ui, vi) ∈M with vi 6= 0.
H is an ordered set of syzygies (u, 0) of F .
JP (G) is the set of involutive J-pairs of G.
BP (G) is the set of bridging pairs of G.

Step 1: G← {(ei, fi) | 1 ≤ i ≤ m}, H ← H0, BP (G)← ∅
Step 2: Perform an inv. regular autoreduction on G. Fill H with obtained

syzygies, discard them from G, and fill BP (G) with (new) bridging pairs.
Calculate (new) trivial syzygies of G and add them to H. Inv. autoreduce
H. Fill JP (G) with (new) inv. J-pairs of G. Remove all elements from
JP (G) ∪BG(G) =: Q for which the degree of the v-part is greater than
q + 2.

Step 3: while JP (G) ∪BP (G) 6= ∅ do
Step 4: Take elements p := (u, v) ∈ JP (G) ∪ BP (G) =: Q with smallest

signature and then with smallest leading term in the v-part. Do the
following step for all choices of p

Step 5: If

• p is inv. covered by G ∪H ∪Q =: S, or

• p is pseudo reducible by BP (G) \ {p}, or

• p ∈ BP (G) is inv. super reducible by BP (G) \ {p}, or

• p ∈ JP (G) is inv. super reducible by S \ {p},

then discard p and go back to step 3.
Step 6: If there is more than one choice for p left, and one of them is from

BP (G), take it and discard the rest. If all are in JP (G) perform an inv.
regular reduction step from one of them by another one, replace p by the
result of the reduction step and discard all other choices of p.

Step 7: Calculate an inv. regular normal form (u′, v′) of p by G
Step 8: If v′ = 0 then

Step 9: If min

{
degF (lt(u′)), min

(u,v)∈Q
{degF (lt(u))}

}
> q + 1 then

Step 10: return “Syz(F ) is not quasi-stable”
Step 11: endif
Step 12: H ← H ∪ {(u′, 0)}
Step 13: else
Step 14: If lt(v′) is not inv. reducible by the v-part of G and

min

{
deg(lt(v′), min

(u,v)∈Q
{deg(lt(v))}

}
> q then

Step 15: return “I is not quasi-stable”
Step 16: endif
Step 17: G← G ∪ {(u′, v′)}. Go back to step 2.
Step 18: end if
Step 19: end while
Return: {vi | (ui, vi) ∈ G} and {u | (u, 0) ∈ H}
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4.3.1 Correctness of the GVW algorithm

After presenting the main algorithm, we have to consider of course that we aim to
calculate a Pommaret basis which does not exist in general. Schweinfurter et al.
have shown in [10], however, that with the help of coordinate transformations, the
standard algorithm [16, Algo. 4.5] will terminate for computing a Pommaret basis
of an homogeneous ideal and for the degree reverse lexicographic order. But there
are many different ways how to decide if a coordinate transformation is needed
and if so, which would fit the best (see [16, Prop. 5.3.4],[10, Prop. 3.2]). We will
tackle this question later. But for now, we want to prove, that our core algorithm
is correct, if it terminates. For the termination with Pommaret bases as the only
possible output we will of course have to add some steps with transformations.

Remark 4.3.4
We want to note one property of the involutive GVW algorithm, that follows from
the strategy of smallest signatures and the definition of inv. reduction on M : Let us
have added (u, v) to G∪H at some point in the algorithm. As inv. reduction steps
are not allowed to increase the signature, and as we build up our strong P-basis
from smallest signatures, we know for sure that the strong P-basis is finished up
to elements with strictly smaller signature than lt(u)2. Moreover, if we take a
degree compatible term order for the u-part, we can conclude: If deg(lt(u)) = k+ 1
for some k ∈ N, we know that we have a strong P-basis up to the degree k, i.e. a
set G ∪H such that every element in M with a signature of degree less than or
equal to k inv. reduces to (0, 0) by G ∪H3. But as every Pommaret basis of an
homogeneous ideal I has elements with a degree of at most q, and q+ 1 for Syz(F ),
respectively [16, Cor. 5.5.18], all we need to do is to build a strong P-basis up
to the degree q + 1. If I or Syz(F ) are not quasi-stable, we then will find also
elements of degree q + 2 that will increase the involutive span of I or Syz(F ) [16,
Prop. 5.3.7]. Thus, a first step towards the proof of correctness is to show that the
algorithm will produce elements of ascending signature.

Indeed, we will prove that after we have enlarged G by an element (u, v), all
new elements that are about to be added to JP (G) ∪ BP (G) have a signature
greater than lt(u). Indeed, we could show in the next lemma that there are no two
elements in G ∪H with same signature, if we follow the algorithm described so
far. But since we must allow coordinate transformations this may not be the case
anymore after a transformation.

2Here, we do not want to discuss if it is even finished up to elements with signature lt(u).
3Remember that we are only interested in a strong P-basis for ≺1=≺degrevlex.
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Lemma 4.3.5
At some point in the inv. GVW algorithm, consider p := (u, v) ∈ JP (G) ∪BP (G).
If we have just entered an inv. regular normal form p′ := (u′, v′) of p to G∪H, then
after a finite number of loop iterations, we will consider a pair with a signature
that is strictly greater than lt(u′).

Proof. At the moment of entering p′ to G ∪H, there are finitely many elements
in JP (G) ∪BP (G) with same signature. Because of step 6, all those elements in
JP (G)∪BP (G) are now inv. covered by the inv. regular autoreduced G or H, and
hence can be discarded. Thus, all elements left in JP (G) ∪BP (G) have a greater
signature than p′. Therefore, we may assume that the next element we consider
has not entered JP (G) ∪BP (G), yet.
Now, if p′ is a syzygy, we do not enlarge JP (G) ∪BP (G). If p′ is no syzygy, then
we perform an inv. regular autoreduction, only changing elements in G with greater
or equal signature than p′ has. Thus, all new J-pairs that are added to JP (G) have
a signature greater than the one from p′. Also, we claim that elements added to
BP (G) have a strictly larger signature than p′ has. To see this, we consider two
cases.
Firstly, assume that v′ is not an inv. normal form, i.e. there exists (u1, v1) ∈ G

such that lt(v1) |P lt(v′) and lt(v′)
lt(v1)

lt(u1) � lt(u′) as otherwise G would not be

inv. regular autoreduced. Suppose, that lt(v′)
lt(v1)

lt(u1) = lt(u′). So, if we enter

g := lt(v′)
lt(v1)

(u1, v1) to BP (G), then g is inv. regular reducible by p′. Thus, we must

have lc(v′)
lc(v1)

6= lc(u′)
lt(u1)

. However, then we know that the reduction (u′, v′)− lm(v′)
lm(v1)

(u1, v1)
is inv. regular, too, and thus, G not inv. regular autoreduced. Hence, we have
lt(v′)
lt(v1)

lt(u1) � lt(u′).
Secondly, assume that there is a pair (u2, v2) ∈ G such that lt(v′) |P lt(v2)

and lt(v2)
lt(v′) lt(u

′) � lt(u2). Our candidate for BP (G) is h := lt(v2)
lt(v′) (u

′, v′). So, what
we have to show is lt(v2) 6= lt(v′). For this, suppose it is not true, i.e. we have
lt(v2) = lt(v′).
Therefore, we have in total lt(v2) |P lt(v′), and from lt(v2)

lt(v′) lt(u
′) � lt(u2) we obtain

lt(u′) � lt(v′)
lt(v2)

lt(u2). Now, if especially lt(u′) � lt(v′)
lt(v2)

lt(u2) holds, then (u′, v′)

is inv. regular reducible by (u2, v2) leading to a contradiction. Therefore, we
have lt(u′) = lt(v′)

lt(v2)
lt(u2) = lt(u2). However, the reduction is still inv. regular, if

lc(v′)
lc(v2)

6= lc(u′)
lc(u2)

. So, the quotients must be equal, too. But then the reduction

lm(v2)

lm(v′)
(u′, v′)− lc(v′)

lc(v′)
(u2, v2)

cannot be inv. regular, which is a contradiction to the fact that h is indeed inv.

48



4.3 Algorithm: Strong P-Basis

regular reducible by (u2, v2) (as we assumed h ∈ BP (G)).
Finally, these two cases let us conclude that since every other element in the inv.

regular autoreduced set G, who can lead to new elements in BP (G), have at least
the same signature as p′, every new element in BP (G) has a greater signature than
the one of p′.

Theorem 4.3.6
Let P be the Pommaret division, ≺1=≺degrevlex and ≺2 a compatible term order of
type ω. If the inv. GVW algorithm terminates, it is correct.

Proof. Step 1 guarantees 〈Sig(G)〉P = Tmn at the end as we are not removing any
of the start elements from G, and only are able to reduce them inv. regular. Since
we are performing an inv. regular autoreduction after every step we have added
an element to G (step 2, step 17), our G is inv. regular autoreduced. Now, if the
algorithm terminates, we first dicuss the case that JP (G) = BP (G) = ∅ is true
without having removed elements (u, v) with (degF (lt(u)) =) deg(lt(v)) > q + 2.
In the context of the algorithm, this means, that every J-pair of an element in G
has been studied in step 5 or 6. Lemma 4.3.1 tells us, that every element in JP (G)
removed in step 5 is now inv. covered or inv. super reducible by G ∪H. Also, the
lemma says that every element removed from BP (G) will be inv. covered by the
new G ∪H and hence not be a bridging element anymore. However, we have to
argue about step 6 a bit. First, assume that one of the candidates is from BP (G).
Then, it will be inv. regular reducible by G and an inv. regular normal form will be
added to G ∪H. Hence, it will be inv. covered by it and so every other candidate.
Now, assume that all candidates are from JP (G). As they have passed step 5,
every single one of them must be inv. regular reducible by the any other choice of
p. We perform one of the regular reductions. Now, as the obtained pair will be inv.
covered or inv. super reducible by the new G ∪H, all the candidates for p will be –
according to lemma 4.1.2 – inv. covered by the new G∪H. Hence, we end up with
a set G ∪H for which BP (G) = ∅ and every element in JP (G) is inv. covered or
inv. super reducible by G ∪H. Applying the inv. J-criteria (II), we are done with
this part.
Next, we discuss if Q = ∅ is only the case because all elements that should be

contained in Q have a degree in the v-part that is greater than q + 2 and therefore
have been removed by step 2. Because we have come so far in the algorithm without
getting an error message, every element (u, v) with degF (lt(u)) = deg(lt(v)) ≤ q+1
has been considered. So, if no error message stopped the algorithm (as it must be
true for this case) I and Syz(F ) both are quasi-stable, as the Pommaret bases do
not contain elements with a greater degree than q + 1 by our thoughts in remark
4.3.4. Hence, the algorithm has provided us a strong P-basis up to the degree q+ 1.
And according to our observations in remark 4.3.4 the output is correct.
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If we get the error message that Syz(F ) is not quasi-stable this means that we have
added a syzygy (u′, 0) to H. In particular, the syzygy is not involutive reducible
by H as otherwise p would have been inv. covered by H in step 5. So, we have
extended the involutive cone of lt(H). But every Pommaret basis of Syz(F ) must
consist of elements with degF (lt(u′)) ≤ q + 1 as we have seen above. Because of
the strategy of smallest signature, lt(u′) will still be inv. irreducible by any H that
we compute during the algorithm as lt(u′) ≺ lt(u) for all u ∈ H that were added
after u′4. Because the signatures of considered pairs are ascending by lemma 4.3.5
and there are only finitely many missing for a strong P-basis up to the degree q + 1
(we have a term order of type ω), Syz(F ) cannot be quasi-stable5 and the error
message is legit.
For the last case, we assume that the algorithm finished with an error message for I.
Here, we have similar arguments as for Syz(F ). We must have added an element of
degree greater than q in the v-part which only can add elements to Q with at least
degree q+1 in the v-part. However, all elements that are interesting for a Pommaret
basis of I are from degree less than q + 1 (and elements of degree q + 1 must inv.
reduce6 to zero by a Pommaret basis). However, as our algorithm has computed a
strong P-basis up to the degree of the current signature (i.e. the one corresponding
to v′), we have already a (weak) Pommaret basis of I computed as all other v-parts
have a degree of q + 1 or greater due to the last component of the if-statement in
step 14. Still, we have added an element to G with deg(lt(v′)) > q which is not inv.
reducible by the v-parts of G. Hence, there cannot exist a Pommaret basis of I
and the corresponding error message is correct.

Next, we introduce a notion to connect the GVW algorithm to the standard-
algorithm [16, Algo. 4.5].

Definition 4.3.7
Let G ⊆ M be inv. regular autoreduced. Let pi := (ui, vi) ∈ G for i = 1, 2. Let
lt(v2) |P lt(v1) and t := lt(v1)

lt(v2)
. If tp2 ∈ BP (G) then we call tp2 the proxy of p1.

Corollary 4.3.8
Let ≺1=≺degrevlex be a term order on R and ≺2 a compatible term order on Rm

of type ω. Then for every p ∈ G that has been considered already, the proxy is
considered after finitely many steps, too.

Proof. As by lemma 4.3.5, after a finite number of steps, we look at an element
with strictly larger signature, and as ≺2 is of type ω, the proxy of p is considered

4We can use the same arguments as for the proof of corollary 3.4.15.
5Otherwise the algorithm would have computed Syz(F ) and lt(u′) could not be inv. irreducible
by Syz(F ).

6Here, we mean the common notion of inv. reducibility without any restrictions by a u-part.
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after a finite number of steps.

Remark 4.3.9
We want to mention that from this corollary one cannot imply immediately that
we are computing an inv. normal form of all considered v-parts. Because during
the process of the reductions it may be the case that a pair does not possess a
proxy because, in the notion of definition 4.3.7, tp2 /∈ BG(G). In such a case, we
would stop the reductions. Still, this would mean that the proxy would inv. reduce
to (0, 0) by the final G.

Now the next lemma is the most important one to prove the termination of the
semi-involutive case. Still, we will formulate the full involutive variant. Indeed,
everything we have discussed would only differ in the division on the u-part.
Moreover, if we substitute “|L,Bu” by “|”, one can go through all the proofs and
verify that they will stay the same if not become shorter. In fact, some of the
proofs get easier as we do not need all of the arguments we needed for justifying
why we can write “|P,Bu”. Nevertheless, as we have introduced the notions for the
full involutive case, it is more convenient to present the following lemma also with
the same notions.

Lemma 4.3.10
Let pi := (ui, vi) be the i-th element that entered G ∪H in step 12 or 17. Then,
we have pi -P pj for i < j.

Proof. Suppose for i < j we have pi |P pj, i.e. lt(ui) |P lt(uj) and lt(vi) |P lt(vj).
Therefore, there exist terms t1, t2 such that

lt(vj) = t1lt(vi) and lt(uj) = t2lt(ui).

If t1 ≺ t2, then t1lt(ui) ≺ t2lt(ui) = lt(uj). Hence, pj is inv. regular reducible by
pi leading to a contradiction since pj is an inv. regular normal form.
Thus, t2 � t1. This implies t2lt(vi) � t1lt(vi) = lt(vj). Now, suppose that pj is an
inv. regular normal form of p := (u, v) ∈ JP (G) ∪BP (G). If p was at least once
inv. regular reducible, then lt(vj) ≺ lt(v) and hence,

lt(ui) |P lt(uj) = lt(u) and
lt(u)

lt(ui)
lt(vi) = t2lt(vi) � lt(vj) ≺ lt(v).

But this means that p should have been discarded in step 5 as it is inv. covered by
pi. Thus, p is not inv. regular reducible, and in particular not an element of BP (G).
Therefore, p ∈ JP (G) cannot be inv. super reducible either, because otherwise it
would have been discarded and pj would not have been calculated. So, we know
that p is inv. irreducible, and hence, p = pj.
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We are in the case t2 � t1. Suppose, we have t2 ≺ t1. Then, t2lt(vi) ≺ lt(vj) = lt(v)
and t2lt(ui) = lt(uj) = lt(u). This would mean that p would be inv. covered by
pi ∈ G and not be entering G in the first place. Accordingly, we have t2 = t1. But
then, p is inv. reducible by pi contradicting the observation that p is inv. irreducible
by G.

Lastly, we want to present a proof for the termination. For the full involutive
case, we can easily argue as we will find out in the next proposition.

Proposition 4.3.11
Let P be the Pommaret division, ≺1=≺degrevlex and ≺2 a compatible term order of
type ω. Then the full involutive GVW algorithm terminates.

Proof. As we can discard all elements of degree greater than q + 2, there are only
finitely many terms left to consider since T≤q+2 := {t ∈ Tn | deg(t) ≤ q + 2} is
a finite dimensional subvector space of R. As the signature is strictly increasing
after finitely many pairs that we have to consider (lemma 4.3.5), we cannot look at
the same pair infinitely many times. Thus, as we have term orders of type ω, the
algorithm will terminate.

We want to note here that once again; this proof is only that short because we
are in the homogeneous case where have an a priori knowledge about the degree of
an inv. regular normal form. In the general case, lemma 4.3.10 might be useful.
Moreover, as a last remark, we want to point out the following result.

Remark 4.3.12
Because the proxy is considered after finitely many steps by corollary 4.3.7, we
indeed compute all necessary inv. normal forms of v-parts: The proxy is defined
in such a way that the reduction steps in the v-part can continue, but instead
of reducing v1 by v2 (assuming that lt(v2) |P lt(v1)), we reduce tv2 by v1, where
t = lt(v1)

lt(v2)
. Nevertheless, the result of the reduction step is the same up to a constant

factor. Thus, if the proxy survives step 5 of the algorithm, we go one step further
towards an inv. normal form of v1. However, the algorithm will keep (u1, v1) in
G ∪H, although the v-part is inv. reducible, and hence, v1 will be not part of a
strong Pommaret basis of I. Still, after the algorithm has returned his output,
such elements are fairly easy to detect. We only have to look, if the v-part is inv.
reducible. Then we know, that his proxy (if it exists) will be considered. Thus, we
can just discard v1 from the output and we will obtain a strong Pommaret basis of
I.
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4.3.2 Semi-involutive GVW algorithm

At this stage, we are able to prove termination for the semi-involutive case. One
can verify all the results we have achieved so far also hold for the semi-involutive
case. However, this might not trivially be the case since we do not only have
weaker statements but also weaker assumptions. Still, all of the proofs can be just
rewritten, only changing the involutive division in the u-part to the common one.
In some contexts, one can even leave out arguments that were only necessary for
the full involutive case.
Therefore, we must drop the lines 9-11 from the pseudo code because we will

no longer have a bound for elements in an involutive bases of Syz(F ). Thus, we
cannot decide which elements we can neglect from Q. Still, the proof of correctness
therefore becomes shorter as we neither have to discuss the case of an error message
due to Syz(F ), nor the case that Q = ∅ because we have removed elements from
Q by step 2. But this also means that the proof for termination will be more
difficult because we cannot argue with finitely many elements that are left to be
discussed. On the other hand, we can take in now “Noetherian” arguments. For
the corresponding algorithm (dropping lines 9-11 and using the common division
on the u-part), we will not be able to prove the termination in this thesis. Instead,
we will focus on computing a Pommaret basis of I. For this, we only have to
keep the signatures as they are sufficient for applying the J-criteria. However, this
should only be done for ideals in quasi-stable position because we cannot gain
any information about the transformed syzygies when we only keep the signatures.
Thus, if the need of coordinate transformations is not excluded one should still
carry the whole u-part.
As we have a degree bound for the v-parts, we can now neglect all elements in
Q with a degree greater than q + 1. Note, that this implies, that we may have
not found all (leading terms of) syzygies of the Gröbner basis of Syz(F ), when we
interrupt the algorithm at this degree bound. Nevertheless, this is not a problem
for our case where we start with the Janet version of the GVW algorithm7. This
algorithm will provide us a Gröbner basis of Syz(F ). So, this weakness of the
semi-inv. Pommaret version may only play a role, if one wants to use it without
the Janet version.
Now, our semi-inv. algorithm for the Pommaret division arises as follows from the
full involutive version:

• Only keep signatures rather than the whole u-part.

• Use the common division for the u-parts.

• Drop lines 9-11.
7We will introduce it in section 4.4.
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• Return a weak Pommaret basis of I, and syzygies/signatures of syzygies.

Theorem 4.3.13
Let P be the Pommaret division, ≺1=≺degrevlex and ≺2 a compatible term order of
type ω. Then the semi-involutive GVW algorithm terminates.

Proof. We prove that the algorithm terminates independently from our choice of
using only signatures. So, we assume for this proof that we keep the whole u-part.
Suppose that the algorithm does not terminate. Then we obtain in the notion of
lemma 4.3.10

〈u1〉 ⊆ 〈u1,u2〉 ⊆ . . .

〈v1〉P ⊆ 〈v1, v2〉P ⊆ . . . ,

where pi := (ui, vi) and at least one “⊆” at same height is a “(”. As the upper
chain must become stationary, the chain of the v-parts must be strictly ascending
at some point.
Now assume, that a finite Pommaret basis exists. As the signatures are increasing
by lemma 4.3.5 and we have there a term order of type ω, too, we need only finitely
many iterations to get beyond the degree q + 1 in the v-part. Hence, the algorithm
has computed a weak Pommaret basis according to remark 4.3.4. Thus, after
interrupting the algorithm, our input will be a weak Pommaret basis.
On the other side, if I is not quasi-stable, by [16, Prop. 5.3.7] there must exist
an element which has a degree greater than q + 1 and yet increase the involutive
cone of the current lt(G). This will still be the case after we have considered all
elements in V with degree less than q + 1. Thus, our algorithm will terminate with
an error message that I is not quasi-stable.

Before we discuss the case where we need coordinate transformations we want to
give a last remark.

Remark 4.3.14
As the pi stand for elements that are added to G ∪H, we cannot argue, that the
lower chain must become stationary in the case that a Pommaret basis exists. On
the other hand, all syzygies we find, will be encoded in some uj . But still, we would
not be able to argue for the full involutive case that the upper chain must become
stationary as not all ui refer to a syzygy. In fact, we have no good argument for
the termination of the full involutive algorithm at this point if we would not neglect
all elements from Q with a degree greater than q + 2, because we have no better
argument, yet, that both chains must become stationary besides cutting them off
at the degree bound. Thus, this proof is only valid for the semi-inv. case where we
only focus on the v-part.
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4.3.3 Coordinate Transformations and Index of Safety

Now, we are ready to show a version of the inv. GVW algorithm with coordinate
transformations. We will only discuss here the full involutive algorithm, as it is
more complex because we have to put Syz(F ) in quasi-stable position, too.
From private communication with Matthias Orth it is known that we can transform
a not quasi-stable I and Syz(F ) step by step simultaneously into quasi-stable
position. In general, we then have to restart the algorithm after each step. However,
as syzygies will transform into syzygies, we can use them for our J-criteria. Hence,
the strength of the inv. GVW algorithm now becomes clear. So, many of the J-pairs
might be inv. covered. Also, the set of bridging pairs might not be as big as it
would be without the syzygies that we obtained from the transformation of the old
syzygies. Thus, we should also work on the problem, where we need to start over
after a transformation. In particular, we will introduce an index of safety in this
chapter.

Remark 4.3.15
Basically, we are using the inv. GVW algorithm trying to compute a Pommaret
basis of I and Syz(F ). For this, we first calculate a Janet basis of I, obtaining a
degree bound q for elements in a Pommaret basis of I (see [16, Cor. 5.5.18]). In
fact, we can take the inv. GVW algorithm for the Janet division which we will
present in the next section. If the Janet basis is also a Pommaret basis, we are
done with I. So let’s assume, that it is not a Pommaret basis. Then, because
we only increase the leading term of the v-parts via JP (G), we check which inv.
J-pairs xkp ∈ JP (G) are not inv. reducible by G ∪H and satisfy deg(lt(xkv)) > q
or degF (lt(xku)) > q + 1. If so, we need to perform a coordinate transformation
on the u- or v-part. Let us discuss here the v-part, the u-part works similar8. Let
j = cls(lt(v)). Then we transform by xj 7→ xj +xk. However, this forces us to start
our calculations all over again. Also, we may ask ourselves, if we need to perform
the transformation directly after finding such an inv. J-pair, or if we can push it
back a little until we cannot do anything else but to transform the system. In fact,
our algorithm does exactly this: According to steps 9 and 14, we return an error
message if and only if I or Syz(F ) are not quasi-stable9. But in such a case, we
perhaps can choose between several coordinate transformations after analyzing Q.
So, we have to face the question which of the possible transformations is the best
in the context of computational efficiency. Nevertheless, we have to discuss what

8Also, we will discuss later in this remark how do deal with an error message for Syz(F ) coming
from the Pommaret version of the algorithm.

9For the argument corresponding to Syz(F ), one may look up the arguments in the proof of
correctness of the (full) inv. GVW algorithm.
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happens after the transformation. There, we just transform F and all syzygies
with a suitable coordinate transformation. Then we take it as an input for the
Pommaret version of the GVW algorithm. Here of course, one is not forced to take
the full involutive variant, however, we will argue our strategy only for the full
involutive algorithms. The ideas can easily be adapted for the semi-inv. algorithms.
In particular, this means for the pseudo code the following:

Instead of returning an error message for I in step 15, we go through the elements
in Q and check if their v-part is divisible by the v-part of a p = (u, v) ∈ G, but
involutively irreducible by G. If this is the case, we choose the p with maximal
cls(lt(v)). Then every J-pair of p leads to a candidate for a coordinate transformation
as we have described above.
If, on the other hand, an error message for Syz(F ) has been returned in step 10,
then we go through the signatures of Q and check if they are divisible by some
p′ = (u′, v′) ∈ G ∪ H, but not inv. reducible by the signatures of all elements
in G ∪ H. Then we take under all p′ satisfying this condition the one with
maximal j := cls(lt(u′)). For this signature, we have non-multiplicative variables
xk. Therefore, potential coordinate transformations are of the form xj 7→ xj + xk.
After gathering all possible coordinate transformations ψi, we do the following:

1. Transform G ∪H with ψi into G′ ∪H ′.

2. Perform an inv. regular autoreduction of G′ and insert obtained syzygies into
H ′.

3. Compute Q′ := JP (G′) ∪ BG(G′) for the inv. regular autoreduced G′ and
sort it first by signature, then by the leading terms of the v-part.

4. Search the position s of the first element in the sorted Q′ that cannot be
discarded due to our criteria in step 5.

In 4., s is of course dependent of ψi, i.e. we better write s(ψi). The largest value of
s(ψi) is called index of safety. It is so to speak the latest possible starting point of
the algorithm after a coordinate transformation. After we have found the index of
safety, we can continue the involutive GVW algorithm at step 7, taking the element
in Q′ at the position max

i
{s(ψi)} and neglect all elements from Q′ with smaller

signature.
Although this strategy is straight forward to see, it might not be the best if it

comes to an efficient implementation. For such one, a bigger analysis is needed.
For instance, if only a few elements would not be discarded after a coordinate
transformation and by accident, there is one with small signature (so the index of
safety is small), one could try to analyze when the corresponding transformation
is still a better choice then the one related to the index of safety. However, this
might be a difficult question to answer.
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Remark 4.3.16
It is easy to see that a POT-lift is not of type ω. However, as we have a degree
bound for Syz(F ) in the full inv. variant as well, we also can use a POT-lift of a
term order ≺1 of type ω with the following restriction: We just jump to ei+1 if the
signature at position i exceeds the degree q + 1. Then we know, that no element at
position i is of interest for our Pommaret bases, and thus can be pushed back for
the moment. Thereby, we ensure that between two terms, there are only finitely
many other pairs that the algorithm will consider. Whenever we say, we choose a
POT-lift of pseudo type ω we mean to follow this strategy. It is worth mentioning
that our algorithm follows this strategy for a POT-lift input as all elements above
the degree q + 2 are neglected and an error message only occurs if there are no
elements (u, v) left with degF (lt(u)) ≤ q + 1. Thus, with the POT-lift, we would
not go any further in position i than to the degree q + 2.

We first want to give an example that it is not guaranteed that a finite Pommaret
basis of Syz(F ) exists only because there is one for I.

Example 4.3.17
I := 〈x, y〉 E K[x, y], where we respect the ordering of x and y, i.e. we have
G := {(e1, x), (e2, y)}. With a POT-lift obeying e1 ≺POT e2, the syzygy module is
generated by xe2 − ye1 and thus, possesses no finite Pommaret basis.

Still, the semi-involutive algorithm here once again shows it benefits. We have
to perform no coordinate transformations on the u-part, which would be necessary
in the full involutive version. Also, the J-criteria will discard more potentially
superfluous elements. But of course, we have also pointed out the disadvantages of
the semi-involutive algorithm, where we might not compute the Gröbner basis of
Syz(F ) completely before interrupting the algorithm.

4.4 Algorithm: Strong J-Basis

The Janet division is not global and therefore we cannot be sure without further
investigation that an inv. J-pair will be covered by a final G just because it was
covered by a subset of it. And of course, we would build up G with the same
strategy as in the Pommaret case, where we neglect inv. covered J-pairs. Fair
enough, a J-pair that is inv. covered by the computed inv. regular normal form
(which will be added to G) will always be inv. covered by it regardless which other
elements are added to G. However, this might not be true for syzygies. In the
semi-involutive variant, on the other hand, we have the ordinary division in the
u-part which helps us finding superfluous J-pairs. Therefore, it is more convenient
to use the semi-inv. variant of the GVW algorithm. Furthermore, we will be
able to show that we do not need the concept of bridging pairs. We could go
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straight forward to the main theorem of this section. But before we do, we show a
small lemma that points out the special relation between the Janet division and
reductions on M .

Lemma 4.4.1
Let G ⊆M be finite. G is inv. autoreduced if and only if the v-parts of G are inv.
head autoreduced.

Proof. If the v-parts are inv. head autoreduced, of course, there is no inv. reduction
on G possible.
Now, let G be inv. autoreduced. Suppose, there are two pairs pi := (ui, vi) ∈ G

for i = 1, 2 such that lt(v1) |J,Bv lt(v2). Because pi ∈ G, we get lt(v1) = lt(v2)10.
Now, if lt(u1) 6= lt(u2), then p1 is inv. regular reducible by p2 or vice versa. But if
the signatures are equal, then the reduction is obviously involutive in the sense of
definition 4.0.1.

Well, as we are performing only inv. regular reductions G might not be inv.
autoreduced. But then we could conclude that the v-parts of G are inv. head
autoreduced, which is our assumption of the first inv. J-Criteria. But still, we can
achieve our goal by assuming that G is inv. regular autoreduced – similar to the
assumptions in the second J-Criteria.

Like we did it in the previous chapter, we will present a proof for the full involutive
case, however we will use arguments that remain valid for the semi-involutive case.
Like in the Pommaret case we first prove a rather technical lemma that corresponds
to lemma 4.1.7.

Lemma 4.4.2
Let J be the Janet division. Let G ⊆M be a finite set. Suppose that every J-pair
in G is inv. covered or inv. super reducible by G.
Let (u, v) ∈ M be non-zero and suppose there is a pair p1 := (u1, v1) ∈ G with
v1 6= 0 such that

(i) lt(u1) |J,Bu lt(u) and

(ii) tlt(v1) := lt(u)
lt(u1)

lt(v1) is minimal under all elements inG that satisfy condition (i).

If t contains a non-multiplicative variable for lt(v1) then there exists a pair
p′′ := (u′′, v′′) ∈ G such that v′′ 6= 0 and tp1 is inv. super reducible by p′′.

Proof. ad a): If t contains a non-multiplicative variable for lt(v1), this means that
there is a xk ∈ supp(t), such that xk(u1, v1) is an involutive J-pair. If this J-pair is

10This is a property of the Janet division [16, p. 67].
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inv. covered by G, by definition, there is a (u2, v2) ∈ G such that

lt(u2) |J,Bu xklt(u1) and
xklt(u1)

lt(u2)
lt(v2) ≺ xklt(v1). (4.4.1)

Because t is a multiplicative term for lt(u1), xk is multiplicative, too. Therefore,
lt(u1) |J,Bu xklt(u1). But as we have u1,u2 ∈ Bu, lt(u1) = lt(u2) must hold. In
particular this means lt(u2) |J,Bu tlt(u1) is true. We multiply both sides of the
second relation in (4.4.1) with t

xk
which leads to a contradiction of the choice of

(u1, v1).
Thus, the J-pair is inv. super reducible. Then, there is a p3 := (u3, v3) ∈ G with
v3 6= 0 (as otherwise the inv. J-pair would be inv. covered by it), such that

lt(u3) |J,Bu xklt(u1),

from which lt(u3) = lt(u1) |J,Bu tlt(u1) follows. Also, we have

lt(v3) |J,Bv xklt(v1).

If lt(v3) -J,Bv tlt(v1), we can iterate these arguments, taking now a variable xh
in supp( t

xk
) such that xhp3 is an inv. J-pair of p3. Then there exists a pair

p4 := (u4, v4) with v4 6= 0 such that xhp3 is inv. super reducible by p4. This again
implies lt(u4) = lt(u3) = lt(u1) |J,Bu tlt(u1) (as u4,u3 ∈ Bu). Furthermore, we
have lt(v4) |J,Bv xhlt(v3) |J,Bv xhxklt(v1). If even lt(v4) |J,Bv tlt(v1) holds, we are
done because xhp3 and tp1 have the same leading coefficients. Eventually, we
construct an element (u′′, v′′) ∈ G after at most deg(t) steps such that v′ 6= 0 and
t(u1, v1) is inv. super reducible by (u′′, v′′).

Theorem 4.4.3 (Involutive J-Criteria (III))
Let J denote the Janet division. Let G ⊆M be finite and inv. regular autoreduced.
Moreover, assume that 〈Sig(G)〉J = Tmn . Then the following statements are
equivalent.

a) G is a strong J-basis of M .

b) Every involutive J-pair of elements of G is eventually inv. super reducible by
G.

c) Every involutive J-pair of elements of G is inv. covered by G or inv. super
reducible by G.

Proof. Because of lemma 4.1.6 we only have to show “c)⇒ a)”. Basically, we follow
the proof for the Pommaret case. However, this time, many things will be easier.
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We give again a proof by contradiction. For this purpose, suppose that G is not
a strong J-basis of M and that c) holds. Then – since G is finite – there is only one
way for G not to be a strong J-basis: There must exist a pair (0, 0) 6= (u, v) ∈M
which is not inv. reducible by G. We take the one with smallest signature. We
set T := lt(u) and observe that T 6= 0 as otherwise v would be 0, too. Now, as
〈Sig(G)〉J = Tmn is true by our assumptions, we can choose a pair (u1, v1) ∈ G with
the following two properties:

(i) lt(u1) |J,Bu lt(u) and

(ii) tlt(v1) := lt(u)
lt(u1)

lt(v1) is minimal under all elements inG that satisfy condition (i).

Note, that v1 6= 0 as otherwise (u, v) would be inv. reducible by a syzygy (u1, 0)
due to condition (i).
We again claim that t(u1, v1) is not inv. regular reducible by G. Suppose that

this is not true. Then there is a p2 := (u2, v2) ∈ G such that t(u1, v1) is inv. regular
reducible by p2. t = 1 is impossible since G is inv. regular autoreduced. Also if
t 6= 1 contains only multiplicative variables for lt(v1), we obtain lt(v1) |J,Bv tlt(v1)
and lt(v2) |J,Bv tlt(v1), and hence lt(v2) |J,Bv lt(v1) or lt(v1) |J,Bv lt(v2). In either of
these both cases we obtain lt(v1) = lt(v2). Therefore, applying lemma 4.2.2, we
know that even p1 is inv. regular reducible by p2 which is impossible. Then, t 6= 1
must contain a non-multiplicative variable. Lemma 4.4.2 tells us, that there is a
(u′′, v′′) ∈ G such that tp1 is inv. super reducible by it. Thus,

lt(u′′) |J,Bu tlt(u1) and lt(v′′) |J,Bv tlt(v1) and
tlt(u1)

lt(u′′)
=
tlt(v1)
lt(v′′)

is true. As seen above, we can conclude lt(u′′) = lt(u1). But then we get from
tlt(u1)
lt(u′′) = tlt(v1)

lt(v′′) the equality lt(v′′) = lt(v1). Thus lt(v1) = lt(v′′) |J,Bv tlt(v1). But
then t must be a multiplicative term for lt(v1) contradicting that we have assumed
for this case that t contains a non-multiplicative variable for lt(v1).

This is telling us that t(u1, v1) is not inv. regular reducible by G. Next, we follow
the strategy from the Pommaret case, setting c := lc(u)

lc(u1)
and

(u′, v′) := (u, v)− ct(u1, v1).

First, we observe that lt(u′) ≺ lt(u) = T . For the v-part, there are several cases to
consider.
If lt(v) 6= tlt(v1), i.e. v′ 6= 0, then we argue as follows: Because (u′, v′) has a

smaller signature than (u, v) it must be inv. reducible by G. For the moment, we
reduce by syzygies if possible. Doing so, we only can reduce the signature, and
hence, the remainder is still inv. reducible by G. But now, it is inv. reducible by
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a pair (u3, v3) with v3 6= 0. Also note that v′ has not been changed during the
reduction process so far.
Since lt(v) 6= tlt(v1), there are two cases.

• If lt(v) ≺ tlt(v1) is true, then we have lt(v′) = tlt(v1). Hence, we get the
relations

lt(v3) |J,Bv lt(v′) = tlt(v1) and
tlt(v1)
lt(v3)

lt(u3) � lt(u′) ≺ T = tlt(u1),

which implies that t(u1, v1) is inv. regular reducible by G leading to a
contradiction to our result above.

• If, on the other hand, tlt(v1) ≺ lt(v) is true, then we get lt(v′) = lt(v).
Therefore we obtain

lt(v3) |J,Bv lt(v′) = lt(v) and
lt(v)

lt(v3)
lt(u3) � lt(u′) ≺ T = lt(u),

which now implies that (u, v) is inv. regular reducible by G leading once
again to a contradiction since (u, v) is not inv. reducible by G due to our
assumptions from the beginning of this proof.

Accordingly, there is only one possibility left, i.e. we have lt(v) = tlt(v1). If t = 1
or if t 6= 1 is a multiplicative term for lt(v1), then lt(v1) |J,Bv lt(v), lt(u1) |J,Bu lt(u)

and lt(v)
lt(v1)

= lt(u)
lt(u1)

= t and hence, (u, v) is inv. reducible by (u1, v1) ∈ G. But
this is not possible as (u, v) is inv. irreducible by G. So t 6= 1 has at least one
non-multiplicative variable for lt(v1). Applying lemma 4.4.2 we obtain a pair
(u4, v4) ∈ G such that t(u1, v1) is inv. super reducible by (u4, v4). But because of
tlt(u1) = lt(u) and tlt(v1) = lt(v), this implies that (u, v) is involutive reducible
by (u4, v4) (not necessarily inv. super reducible since we might have lc(v)

lc(v1)
6= lc(u)

lc(u1)
),

which is a contradiction to our choice of (u, v).

Although we have proven the full involutive version of this theorem, from now on
we focus on the semi-involutive variant. The proof can easily be adopted. It is also
a strength of the Janet version that we do not have to consider a set BG(G). As
we have mentioned already in the introduction, Binaei et al. have presented similar
theorem in [1], that only differs in the second condition in the statement c) for
the Janet division. Although we have discussed that their theorem is not correct
(see last paragraph in remark 4.1.9), the proof of termination remains valid for
the Janet division. They have related it to Gerdt’s algorithm [1, Thm. 6]. Thus,
we end up with the following pseudo code, where we mark notions that must be
treated differently in the semi-inv. case. For instance, “inv.∗ super reducible” only
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differs from the notion we have introduced by the division in the u-part. In the
semi-inv. case we of course take the common division rather than the Janet division.
The proof of correctness follows immediately from the involutive J-criteria (III).
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4.4 Algorithm: Strong J-Basis

SemiInvGVW(F,H0,≺1,≺2, J) (Janet Version)
Input: A set F = {f1, . . . , fm} ⊆ R of polynomials, ≺1 on R and

a compatible term order ≺2 on Rm, J Janet division, An
autoreduced set H0 of syzygies of F , where H0 = ∅ is possible.

Output: A weak Janet basis for I = 〈F 〉 and a Gröbner basis of Syz(F ).
Variables: G is an ordered set of pairs (ui, vi) ∈M with vi 6= 0.

H is an ordered set of syzygies (u, 0) of F .
JP (G) is the set of involutive J-pairs of G.

Step 1: G← {(ei, fi) | 1 ≤ i ≤ m}, H ← H0

Step 2: Perform an inv. regular autoreduction on G. Fill H with
obtained syzygies, discard them from G. Calculate (new)
trivial syzygies of G and add them to H. Autoreduce H. Fill
JP (G) with (new) inv. J-pairs of G.

Step 3: while JP (G) 6= ∅ do
Step 4: Take an element p := (u, v) ∈ JP (G) with smallest

signature and then with smallest leading term in the v-part.
Step 5: If

• p is covered by G ∪H ∪ JP (G) =: S, or

• p is inv.∗ super reducible by S \ {p},

then discard p and go back to step 3.
Step 7: Calculate an inv. regular normal form (u′, v′) of p by G
Step 8: If v′ = 0 then
Step 12: H ← H ∪ {(u′, 0)}
Step 13: else
Step 17: G← G ∪ {(u′, v′)}. Go back to step 2.
Step 18: end if
Step 19: end while
Return: {vi | (ui, vi) ∈ G} and {u | (u, 0) ∈ H}
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In this section, we discuss our implementation in Maple 18. For the implementation
we use the package “Groebner” to have access to some optimized functions that, for
example, a test which of two given terms is larger. First, we want to mention how
an element (u, v) ∈ G ∪H is stored. Assume that lm(u) = ctei for some c ∈ K
and t ∈ Tn. We store vectors in lists and (u, v) is represented by

[[c, t, i,u], [lc(v), lt(v), v], X̄P (lt(v))]].

We have implemented a sort function FHelp that sorts elements in G by signature
and then by the leading term of the v-part. This helps us to reduce the computational
time for inv. regular reductions. As regular reductions cannot increase the signature,
we have implemented the function FindIndex that finds the largest element (by
signature) we have to consider for (inv.) regular reductions.
We have then implemented the full and semi-involutive GVW algorithm for
the Pommaret division according to our presented pseudo code with additional
coordinate transformations as described in remark 4.3.15. Here we want to point
out, that only a TOP-lift variant of the algorithm should be used when coordinate
transformations are needed. A POT-lift version would take additional effort and
could not be implemented in our code, yet. Also, the algorithm is not yet free from
all errors if one takes large systems where coordinate transformations are required.
As we wanted to check computationally that no inv. super autoreductions are
needed for H, we decided not to insert trivial syzygies to H. Nevertheless, inv.
super autoreductions will be necessary when coordinate transformations are needed.
And in such cases, these reduction steps will be performed. We have decided to fill
JP (G) with all possible J-pairs at once which is very inefficient but an easy way on
the other hand to exclude mistakes coming from some strategies of filling JP (G).
Nevertheless, other strategies can be implemented fairly easy by just commenting
out some lines in the code. Still, this means that we have computed inv. J-pairs of
an element in G that may get inv. regular reduced before we have to consider its
J-pairs. Thus, we would have spent time in computing the inv. J-pair and finding
out that it is inv. covered by the computed inv. regular normal form. This shows
that we have an inefficient code. We also have not implemented step 6 from the
pseudo-code as it is only a small optimization which seems not to apply very often.
However, the implementation of the corresponding function requires for-loops that
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may take too much time, relatively speaking. Nevertheless, we have done some
optimizations to our code by using the functions FindIndex and FHelp. Also, it
might be useful to only keep the signatures once we have exceeded the degree limit
q + 1 since all following elements are not of interest to us. This might save time for
the calculations in the degree q + 2.

The strength of the implementation is the following. One can choose between a
TOP-lift (encoded in ord = 2) and a POT-lift (ord = 1), the full (Syzbool = true)
and semi-involutive variant (Syzbool = false) and between keeping the whole
u-part (SigOnly = false) or only the signatures (SigOnly = true). Then, one
can call the algorithm by the function StrPBas(F,H0, Syzbool, q, false), where
H0 is an (inv) autoreduced set of syzygies and q a degree bound for elements in a
Pommaret basis of I. The last entry is set to be false initially. It will be set to be
true after we have found out, that a coordinate transformation is required. Then
we call StrPBas recursively with the last parameter, called RestartBool, being true.
After the algorithm has returned a result G and H it should be tested. If
Syzbool = true and SigOnly = false, i.e. we are in the full involutive case where
we keep the whole u-part, the function TestBasis computes all non-multiplicative
prolongations of any syzygy from H and performs involutive reductions. If and
only if all these reductions end with a zero vector the message “True for syzygy
module” is printed. This pays respect to the fact that the function does not test
whether we have found a generating system of Syz(F ). If this error message is
not printed, H is not a weak Pommaret basis of Syz(F ), and thus, this is what
will be printed instead. Moreover, TestBasis does the same check for G regardless
of what choice of parameters we have set (this is meaningful as we always aim to
compute a Pommaret basis of I). Here, we print “Output contains a Pommaret
basis for the ideal”, if and only if all reduction steps return the remainder 0 which
takes two things into account: First, we know that we have a generating system
as we have started with (ei, fi), 1 ≤ i ≤ m. Secondly, it contains the result of
remark 4.3.12. Indeed, the detection of the negligible elements mentioned in that
remark is already implemented at the end of StrPBas. Hence, the function returns
a (strong) Pommaret basis of I. If G is not a weak Pommaret basis, the algorithm
will detect it and print a corresponding message. It is worth mentioning that the
non-involutive GVW algorithm may not have a reduced Gröbner basis contained
in its output as there is no set BP (G) that ensures that the proxy will be reduced.

5.1 Benchmarks

Although we have presented the proof of termination only for homogeneous inputs,
we will present benchmark calculations with affine inputs. Here, we are not
comparing with algorithms that only aim to compute a Pommaret basis or a Janet
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basis of I as our algorithm does more than this. Also, a comparison would be
not fair since our implementation is far away from being completely optimized.
Instead, we make some statistics about the different variants that are provided
by our implementation. Finally, we can compare it with the Janet version of the
semi-involutive variant that has been implemented by Binaei. As only signatures
are saved in this implementation, we shall compare the computational time with our
algorithm where we choose SigOnly = true. And because the algorithm does only
aim to compute a Janet basis of I, we only compare zero dimensional ideals, which
implies that no coordinate transformation will be required and both algorithms
will compute a Pommaret basis.
However, we surely want to investigate with at least a few examples of how our
algorithm works when a coordinate transformation is needed. We return the
coordinate transformations (from top to bottom), the maximal value for the index
of safety1, the number of syzygies, the number of elements in the Pommaret basis
and the used value for q which encodes the Castelnuovo-Mumford regularity Reg(I)
in the related examples.
In order to underline the advantage of the algorithm when syzygies are known, we
will also restart the computations with H0 = H as input, where H is a generating
system or signatures of the generating system of Syz(F ). Thus, we have the
following structure of cells:

runtime [s]: H0 = ∅ discarded elements regular normal forms |H|runtime [s]: H0 = H discarded elements regular normal forms

Therefore, we obtain the following tables for zero dimensional benchmark
problems.

POT-lift Katsura5 (q=6) Katsura6 (q=7) Katsura7 (q=8)
SigOnly=true
Syzbool=false

8.16 140 93 43 84.63 386 188 83 1241.4 1003 372 1563.53 175 50 36.53 450 105 434.6 1113 216
SigOnly=false
Syzbool=true

15.31 144 94 44 200.58 399 191 865.03 179 50 53.5 462 105
SigOnly=false
Syzbool=false

15.28 140 93 43 203.13 386 188 835.13 175 50 53.2 450 105

1Remember that we have an index of safety for every coordinate transformation that we perform.
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TOP-lift Katsura5 (q=6) Katsura6 (q=7) Katsura7 (q=8)
SigOnly=true
Syzbool=false

7.47 112 83 42 80.06 307 164 80 981.95 778 310 1433.64 153 41 33.97 384 84 370.75 918 167
SigOnly=false
Syzbool=true

23.03 111 84 43 364.48 304 167 835.66 153 41 55.06 384 84
SigOnly=false
Syzbool=false

22.34 112 83 42 338.84 307 164 805.47 153 41 53.17 384 84

POT-lift Chandra4 (q=4) Chandra5 (q=5) Chandra6 (q=6)
SigOnly=true
Syzbool=false

0.13 24 26 11 1.05 78 60 26 8.73 224 130 570.09 28 15 0.84 89 34 6.80 250 73
SigOnly=false
Syzbool=true

0.22 24 26 11 1.52 78 60 26 12.80 224 130 570.16 28 15 1.02 89 34 8.58 250 73
SigOnly=false
Syzbool=false

0.20 24 26 11 1.42 78 60 26 12.45 224 130 570.14 28 15 0.97 89 34 8.48 250 73

TOP-lift Chandra4 (q=4) Chandra5 (q=5) Chandra6 (q=6)
SigOnly=true
Syzbool=false

0.14 24 26 11 1.31 78 60 26 11.23 224 130 570.14 28 15 1.23 89 34 9.31 250 73
SigOnly=false
Syzbool=true

0.25 24 26 11 2.02 78 60 26 19.52 224 130 570.16 28 15 1.41 89 34 11.98 250 73
SigOnly=false
Syzbool=false

0.23 24 26 11 2.16 78 60 26 18.50 224 130 570.19 28 15 1.30 89 34 12.16 250 73

One can observe that for the small Chandra benchmark runs, the POT-lift variant
is a bit faster. However, for the Katsura runs the opposite is true. For Katsura7 the
difference is about 260s. Also, the bigger the example is the bigger is the difference
between discarded elements and thus, the amount of saved regular normal form
calculations. However, if we compare the number of discarded elements from a
POT-lift run with a TOP-lift run we can conclude that with a POT-lift more
elements will be discarded. But as the usage of the POT-lift leaded to a larger
runtime, it seems to be the case that too many negligible pairs were calculated.
This might come from the incremental character of the GVW algorithm when a
POT-lift is used. It is also worth mentioning that the semi- and full involutive
variants do not differ very much according to their runtimes. However, only keeping
the signatures has a major impact on the runtime. Now let us compare the runtimes
of our implementation with Binaei’s. Remember, that we take the rimes from the
first row as this row corresponds to the structure of Binaei’s implementation.
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Chandra4 Chandra5 Chandra6 Katsura5 Katsura6 Katsura7
Pommaret 0.13-0.14 1.05-1.31 8.73-11.23 7.47-8.16 80.06-84.63 981.95-1241.4

Janet 0.63 5.34 52.5 43.69 636.09 10155.31

Also, keep in mind, that instead of a POT- or TOP-lift the author chose the
Schreyer ordering. For these examples, we can conclude that our implementation
is about four to five times as fast as the implementation of Binaei for the smaller
examples and five to eight times as fast if it comes to Katsura runs. This is
surprising in the sense that for the Pommaret case we have to consider bridging
pairs. But the answer may lie in the fact that our J-criteria potentially discards
more elements than the J-criteria presented in [1]. Now, one may also think that
this comes from the fact that we did not take the degree of the Janet basis as
our value of q but instead searched heuristically for the Castelnuovo-Mumford
regularity (which was often smaller by 1 for these examples). However, this is not
true. For instance, the run for Katsura6 was repeated with q = 8 and finished
after 91.25s with a TOP-lift. Furthermore, our algorithm only discards elements
of degree in the v-part that is greater than q + 1 (in the semi-inv. variant). So,
this cannot be the reason. Maybe our implementation is that much faster because
our term orders on Rm work better for the GVW algorithm, or because we do not
compute the whole Gröbner basis of Syz(F ) in general. However, this is an open
question at this point.
For investigating the performance of our implementation for inputs where

coordinate transformations are required, we look at the following four rather
small examples.

F1 := {y2, yz + y2, xz + xy}
F2 := {y3 − xyz, yz3 + y4, z2x+ x2y, x2 + xy}
F3 := {y3 − xyz + yz2, yz3 + y2x2, z2x+ x2y, x2 + xy + zx}
F4 := F3 ∪ {xy − t2}

The following table summarizes the obtained information from the calculations.
Here, we chose Syzbool=true and SigOnly=false so that transformations of Syz(F )
would be detected, too. However, the algorithm never returned an error message
for Syz(F ). If the maximal index of safety is represented by “[]”, this means,
that all elements in JP (G) ∪ BG(G) could be discarded for the corresponding
transformation. Thus, we obtain
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TOP-lift runtime |H| |G| Reg(I) transformations max. index of safety

F1 0.63 2 3 2 x 7→ x+ z
y 7→ y + t

[]

F2 20.33 7 7 5 x 7→ x+ t
y 7→ y + z

2

F3 19.45 10 7 5 x 7→ x+ t
y 7→ y + z

2

F4 40.25 18 17 6 y 7→ y + z
x 7→ x+ y

3

All ideals from the examples could be transformed into a quasi-stable position
with two coordinate transformations. The index of safety, however, turned out not
to be as big as expected. But this might change for larger examples, where for
instance many syzygies have small signatures. Nevertheless, it would take much
effort to adjust the algorithm for managing bigger examples.

5.2 Benefits and Issues of Usage of POT- or
TOP-lifts

We have focused especially on TOP- and POT-lifts. In this rather small subsection,
we want to collect properties of the POT- and TOP-lift in the context of the
(semi-)inv. GVW algorithm.
Now, it is well known, that with a POT-lift, the algorithm becomes incremental
[7]. Furthermore, as we are performing coordinate transformations on the u-part,
too, we have to find the signatures of the transformed pairs. For the u-part, this
obviously is easier with a POT-lift than with a TOP-lift as we have to search for
the leading term only in one position of the vector in the u-part. However, when
using the POT-lift, we may be stuck easier at a signature belonging to a position i,
because the POT-lift is not of type ω. Hence, we may go to the degree q + 1 more
often until we jump to elements with a signature at position i + 1. This means,
that we are calculating too many unnecessary pairs, blowing up the set G and
hence increasing the costs for any operation on G, especially the calculation of
new elements for JP (G) ∪BP (G) for the Pommaret case. A POT-lift, in general,
reacts sensitively to these signature-based algorithms as the order of the elements
in F have a major impact on the efficiency as we will recall in a moment. Whereas
a TOP-lift is more convenient for calculations, it is rather expensive when we have
to perform a lot of coordinate transformations. However, it is an open question at
this point which of the two lifts performs better according to the index of safety.
Lastly, we want to recall one more thing:
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It is not guaranteed that a Pommaret basis exists for Syz(F ) just because it
exists for 〈F 〉, at least if it comes to the POT-lift. A simple example was given
in example 4.3.17. In fact, we want to point out that in this example we already
started with a Pommaret basis of 〈F 〉, yet our algorithm would return an error
message for Syz(F ) and the POT-lift. However, one can see that everything would
work perfectly fine if we took a POT-lift and just changed the order of our elements
in F , so that G = {(e1, y), (e2, x)} holds. Then e1 ≺POT e2, however, now the
leading term of the syzygy xe1 − ye2 is ye2. This, on the other hand, points out
how sensitive the inv. GVW algorithm reacts to the POT-lift. This is also based
on the fact that the algorithm becomes incremental for a POT-lift.
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In this thesis, we have introduced the main ideas of the original GVW algorithm and
then presented a corresponding theory for involutive divisions where we discussed
very detailed the algorithm for the Pommaret division. We have developed the
theory also presenting the process of finding computational achievable assumptions
under which an involutive J-criteria holds. We also gave examples of why none of the
made assumptions can be dropped. Moreover, we gave a counterexample for the inv.
J-criteria from [1]. We presented for our version some criteria in order to make an
implementation more efficient and proved the termination of the full and semi-inv.
GVW algorithm. We also pointed out the benefits of both variants and the issues
that go along with them. Then we have introduced coordinate transformations and
the index of safety that arose naturally from our strategy for the algorithm. After
completing the discussion of the Pommaret case, we were able to present a Janet
version of the GVW algorithm. Indeed, we have found out that no bridging pairs
are required. But even though we have proven a full inv. version, we argued that
without further investigations only a semi-inv implementation of the algorithm
is meaningful. In the last chapter, we gave remarks on our implementation and
presented some benchmark computations along with some examples that tested
the functionality of coordinate transformations. However, the computation of the
index of safety turned out to be too expansive in relation to its benefits – at least
if it comes to such small examples.
With the versions of the inv. GVW algorithm for the Pommaret and Janet

version, we gave an algorithm to compute Pommaret bases for homogeneous ideals
and the degree reverse lexicographic order together with a compatible term order
of type ω or a POT-lift of pseudo type ω. In the last subsection, we collected some
properties of these term orders. However, we left out the discussion of the Schreyer
ordering which was used in [1] for the implementation.

Still, the given implementation is only a proof of concept and shall not be used
for bigger examples. For further investigation of this algorithm and its properties
with a POT- or TOP-lift, one may consider the following questions: Is Syz(F ) in
quasi-stable position for a TOP-lift of ≺degrevlex if 〈F 〉 is in quasi-stable position?
Does the POT-lift lead to a bigger maximal value of the index of safety compared
to the one obtained with a TOP-lift?
Furthermore, it might be interesting to find out whether there is a different proof
for the termination of the semi-inv. GVW algorithm for the Pommaret division
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where the computation of a Gröbner basis of Syz(F ) is not interrupted. Lastly,
it should be investigated in detail how the Pommaret variant can be adapted for
affine inputs. And it might be also interesting to discover why our implementation
seems to be much faster than the implementation for the Janet division.
Furthermore, it might be useful to add some of the ideas presented in the introduction
to the inv. GVW algorithm. In particular, one could aim to create a Hilbert-driven
algorithm that uses the substituting method from [14] and the concept of mutant
pairs from [18].
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