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Motivation

Examples of function spaces:
C(R™;R), CY([-1,1]), CYQ;C), LP(X,v), WFP(Q), WP, B .

where 2 domain in R", a € Ry, 1 < p,q < oo, (X, v) measure space, k € N, s € R.
Philosophy: “Objectify” function spaces
Example: We can consider HY/? ag

e interpolation space: L*> N H' — HY? — [?> 4+ H', H'/? = F(L? H")

o embedded space: H' ¢ HY/? ¢ L2

e space of functions f € L? with “one half” of a derivative: |£|1/2f e L?

e trace space: v : H'(R?) — HY/2(R"!) is bounded and surjective.
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Author: Title, Reference

Which topics in the lecture?
Comment

Where in the Notes?

Adams/Fournier Sobolev
Spaces, [1]

Sobolev Spaces, Orlicz Spaces
Functions on Domains

Sections 6.5, 9.3

Bennett/Sharpley: . .
Interpolation of Operators, |2] very nice elaborate proofs Sections 6.2, 9.4, 9.5
Bergh /Lofstrom: often short proofs, Chapters 7, 8
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Section 9.2
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very good introduction,
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ideas

Triebel: Interpolation Theory,
Function Spaces, Differential
Operators, |7|

find everything, difficult for
proofs

Chapter 1, everywhere
inbetween




1 Basic Notions in Interpolation Theory

Picture:

Let A, B be linear Hausdorff spaces and Ay, A1 C A, By, By C B be Banach spaces. Let
T : A — B be a linear operator such that 7|4, : Ao — Bp and T'|4, : Ay — Bj are
bounded. Then:

o {Ag, A1}, {By, B1} are called interpolation couples.

e Question: Can we find Banach spaces A C A, B C B, such that for all T as above,
T e L(A, B)?

o If the answer is “yes”, then A, B are said to have the interpolation property with
respect to {Ag, A1}, {Bo, B1}.

e We will often consider the special case A = B, Ay = By, A1 = Bi. In short: A has
the interpolation property with respect to {Ap, A1 }.

Example 1.1. Let (X, u) be a complete measure space, where p is o-finite. We write
LP = LP(X,p) for the Lebesgue spaces of complex or real-valued functions f : X — C
or f: X — R. It holds that

1. LP% has the interpolation property with respect to {LFo, LP1} if pie = =04 0
0<6<1.



1 Basic Notions in Interpolation Theory
2. The space C1([-1,1]) (= C1([-1,1];R)) does not have the interpolation property
with respect to {C([—1,1]), C%([-1,1])}.

Theorem 1.2. (Convexity Theorem of Riesz/Thorin)
Let 1 < po,p1,90,91 < 00, po # p1, Qo # q1 and T a linear operator such that T :
LPi(X, p) — L%(Y,v), i € (0,1) is bounded linear. Then for every 0 < 6 < 1,

T:LP(X,u) — L¥(Y,v) s linear and bounded,

1 _ 1-0 6 1 _ 1=6 0 )
for o = + o0 %= @ o Furthermore, the estimate

1T equro, a0y < CIT e ooy 1T W zr o
holds true.

Remark 1.3. About the above theorem:

e If the LP are complex-valued, C' = 1. If they are real-valued, C' = 2.
e Example 1 immediately follows from Theorem 1.2.

e Riesz 1926, Thorin 1939/48: Interpolation result which existed before interpolation
theory. The direct proof contains ideas for general constructions of interpolation
spaces (As and Bs in the picture). For us, this means that the proof will be given
in a later Chapter :-).

e Why “convexity”: The theorem shows that the function f given by f (%, %) =
|7\l z(zp,L0) is logarithmically convex, i.e.

1 1 1 1 1 1 1
1-0)(—,—)+60(—,—) ) < f(— 1-0 0
/ (( )(po QO) (pl Q1)> N f(po CIO) f(p1 Q1)
or, in other words, g = log f is convex.
Reminder: f € C’k([ 1)) & f:[-1,1] — R is k-times continuously differentiable and
[ fllew (-1,1]) Zz 0 lu SUpme —-1,1] |f ( )] < oo (we can replace sup by max).

Theorem 1.4. (Mitjagin/Semenov ’76)
For every € € (0,1] let V. : C([-1,1]) — C([—1,1]) be given by

1 T
V@)= [ () = £O) dy, (1)

Then for all e € (0,1], it holds that
1. V. € C>([-1,1)),

2. IVellzee=1,1)) < 2m,
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8 NVellger (1,17 < 57 +2,

4. given fo(y) = /y? + 2 — ¢, we get || fellor—1p) < 2, but (Vafe)'(0) > 2In(5:).

Corollary 1.5. From Theorem 1.4 we get Example 2.

Proof. The proof of the corollary will be given as an exercise. Proof of Theorem 1.4:

In the following, we write C* for C*([—1,1]) and C° for C([-1,1])

1. Differentiation in the integral in (1.1).

2. Calculate:

! ||
Ve f()] < /1 mQHJCHCO dy

1
1
< 4 ———d
flleolal | s o

symﬁetry

1 Yy
< 4|!ch0!9«“\[@ arctaﬂ(m)]é

< 27flfllco.

3. Identity map: h(y) =y, then

1 Ty
(Veh) () /_1x2+y2+52 Y (1.2)

for all # € [~1,1]. Taylor Theorem: If f € C?, then
fly) = £0) + f(0)y +7r2(f,y) (1.3)
for some ro(f,-) € C° and

()l = L2 < gy (19

It follows from (1.2) and (1.3) that

1 X
VN = [ ) = £0) = £Oldy

1
= / %ﬁ(ﬂy) dy.

-1 1'2 + y2 +
Note that
A SR ik Ll P S -
d(E $2+y2+52 - ($2+y2+€2)2 x2+y2+52 y2+€2
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and
d? x  2Jz[a? — 3y? — 367 6|x|

’@(m2+y2+52)|_ (22 +y2 +€2)3 (22 +y2 +2)2

In conclusion, from (1.4), we get

4z
dr 2% + y? + &2

)| [r2(f9)| dy

(Vaf) (@) < /

1

1 y2
< Wlee [ ' du < 2flee

-1

and

! 6
VY@l = [ oy anlfles®

IN

' e
12| fllcr [ 25— dy < 6l

so |[Vafllee < (27 + 2+ 37)|| f|| o2 for all f € C2.

. We see: The f. approximate | - |. Note that

2

I B € _leo
‘O = G appbe= e T
(i.e. Vo :C? — C? is ok!). Moreover, |f.(y)| = ﬁ < |yl <1and |fl(y) =

lyl : : .
< 1. The interesting part is:
/y2+62

1,2 2 2
Vol (@) = / e T R e)dy

1 (22 +y?+€?)

o [PV

B /—1 y? + &2 Y

2/”%/@—1
0

w2 +1

U

o |

du

1/e 1 1/e 1
2 ——du—2 —du
/0 Vu? +1 /o u? +1
1

1/e 1
> 2/ du — 2 arctan(-)
0 u + 1

€

1 1+1 1
> —) — € —
> 21n(1+€) > 21In( €7r/2)>2ln(58).
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O
Notation: We write A — B iff id : A — B is bounded.
Lemma 1.6. Let {Ag, A1} be an interpolation couple. Then
Ag+ A = {a € A:dag € Ag,da; € Al,a:ao—i—al}
with the norm
lallag+a, = inf  ([lagla, + [la]la,)
a=ap+a1,a;€A;

and

AoﬁAlz{aeAZGEAo,CLEAl}
with the norm

lallagna, = max([|alla, [la]la,)
are Banach spaces. It holds that
AyNAL — A; — Ag + Aq.

Proof. Exercise. O

Definition 1.7. (Basic definitions in category theory)

1. A category consists of

a) a class of objects A, B,C,... and

b) a class of pairwise disjoint non-empty sets [A, B]. Each ordered pair (A, B)
uniquely corresponds to a set [A, B]. The elements in [A, B| are called mor-
phisms.

2. For every ordered triplet (A, B,C) of objects, we have the composition of mor-
phisms via
V:[B,C] x [A,B] — [A,C].
Notation: f € [A,B], g € [B,C], then gf = V (g, f). Moreover, we have associa-
tivity
felA Bl,ge [B,Cl,he€|C,D], then (hg)f = h(gf)

and for all objects A, there exists an identity id4 € [A, A], such that for all f €
[B, 4], g € [A, B],
idaf=f andgidg =g.

3. Let €1, €, be two categories. A map F : €; — € is called a (covariant) functor, if

a) for all objects A in €, F(A) is an object in €y,
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b) for all morphisms f € [A, B] in &, F(f) € [F(A), F(B)] is a morphism in €;,
¢) F(ida) = idg(4) for all objects A in &y,
d) F(gf)=F(g)F(f) for all morphisms f € [A, B],g € [B,C].

Example 1.8. The notions categories are strong in some areas of mathematics, like
geometry. For more examples, check e.g. Wikipedia :). For us, the following are relevant,

e Category €;: (complex) Banach spaces A, B,C,... are objects, bounded linear
operators T' € [A, B] = L(A, B) are morphisms.

e Category € interpolation couples {Ag, A1}, {Bo, B1},... are objects and
[{Ao, A1}, {Bo, B1}] = L({Ao, A1}, {Bo, B1})

are sets of morphisms, where T': Ag + A1 — By + By, T € L({Ao, A1},{Bo, B1})
if T|a, : Ao — Bo, T|a, : A1 — Bj are bounded.

Remark 1.9. The space L£({Ao, A1},{Bo, B1}) is a Banach space with the norm

1T\l (140,413 ,4Bo, B }) = MaX(|T| Aol £(A0,B0)s 1T 41 l2(44,B1))

and
ﬁ({Ao,Al},{Bo,Bl}) <—>£(A0+A1,Bo—|—B1). (15)
Proof. Let
D = {(U, V) :U € [,(AQ,B()),V € E(Al,B1),U =V on AN A1}
C  L(Ao, Bo) x L(A1, By),
where

(U, V)llp = 1(U, V)l £(a0,B0)x£(Ar,B1) = Max([|U || £(a0,B0)s IV | 2(a1,81))-
We show that

1. D is a closed subspace of L(Ag, By) x L(A1, By), i.e. it is a Banach space,

2. D is isometrically isomorphic to £({Ao, A1}, {Bo, B1}).

Regarding 1.: Let (U,,V,) — (U,V) € L({Ao, A1},{Bo, B1}) for some (Uy, Vy,)n C D,
80
max(||U = Unllz(ao,80): IV = Valle(ay, 1) — 0.

We have to show that U =V on Ayg N Ay. For every a € Ay N Ay,

Uas—Va=U-Upa+ U, —Vp)a+ (V, —V)a

10
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where U, —V,, =0, (U —-Up)a — 0in By and (V,, — V)a — 0 in B;. By embedding,
(U—-Up)a+ (V,—V)a—0in By+ By,s0 U =V on AgN A;.

Regarding 2.: We consider j : L({Ao, A1},{A1,B1}) — D, given by j(T') = (T|a,,T4,)-
It follows that j is linear and isometric, therefore injective. It remains to show that j is
surjective. Let (U, V) € D. We define T : Ay + A1 — By + By by

Ta = T(ao +ay) = Uao + Ua;.

T is well-defined: Let ag 4+ a1 = a = a}y 4 @}, then a) — ag = a; — a; € Ay N Ay, so
T(ao+ a1) = Uag + Vay = U(ag — ay) + Uah + V) — V(d) — a1) = T(af + a})

since U =V on Ag N A;. Tt is clear that T' € L({Ag, A1}, {Bo, B1}) and j§(T) = (U, V).

It remains to show (1.5). For all a = ag + a1, ap € Ay, a1 € Ay, we have

T = inf b b
[Tallses, = ., inf,  (lbollsy + n]ls,)

[Taoll5y + [ Taxll 5,

<
< max (| T]aoll2(a0,80): 1T |1l ay,51)) (laollag + llasa,)-

We take the infimum over a = ag + a1 to get that
|TallBo+B1, < TNl £(1A0,411,4Bo, B} lall 40 +4, -

O]

We are now in a position to give a formulation of interpolation of Banach spaces in the
language of categories.

Definition 1.10. A functor F : €& — € is called interpolation functor, if for every
{Ao, A1}, {Bo, B1} in &y,

AgNA — f({Ao,Al}) — Ag + Ay

and
T e L({Ao, Al}, {Bo, Bl}) = f(T) = T|]—'({A0,A1})~

If F is an interpolation functor, then the space F({Ag, A1}) is called interpolation space
with respect to {Ag, A1}

Note that this definition “fits” the picture at the beginning of the chapter, as if 7 ({ Ao, 41})
is an interpolation space in the sense of the definition, it also has the interpolation prop-
erty with respect to {Ao, A1}. It is interesting that also something like the opposite holds
true. If {Ap, A1} is an interpolation couple and there is a Banach spaces A such that
AgNA; — A — Ag+ A; and such that Im(7T'|4) C A for all T € L({Ao, A1}, {40, A1)}),
then there exists an interpolation functor Fy such that A = F({Ap, A1}). The proof of
this fact is an exercise, given Theorem 1.14 at the end of this chapter.

11



1 Basic Notions in Interpolation Theory

Definition 1.11. An interpolation functor F is called of type 0, 0 < 6 < 1, if there
exists a constant C' > 0, such that for all {4y, A1}, {Bo, B1},T in €,

1Tl (140,401, 7180.811) < CIT 5o oy 1T 12 ar, 1)

If we can choose C' =1, F is called ezact. Note: It is always true that C' > 1.

Even if we do not know whether a functor is of type 6 or exact, the following theorem
shows that we always have some estimate of this type, uniformly in 7', but depending on
the interpolation space.

Theorem 1.12. Let F be an interpolation functor, {Ag, A1}, {Bo, B1} interpolation
couples and A = F({Ao, A1}), B = F({Bo, B1}) interpolation spaces. Then there exists
a constant C'(A, B) > 0 such that

1Tl za,5) < C(A, B)max (| Tl z(a0,56)> 1Tl 2Ar,B1))
forall T € E({Ao,Al}, {BO, Bl})

In order to prove this theorem, we need the following lemma, whose proof is left as an
exercise.

Lemma 1.13. Let U,V, X, Y be Banach spaces such thatU — X,V — Y and S: U —
V' such that S € L(X,Y). Then we also get S € L(U,V).

Proof. of Theorem 1.12. We use Lemma 1.13 with U = L({A4o, A1},{Bo,B1}), V =
L(A,B), X =L(Ay+A1,By+B1),Y =L(A,By+ By) and S : L(Ap+ A1,Bo+ B1) —
L(A,By + By) given by S(T) = T|a. In view of (1.5), we only need to verify that
V < Y and that S is bounded. The first can be derived directly from the embedding
B — By + Bj. the boundedness of S follows from the embedding A — Ay + A;. More
precisely, for all a € A,

1Tl £A0+A1,Bo+Br) 1@l 40+4,
C(A)HT”E(AoJrAl,BOJrBl) HG’HA7

||TaHBo+Bl <
<

50 [[ST |l za,Bo+B1) < CAT |l £(a9+4,,Bo+By)- Clearly, the constants involved do not
depend on T. O

As a closing to this abstract chapter, we look at the following theorem, justifiying the
use of interpolation functors for interpolation theory.

Theorem 1.14. (Aronszajn/Gagliardo ’65)
Let €1,y be as in Example 1.8, let { Ao, A1} be an interpolation couple and let A be such
that

AgNA; — A— Ay + A

and T(A) C A for all T € L({Ao,A1}). Then there exists an interpolation functor
Fo: € — €1 such that Fo({Ao, A1}) = A.

12



1 Basic Notions in Interpolation Theory
Proof. We give a proof in seven small steps.

1. Preliminary observation: By Lemma 1.13, T'(A) C A implies that 7' € L(A).

2. Construction of Fy: Let {Xo, X1} be an object in €3. We define

X =Fo{X0,X1}) = {reXo+Xi:2x= iTjaj abs. conv. ,
=1
a; € A, Tj € E({Ao,ill}, {Xo0,X1}),7 € N,where
[z|x = _inf Z 151 £ (g A0,41 ), {x0,x0 1@ 114 < o0}
=372, Tja, =
It follows that || - ||x is a norm for X.

3. Show XoN X; — X: Let ¢ : Ag+ A1 — C a bounded linear functional such that
o(a*) =1 for some a* € A. Define ||¢|| = ¢*. For every x € Xy N X1, we define

T,: Ay + A1 — Xo+ X1, Tpa:= @(a)x
It follows that for i € {0,1} and a € A;,

[Tzallx; = le(a)lllz]lx; < llallagrallzllx; < cllallal=]x;,

so T, € L({Ao, A1}, {X0, X1}) and
1Tl (g A0,413 4 X0, x1}) < Cm?X(HTxHL’(Ai,Xi)) < cmax [[zflx; = ¢f|z]| xonx; -
Now for every x € XogN X1, x =T,a* € X and
Izl x < 1Tl 20,413, 1x0,x: 1 la*][ 4 < clla™||allz]| xonx, -

4. Show that X — Xo+ Xi: Let 2 =32 Tja; € X. Then by Remark 1.9,

oo
I2llxorx, < I T5ail x4 x,

7=1
o0
= Z”Ti||£(Ao+A1,Xo+X1)HajHAoJrA1
7=1
o0
< S ITlleaoany o lasla-

J=1

Taking the inf, we get ||z||x,+x, < c||z| x.

13
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5. X is complete: If for some (z), C X, >.o2; |lznllx < oo then by Step 4,
oo lznll x4 x, < 00, so that the limit Y 7 | , = x exists in Xo+X;. Moreover,
by definition, for all n € N, there exist T} € L({Ao, A1}, {Xo, X1}), al € A, such
that z, = 22, TT'a? and

o
Y TP et a xoxaplafla < llzallx +277,
j=1
sox = > 2 > 2 Tra?. Taking the inf, we get [lzllx < 3°02, [lznllx + 1. It

follows that -7 |z, "= z in X.

6. Fo on morphisms in €o: Let {Xo, X1}, {Y0,Y1} be objects in €y, and let S €
L({Xo, X1},{Y0,Y1}) be amorphism. Weset X = Fy({Xo, X1}),Y = Fo({Yo,Y1})
and Fo(S) := S|x. We need to show that Fo(S) € L(X,Y). Let z = > 2 Tjaj,
where T; € L({Ao, A1}, {Xo,X1}), a;j € A. Then Sz = >°2%, STja;, where
ST; € L({Ao, A1}, {Yo,Y1}). Tt follows that for every suitable choice of Tj, aj,

ISzlly < > 18Tl e(ao, Ay vovipllaslla
j=1

IN

1Sl 2¢x0, 30300011 2 Tl 240,417 40,50 p s [ 4.
j=1

Taking the inf, we get || Sz|y < ||S||L({X0,X1},{YO,Y1})H$||X-

7. We show that Fo({Ag,A1}) = A: It is clear that A C Fo({Ao, A1}). For the
opposite inclusion, let a = > 322, Tja; be in Fo({Ao, A1}) as above. By Theorem
1.12, there exists a constant ¢(A), such that for all j € N,

lalla <D I Tajlla < e(A) Y 1 Tilleca0, 4 laslla-
j=1 j=1

Taking the infimum, we get [[alla < c(A)lall 7 {40,4:})-

14



2 The K-Method

Definition 2.1. Let {Ag, A1} an interpolation couple. Then (Peetre’s) K-functional
K:Ry x Ag+ 41 — R

is defined as
K(t,a; Ay, Ay) = inf _ (llaollay +tllar]l4,)-

a=ap+a1,a; €A;

Notation: K(t,a) instead of K (t,a; Ao, A1).

Lemma 2.2. Fiza € Ag+ A1. Then K (-,a) is positive, monotonely increasing, concave
and continuous. It holds that

min(L, t)lall g+, < K(t a) < max(L,8)]|al aysa,- (2.1)

Proof. We see immediately: Positivity, monotonicity and (2.1). It remains to show that
K is concave in ¢, i.e. forall 0 < A < 1,

K ((1 — /\)t1 + /\tg,a) > (1 — /\)K(tl,a) + )\K(tg,a).

Let 0 < t1 <t<t2<ooand)\— ,s0that 1 — A = Q:tl and t = (1 — )ty + AMa.
For every ag € Ag,a; € A; such that ao —|— a1 = a, we have

ta—1 t—
i, (laollao + tallanla) +

tq
X (llaollae + t2llar|la,) = [laollao + tllar]]a, -

to — to —t
We first take the inf on the left hand side to get
to — 1 t—11
K(ty,a) + K(t2,a) < llaolla, + tllax ] a,-
to — 11 to — 11
Now taking the inf on the right hand side gives
to —t t—1t
2 K(t,a) + ———K(ts,a) < K(t,a).
lo — 11 la —t1
Since K (+,a) is concave and monotonely increasing, it is continuous. O

Definition 2.3. Let { Xy, X1} an interpolation couple, 0 < § < 1 and 1 < ¢ < oo. Then
we define
(X(),Xl)qu = {x € Xo+ Xy ”:CH(XO,X1)9,Q < OO},

where

1

tOK(t 7
||~'13”(X0,X1)6 (fo 79=T ] ) , g < o0,
SUP<f<oo b K(t,x), q = .

15



2 The K-Method

Theorem 2.4. Let {Xo, X1} an interpolation couple, 0 < 0 <1 and 1 < g < co. Then

1. the space (X0, X1)g,q @5 an interpolation space with respect to {Xo, X1}, i.e. there
exists an interpolation functor Kg 4 : €3 — €1 such that Ky o({Xo, X1}) = (Xo, X1),4-
The functor Kg 4 is exact and of type 0.

2. For all x € (Xo,X1)0,q,
K(t,z) < cgqt’ 12/l x50, 510, (2.2)

Proof. In the following, let X = (X, X1)g,4. We first show (2.2). The case ¢ = oo follows
immediately. Otherwise, we first write s~%9 = fq fsoo t‘eq%. It follows that

sOK(s,2) = (0g)7K(s,z) </S°°t9qc1t>;

(6q) (/OO t_qu(t,x)qi]f);

1
< (Og) =]l x.

IN

Next, we show 1. in four steps.

L. |- |lx is a norm:

o lz)x =0 = K(t,z)=0 =V

o K(-,Az) =[AK(-,z) = [[Az][x = |A[]z]x,
Minkowski
=

x =0,

(] K(t,xo + SU]) < K(t, 1‘1) + K(t, $2) |SUQ + 131||X < ||$0HX + H$1”X

2. X is complete: Let (x,), be a Cauchy sequence in X. By (2.2) and since K(1,-) =
|- [ xo+x15 (@n)n has a limit = in Xo + X;. Assume now ¢ < oo, analogous proof
works otherwise. For every € > 0, let ng(e) be such that ||z, — z,| < § for every
m > n > ng(e). Moreover, let L > [ > 0. Then by monotonicity of K and (2.1),
there is my(g,0,1, L), such that for all m > mg(e, 0,1, L), m > n,

(/lL[t—9K(t, - xn)]qdf); + (/ZL[t—eK(t, . xm)]qit);

1
. 1
15 o dt) ¢
5 L|lz — zm | xo4+x: (/ t 9q>
. t

€ 1 .1
(qu)ql Nl = zmllxosx, <e

IN |
| N ™
+

IA
I
+
~

Passing to the limit L — oo, [ — 0 yields the claim.

16



2 The K-Method

3. Show that Xo N X; — X — Xy + X;: Let x € Xo N Xy, then K(t,z) <
min(1,t)||z|| x,nx,. W.lo.g., let ¢ < co. Then

1 00
lelly = [ EoKGar T+ [ KeorS

Lo, dt oo dt
”x‘Xomxl(/O ¢ H)qt+/1 t 9(17)
Coq

IN

IN

‘xHX()ﬂXr

(2.2)
Clearly, ||z|lx,1x, = K(1,7) < coqllzlx.

4. Kpq is an exact interpolation functor of type 6: Let T € L({Xo, X1}, {Y0,Y1}),
T #0,x € Xog+ X1, then

K(ETai¥o.y) = ot (ol + o)

< inf T t|| T

< it (W@l +6Til)

< it (Tl ool + Tl v o)

1T\l 2ex,,v7)

= [T £(x0,vc inf (llvollxo + timmr———llz1llx,)-

(X0,Yo) r=x0+x1,2;€X; 0 ||TH£(X0,YO) !
We now set 7 = tM to conclude that
1T 2(x0.,vp)

K(t, Ta; Yb, Yl) < HTHE(Xo,Yo)K(Tv a; Xg, Xl)

It follows that for all x € X,

1
ITzlly = (/ [t‘eK(t,Tx;%,Yl)]qcif)q
0
o0 at\ «
q
< Tleo ([ 0K X0 x0T )
1
Tl £(x0.v0) oo dr «
< HTHE(X(),YO)(%) o / 779K (7, 23 Xo, X1)]7—
1Tl £¢x1,v1) 0 T

—0
el xITIE S v 1T -

If we define Ky ,(T) = T|K9,q({X0,X1})a it follows that Ky, is an interpolation
functor which is exact and of type 6.
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2 The K-Method

O]

Theorem 2.5. (Properties of (X, X1)g4)
Let {Xo, X1} be an interpolation couple, 0 < 0 < 1 and 1 < q < oco. We obtain the
following properties of (Xo, X1)g,q-

1. (X0, X1)o,g = (X1, X0)1-6,4

2. for1 <q<r<o0o,

(X0, X1)0,1 — (X0, X1)o,g — (X0, X1)o,r — (X0, X1)6,00
3. if Xo — Xy, then for all0 <0 <n <1andl < q,r < oo, we get (Xo,X1)g,q —
(XOaXl)n,r-

4. if Xo = X1, then we get (Xo,X1)pq = X1 = Xo in the sense that the norms are
equivalent,

5. there is a constant Cgq > 0, such that for all x € Xo N X,

—01[..110
2l =l

Hx”(Xo,Xl)e,q < C9,Q
6. if we have a second interpolation couple {Yo, Y1} such that X; — Y;, then

(X07 Xl)@,q — (1/07 Yl)G,qa

7 ifg<ooand § <0 orf>1orifg=o00and§ <0 orf > 1, then (Xo,X1)oq" =

” {0}
Proof. Exercise. O

Remark. The following three chapters 3,4 and 5 follow closely Chapters 1 and 2 in [5].
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3 The Trace Method

Let 0 < a < b < oo, Ke {R,C} and let X be a Banach space. We consider in the
following:

e Reminder: Bochner integral and L”((a,b), X).
e Reminder: Sobolev spaces W"™P((a, b); K).

e New: W'P((a,b); X) as the Banach space of functions f € LP((a,b); X), such that
there exists a weak derivative f’ := g € LP((a,b); X), i.e.

b b
/ ) (1) dt = — / dBp(t)dt Vg€ CF(a,b).

Norm: || fllwir(ap):x) = I ze(apyx) + 1[I Lo((ap);x)- In particular, we have the
fundamental theorem of calculus, i.e. if f € WP(a,b; X) and s,t € (a,b), then

F(t) = f(s) + / f(r)dr. (3.1)

3.1 Weighted L? spaces

Definition 3.1. Let 1 < p < co. We write LL(0,00) for the space of real or complex
valued functions f such that

1
e dt\» )
o = ([ 1109 S) <00 itp <.

flz0e) = esssuplf(t)] < .

Lemma 3.2. (Hardy-Young inequality)
Let f:(0,00) — Ry be measurable, « >0, 1 < p < oo, then

< ¢ ds\"dt 1 [~ __ ds
[ (/0 f(8)5> L [Tsemier.



3 The Trace Method

Proof. First, we substitute o = 3 to get that

(rfamtra)” = (e nra)”

0

S ey () AN
/0</0 t P~ s dt> do,

LP(0,00)

IN

Next, we substitute 7 = to,

1/p
< o e 1f( )pd7-> do
1

[ omtad) ([ sy )
([ ooy )"

Definition 3.3. For any Banach space X and 1 < p < oo, we define LE(X) = L£(0, o0; X)
as the space of all Bochner measurable functions f : (0,00) — X such that ¢t — || f(¢)||x
is in L£(0,00). The norm is given by ||| ,z(x) := It = [ F(®)Ix ]| 12(0,00)-

Il
Q|+ /\\

O

3.2 The spaces V(p,0, Xy, X;)

In the following, let 0 < 6 < 1, 1 < p < 0o and {Xp, X1} an interpolation couple.

Definition 3.4. We define

V(p,0, X0, X1) = {veW'((a,b);Xg+X1)V0<a<b<oo:t—tlu(t) e LP(X;)
and ¢ — %' (t) € LP(Xo)}

and

9 9
o]y (p.6,x0,x1) = IIt poxy) + 170 e (xo) -

Lemma 3.5. It holds that

1. V(p,0, X0, X1) is a Banach space,

2. for allv € V(p,0, X0, X1) there exists a continuous extension of v to t = 0.
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3 The Trace Method

Proof. The proof of the first assertion is given as an exercise. For the second assertion,
we use (3.1), the Holder inequality and the embedding Xy — Xy + X7 to get that for all

0<s<t,1<p<ooandp':[%7

t
() — v(s) | x0s, < / [0 1P e ()P0 x,

t 01 1/p t ) o l/p’
</ HT - /pU/(T)H])J(O—‘,-Xl d7'> (/ 7—( /p—0)p d7_>

Cll/ s ) (L4 (1/p = 6)) WP (¢HH7 Wr=0) T Q/p=On L
P (/p=0) _ G4 (1 /p=0)\1/p",

IN

IN

< Cppllvllvigp.xo.x:)(

It follows that v : Ry — Xo + X7 is continuous and if we put s = 0 and look at t — 0 in
the last line, we see that it can be extended continuously to t = 0. The cases p =1 and
p = oo are left as an exercise. ]

3.3 Real interpolation by the trace method and equivalence

Theorem 3.6. Let 0,p and {Xy, X1} be as above. Then
X = (X(),Xl)g,p = {(E € Xo+Xq:Tve V(p, 1-— 9,X1,X0),’U(0) = x}

and

Tl x & inf ) _ = ||z||&"
ol it Alolvga-axx) = el

In order to prove this theorem, we want to use the Hardy-Young inequality, through the
following lemma.

Lemma 3.7. Let u be a function such that ug := t — t%u(t) € L£(0,a;X) for some
Banach space X, 0 <a<00,0<0<1andl <p<oo. Then also the mean value

v(t) == t/o u(s)ds, t >0

has this property and [vell 12 (0.0 x) < 1725146l L2(0,05x)

Proof. The proof is direct if we use the Hardy-Young inequality, Lemma 3.2, as for
’ i

1 <p<oo,
a dt a B t
[ G = [l M) G
0 0 0 X

a t p
< / £(0-1)p (/ [[su(s)llx ds) dt
0 0 S t

1 e ds
< P (6-1)p p
< G SOl S
= (

1
1— e)pHu@HLfZ(O,a;X)‘

21



3 The Trace Method

The case p = oo also follows immediately from the definition. O
We can now proceed to the proof of Theorem 3.6.

Proof. First we show that for a given x € X, we can construct a function v € V(p,1 —
0, X1, Xo) such that z is the trace of v in ¢t = 0 and such that ||z||%" < C|z|x. This
part of the proof is devided into four steps.

1. Let x € X. Then for all t > 0 there exist a; € X and b; € X7 such that x = a; + b;
and

latllxo + tllbellx, < 2K(E,2). (3:2)

It follows that

lz = bl o+ x1 < llaellxox, < Cllaellx, < 2CK (8 2) < 2C|2]|x
by (2.2). It therefore seems that ¢ — b; would be a candidate for v, but it is not
necessarily differentiable and it does not necessarily satisfy t'~%; € LP(R;; X1) or
t179)}, € LP(R4; Xo). In the next step, we use by to construct a suitable candidate.

2. Let
u(t) := z_:lbnilx(nll»i}(t) = z_:l(x —a_1)x(11(f)
and let

Then it still holds that = = lim;—ou(t) = lim;_o v(t) in Xo + X;.

3. We show that v1_g € LE(Ry; X7). Of course, we want to use Lemma 3.7. By (3.2)
and from the monotonicity of t — K (¢, x), we get

[o¢]
1
1—-6 -0
IOl < 3 lfx@;l,;](ﬂ?m“)ff(m””)

< 49K(t,x).

It follows that

00 3 dt 1/p
iolzze, oy <4 ([ OO REoP ) =aledy, 63

SO

lor-oll 2Ry 5x1) < Clizllx-
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3 The Trace Method

4. We show that v]_, € LY(R4; Xo). We use the following remark, to ensure that we
find v € W;"?(0, 00, Xo 4+ X1). If on some interval I C R we have f,g € LY(I;R)

loc
and

f(@) — fly) = / " g(s) ds

for almost all z,y € I, then f € WHL(I;R) and g is its weak derivative, as for
¢,d €I and all p € C(I) with supp(y) € [c, d],

[ ovw-rea=[ [ v aa= [ [ oama=- [ pwowa

We use this fact on ||v(t)|x,+x, and that, by definition,

and

o

holds true almost everywhere for g(t) :==>">" , a XL ]( ) € Xo. Again, from
+ )
the monotonicity of ¢ — K (¢, ), it follows that

lo(t ||X0<Z2K( = >x(1 (0 < 2K (t,2)

n+1’
and therefore

_ =0 0
100 (1), < / l9(5)1x0 s + tlg(8) | x

< 4t—9K(t, ).

As in (3.3), PR, :x) < Cllz]x. In conclusion, we see that
v € V(p,1 —0,X1,Xp), that = lim;ov(t) in Xo + X; and that |z||}" <
[vllvp,1-6,x1,x0) < Cllzllx-

We now look at the opposite inclusion and assume that x € Xy + X; is the trace of a
function v € V(p,1 — 0, X1, Xp) at t = 0. We can write

:U:x—v(t)+v(t):—/0 v'(s)ds +v(t), t >0,

cf. Lemma 3.5. Therefore, we see that

1 t
0K (t,7) < t””t/o o(5) dsllx + 7 o(t) [ x,, £ > 0.
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3 The Trace Method

By Lemma 3.7,

—0
lzllx = It Kt 2) e, ) < Clviollre, xo) + 1vi-ollze, x,) < Cllvllvp,i-6,x1,x0)-

O

Remark 3.8. Let z € (Xo, X1)g,p be the trace of a function v € V(p,1 — 6, X1, Xo).

1. We can improve the regularity of v in the following way: For any smooth non-
negative function ¢ : Ry — R with compact support and fooo ©(s) % =1, we

set
ut) = [ T = [ et T

T

Then we get u € C*°(R4; Xo N X1), u(0) =z and

t—t"u™(t) e LP(Ry;Xp), neN,
PN t”+1_9u(n)(t) € LP(Ry;Xy), ne NU{0},

with norms estimated by c(n)||v|lvp,1-6,x,,x,)- The proof is left as an exercise.

2. Let ¢ € C2°([0,00)) such that ¢ = 1in (0, 1] or any right neighbourhood of 0. Then
uy  t = P(tu(t) € V(p,1 -6, X1, Xo) with trace x at t = 0, where u is chosen
as in 1. Moreover, [[uyllvp1-0.x,,x0) < Cyllullvpi-6,x,,x0) and it has compact
support. This shows that we could also consider a subset of V(p,1 — 0, X1, Xo)
consisting of functions with compact support in order to define an equivalent trace
space.

Corollary 3.9. Let 1 < p < oo. Then (Xo, X1)1-1/p,p 5 the set of the traces att = 0 of
the functions u € WHP(0, 00; X1) N LP(0, 00; Xo).

Proof. Clearly, if 0 = 1 —1/p, uy_g € LE(Ry; X;) iff w € LP(Ry; X;). The corollary
follows if we take into account Remark 3.8. O
The following example gives us an important motivation to consider the trace method.

Example 3.10. Let R*! denote the upper half-space {(t,z) € R x R" : t > 0}.
Then for 1 < p < oo, (LP(R™), W'P(R™));_1/,, is the space of traces of functions

(t,x) = v(t,x) € WHP(RTH) at ¢ = 0.

We close this chapter with a theoretical result on the real interpolation space X =
(X0, X1)p,p which can be derived by the trace method.

Proposition 3.11. Let 0 < 0 < 1 and { Xy, X1} an interpolation couple. For1 < p < oo,
XoN Xy is dense in X = (Xo, X1)gp-
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3 The Trace Method

Proof. Let x € X. By Remark 3.8, z = v(0), where v € C*®(R;XoNX1)NV(p,1—
0, X1,Xo) and t — t27%’ € LE(R,, X1). We set

ze i =v(e) € XoNXy, Ve>0
and show that z. — = in X. We define
ze(t) = (v(e) — v(t))xp0,(?)

to get r.—x = 2:(0), z- € WHP(a,b; Xo) forall0 < a < b < co and 2.(t) = —V' (X0 (1)-
It follows that
lim [0 2L ()| 2 my x0) = O-

We now show that t — t1=92.(¢t) € LY(R,; X1) by using

(e e]
w0 = [ Xoo(s)'(s)ds
¢
and a modified version of the Hardy-Young inequality: For a > 0,p > 1 and positive ¢,

we have that ~ ~ q & ) ~ q
/ v ( / o(s) Bp U o L[ jany g 45 (3.4)
0 t

s t aP Jy s

which follows from Lemma 3.2 by substituting 7 = % and o = % We get that

oo dt © o ds. dt

[ @y § o< [T xoa@slvel S

0 0 t s’ t
1

o ds
2—0
< 25 [ xoa@s @I, S

so that
lim 182 ()| o @y i1y = O-

In conclusion, z: — 0 in V(p,1 — 6, X1, Xo) as € — 0, so ||lz- — z||}” — 0 as ¢ — 0. By
Theorem 3.6, lim._¢ ||z — z||x = 0. O
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4 The Reiteration Theorem

In the following, let { Xy, X1} an interpolation couple. We define two classes of interme-
diate spaces.

Definition 4.1. Let 0 < 6 < 1 and let X be a Banach space such that XoNnX; — X —
XO + Xl.

1. We say that X belongs to the class Jy between X and X if there exists a constant
¢ > 0 such that
lzllx < ezl lel,, Ve Xon X

We write X € J@(X07X]_).

2. We say that X belongs to the class Ky between Xy and X if there is a constant
k > 0 such that

K(t,z, X0, X1) < kt’||z||x, VYzeX,t>0.

In this case we write X € Kp(Xo,X;1). If 6 € (0,1), this means that X —
(X0, X1),00-

Proposition 4.2. Let 0 € (0,1) and let X be an intermediate space for {Xo, X1}. Then
the following statements are equivalent:

1. X € Jp(Xo, X1),

2, (XO,Xl)@J — X.

Proof. The implication 2. = 1. follows directly from Theorem 2.5 (5) with ¢ = 1. We
show that 1. = 2.. For every z € (Xo, X1)p1, let w € V(1,1 -6, X1, Xo) NC®RL; X1 N
Xo) such that u(t) — 0 as t — oo and u(0) = z. We set

olt) = 1/0 u(s) ds,

so that ¢ — t27%/(t) € LL(R,; X1) and t +— t'=%/(t) € LL(Ry; X) follows, similarly as
in Remark 3.8, by Lemma 3.7. It still holds that v(0) = = and that v(¢) — 0 as t — oo,

S0 -
x = —/ v/ (t) dt.
0
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4 The Reiteration Theorem

Let ¢ be such that ||y||x < CHQ”@QH?JHZO for every y € XoN X;. Then

0 -0 —1y1,2—0 0 -0 —0
[0 ()]l x < ellv' ()%, 10/ (O)lx,” = et~ 12" @)%, 10" ()],

Now by Hélder’s inequality, as 1 = ﬁ + ﬁ,

AN

lollx < 1Vl < e [0 O, DN DI e

el (1)

IN

0
*(R+7X1)”t1 V(¢ )HLI (R, Xo0)

IN

cllzll(xo,x1)0,1 -
O

The above proposition shows that for 8 € (0,1), X € Jp(Xo, X1) N Ky(Xo, X1) iff
(X0, X1)p1 — X — (X0, X1)8,00-

Example 4.3. Actually, two examples:

1. By Equation (2.2) and by Theorem 2.5, (Xo, X1)g, € Kg(Xo, X1) N Jg(Xo, X1).
2. The space C1([—1,1]) lies in
Ky 2(C([=1,1]), C*([=1,1])) N J12(C([-1,1]), C*([~1,1])),

but, as we have seen, it is not an interpolation space. The proof is left as an
exercise.

The following theorem shows that we can “iterate” the procedure of interpolating spaces,
i.e. the real interpolation spaces of two suitable intermediate spaces is again a real
interpolation space.

Theorem 4.4. (Reiteration Theorem)
Let 0 <0y <6y <1. We fizr 0 € (0,1) and set w = (1 — 0)0y + 0601. Then the following
holds true.

1. If for an interpolation couple {Xo, X1}, there are intermediate spaces E; € Ky, (Xo, X1),
i €{0,1}, then

(Eo, E1)gp — (X0, X1)wyp foralll <p<oo.

2. If on the other hand, E; € Jy,(Xo, X1), then

(X0, X1)wp = (Eo, E1)o,p
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4 The Reiteration Theorem

In conclusion, if E; € Jg,(Xo, X1) N Kp,(Xo, X1), then
(Eo, Ev)gp = (X0, X1)wyp foralll <p < oo,

with equivalence of the respective norms.

Proof. We first show 1.:
Let k; be such that

K(t,e, X0, X1) < kit’|le|lp,, e€ Eit>0.
Let eg € Ey and e; € Ey be such that e = ey + e1. It follows that
K(t, e, Xo,X1) < K(t, €0, Xo, X1) + K(t, 1, X0, X1) < kot™ |leol| m, + krt” [|e1 ||,
Taking the infimum, it follows that

K(t,e, Xo, X1) max{ko, k1 }t% (|l g, + " %1 5,)

<
< max{ko, ki O K (%% e Ey, E),

so we get
t_wK(t, €, X[), Xl) < HlaX{k‘o, kl}t—9(01—90)K(t91—907 €, Eo, El)
Setting s = t"17% we can conclude

lell(xo,x1)., < max{ko, k1}|[s " K (s, e, Eo, 1)l 1r(0.00) = max{ko, k1 }lell 5y, 51,

if p < oo and
”e”(Xo,Xl)Wm < max{ko, kl}H@H(EO,El)M-
We now show 2.:

By Theorem 3.6 and Remark 3.8, every x € (Xo, X1),p is the trace at t = 0 of a function
v € C™®(Ry, Xo N X71) such that v(co) =0, v)_, € LE(Ry, Xp), vh_,, € LE(R4+, X7) and

T
HvllwaLi'(RJr,Xo) + [Jvg_y| LP(R4,X;) = kHQEH()Qo,Xl)w,p- (4.1)

We now consider the function
g(t) = v(t"/r=0))

and show that it belongs to V(p,1 — 6, Ey, Ey), so that g(0) = v(0) = x € (Eo, E1)gp
with the corresponding estimate.
First, we look at ||v(¢)||z,, t > 0, i € {0,1}. Let ¢; such that

lzllz, < cillzlly,” =%, @€ XonXi.

We get
Ci - 1—6; 1 ,2— 6;
10" ()] < mlltl “O' () I I ()11 -
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4 The Reiteration Theorem

Now we calculate
1—|—90—w:1—|—00—(1—9)90—901 :1—0(91—90)

and
1+917w:1+017(179)007901:1+(170)(01790)

to obtain that

||v£—0(91—90)||L§f(0,oo,E0) < COkaH(T)ZO,Xl)w,p (4.2)
and that
1951 (1 -6y (6, —00) | 2(0,00,0) < k2 (g x0).0 (4.3)

by Hélder’s inequality and (4.1). We now use

and the second Hardy-Young inequality (3.4) to get that

(4.4) - B 0 ds\? dt 1/p
Hv(l_g)(el—eo)HL{Z(o,oo,El) < </0 +(1=0)(61—00)p </t |5/ (5)]| &, S> t>

%) 1/
Y s ([ s, )
= a0 e S

e ! B
= 1= 0)(01 — 0p) I X0 XD

With the substitution s = t1/(1=%) je t = s1=% and dt = (§; — 0p)s\1 )1 ds, it
follows that

> (-0 1/(01—00)\p A Vp
lon-allzomy = ([ 10l @ g, )

= ([ s o -0 %)

= (01— 00)""|lv(1-0)(0,—00)
< (1—=60)71 (6 — 6o)/r !

'(OooE'l)

Xl)

Similarly, we look at
g'(8) = (61 — 6) ¢/ Cr=00) =Dy 1/ (01=00))

to get that

16—l _ L ([ oo oy w90
1-011 L2(0,00,Eo) 01— 00 \ Jo o

—¢1/(61—6¢) 1/p—1
= (61 — o) /P ”U/1—9(01—90)HLf(O,oo,Eo)

(4.2) Vp1
é Cok(gl 00) ||$|| X(),Xl)
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4 The Reiteration Theorem

In conclusion, we get that g € V(p,1 — 6, E1, Ey), so that x = ¢(0) € (Eo, E1)p, by
Theorem 3.6 and

12l (0,800, < N9llvipa—0.m,m) < max{eitk(l = 0)7 (01 = 00) /P [2lI%, x,)..,

(01— 00)'/?

/
— maX{Ci}k (01 —(,(.J) ||x||(XO7X1)w,p'

O]

Corollary 4.5. From Theorem 4.4 and Example 4.3 we immediately get that for any
0<bOp<b1<1,0<O0<1andl<p,q,q < oo,

(X0, X1)80,905 (X0, X1)61,41)0.0 = (X05 X1)(1-6)60+601 p-
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5 Complex Interpolation

L 4
\J

0 |6 1

Idea:

e {X,Y} interpolation couple, construct interpolation space [X, Y]y for 6 € (0,1)
e only one parameter § will do, we got two norms already...

o f:S5— X +4Y “nice” such that f(it) € X and f(1+it) €Y

o [X,Y]p={f(0); ={f(0+it)}

e f: 5 — X+Y holomorphic ~ maximum principle ~~ estimate interior by boundary
Roadmap:

1. properties of holomorphic functions f: S —- X +Y
2. definition of [X, Y]y
3. Fo:{X,Y} — [X,Y]p is exact interpolation functor of type 6

4. [X,Y]y € Jg N Ky ~~ Reiteration Theorem

31



5 Complex Interpolation
5.1 X-valued holomorphic functions

Let X be a complex Banach space. For every set 2 C C we say that f : Q@ — X is
holomorphic in S C €, if f is differentiable in every Ag in a neighbourhood of S, i.e. the

fimit 00 = £(0)
/ 1 - 0
FRo) = lim == Ao

exists in X.

Proposition 5.1. Let Q C C be a bounded open set and f : Q — X a function which is
holomorphic on 0 and continuous on Q. Then

1£(©)llx <max{[|f(2)]x : 2 € 09} VEe€Q.

Proof. For every ¢ € Q we can choose z/(¢) € X’ in the dual space of X such that
IFO)lx = (f(€),2'(£)) and ||2'(§)]|x» = 1. We apply the maximum principle for C-
valued holomorphic functions to z — (f(z),2'(£)) to get

1£()lx [(f(€),2"()] < max{[(f(2),2"(£))], » € 9N}
max{||f(2)|lx,z € 00}.

IN

Following the idea above, we want to consider holomorphic functions on the strip
S={z+iyeC:0<z<1}.
Also for this set, the maximum principle holds.

Proposition 5.2. Let f: S — X be holomorphic on S and continuous and bounded on
S. Then

1F(©)llx < max{sup || f(it)[|x,sup [[f(1 +it)[x}-
teR teR

Proof. Let ¢ € (0,1) and &, = xg + ity € S such that
[f(&)ll = (A =)l fllowsx)-

We set f5(€) = e~ (&), € = x + it, so that f5(&) = f(€o) and

lim 8@ +it—€0)? £(6) = lim o~ 012426 (it) (@ —0) +6(2—Eo)? £(9)

[t|—o0 [t|—o0
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5 Complex Interpolation

We can now apply the maximum principle, Proposition 5.1, to fs on every domain [0, 1] x
[-M,M], M > 0. By the above calculation, for large M, only the vertical boundaries
will be relevant.

A

/s < max{sup || f5(it) ]|, sup || f5(1 + it) [}
teR teR

< max{elRel—60)" MReEy gup e==210)) max{sup | £(it)]|, sup |/ (1 + ).
teR teER teR

It is easy to show that sup;cp e=0t(t=2t0) — 913 ig reached in ¢ = tp, so that in conclusion,

for every € € (0,1) there exists a sufficiently small ¢ such that

17 (&)l = 1l 5(%)

(L=l fllosx) =
< (14 ¢e)max{sup||f(it)||,sup || f(1 + it)[|}.
teR teR

O]

Theorem 5.3. (Three lines theorem)

Let f : S — X be holomorphic on S and continuous and bounded on S. Then for all
0 <0 <1, we have

1F(O)]x < (igﬂg Hf(it)llx)l’e(jgﬂlg IF (L +it)]x)”.

Proof. In the following, we use the abbreviations My := sup,cg || f(it)||x and M; =
sup,eg || £ (1+it)||x and we consider the function ¢(z) = e** f(z) where A = log(Moy/M).
By the maximum principle on S, Proposition 5.2,

IF@lx = 1l @) e @)~

(71)9 max{e)‘itMo, 6)\+)\itM1}9 max{e)‘itMO, ez\Jr/\itMl}lfG

5.2 The spaces [ X, Y]y and basic properties

Definition 5.4. The space G(X,Y) is defined as the space of all functions f : S — X+Y
such that

1. f is holomorphic in S and continuous and bounded on S with values in X + Y.
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5 Complex Interpolation

2. It holds that ¢ — f(it) € Cp(R; X), t — f(1+it) € Cp(R;Y) and

[fllaexyy = max{sup [|f(it) [ x, sup | (1 +it)[ly } < oo
teR teR

Go(X,Y) is a subspace of G(X,Y’) which imposes the additional properties

Jim [fG)]x =0, Jm [|f(1+ D)y =0

In the exercises, we show that both G(X,Y) and Go(X,Y’) are Banach spaces, continu-
ously embedded in Cy(S, X +Y).

We only cite the following technical lemma. (The reason is: the proof is difficult)

Lemma 5.5. The linear hull of the set of functions z +— 6522+>‘Za, 0 >0, A € R,
a € XNY, is dense in Go(X,Y).

Definition 5.6. (Complex Interpolation Spaces)
For every 6 € [0, 1], we set

[(X.Y]p == {f(0): feGX,Y)},
= inf )
2]l 1,y feG(X,lll/l),f(G):m I fllax,y

We see that [X, Y]y is a Banach space from the fact that it is isomorphic to the quotient
space G(X,Y) /Ny, where N is the closed subspace of functions f € G(X,Y), satisfying

f@) =0.
Proposition 5.7. (Properties of [X,Y]y)

1. If0 € (0,1), it holds that [X,Y]s = [Y, X]1_o.
2. The space [X,Y g can be defined equivalently from the space Go(X,Y).
3. If X =Y, then [X, X]s = X.

4. For everyt € R and f € G(X,Y), f(0+it) € [X,Y]y for every 8 € (0,1) and
1£ (0 + i)l vy, = £ (Ol v,
5. For every 0 € (0,1), we get that [X,Y g is an intermediate space of X,Y, i.e.

XNY = [X,Y]p— X +V.
6. For every 6 € (0,1), X NY is dense in [X,Y]s.

Proof.
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5 Complex Interpolation

. Follows directly from the definition (reflect fs)

. For every f € G(X,Y) and § > 0, we can define fs(z) = 597 f(2). We already
know this function, that f5(6) = f(#) and that it lies in Go(X,Y’). By definition,

2 _N\2
I fsllaexyy < max{e®, DY fllax v,

from § — 0, we see

inf = inf .
FEG(X,Y),f(0)=a HfHG(X:Y) FEGO(X,Y),f(0)=x HfHG(X,Y)

. This follows from the maximum principle. For z € [X, X]g, we have

m.p.
el =1F@Olx < [[fllax.x):

Taking the inf gives ||z|x < [lz([(x,x),- On the other hand, the constant function
cz 12—z, z € Sisin G(X,X), so that for every x € X, [|z[|x = [lcallqx,x) =
2l x, -

. Let g(z) = f(z +1t). We see directly that g € G(X,Y) and that |gllgx,y) =
| fllaex,yy- Tt follows that f(6 +it) = g(#) € [X,Y]y and that the norm doesn’t
change.

. Let x € X NY. Again, the constant function c,(2) = x belongs to G(X,Y) and
lezllax,yy < max{[lz)x, lz]ly },

so that = c;(0) € [X,Y]p and ||z x v}, < l|lz][xny-
On the other hand, if x = f(0) € [X, Y]y, then

£ x+y

max{sup || f(it)||x+v,sup || f(1 +it)[| x+v}
teR teR

]l x+v

NS IA

IN

C max{sup || f(it) || x,sup [ f(1 +it)[ly }
teR teR
= Clfllexy)
Taking the infimum, we get |[z[|x+v < Cllz|(xy],-

. This follows directly from Lemma 5.5. For every z € [X,Y]y, there is a function
f € Go(X,Y) such that f(0) = z, by 2. By Lemma 5.5, there is a sequence of
functions given by

fal2) = e g € X NY
i=1
such that f, — f in Go(X,Y). Setting x, = fn(0), we have ||z — z,|xy), =
1£8) = fa(O)llixy1y < 1 = fallaox.v)-
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5 Complex Interpolation

O]

Proposition 5.8. We let V(X,Y) the linear hull of the functions z — ¢(z)x,S — XNY,
where p € Go(C,C) and x € X NY. For every z € X NY, we get

= inf .
[l x,v), feV(X,lxr/l),f(e):x 1 fllaxy)

Proof. We can approximate the norm of x by choosing for every € > 0 a function fy €
Go(X,Y) such that = = fy(0) and | follax,y) < ll7l(x,y), +¢& We define a function
r € G(C,C) by
z—0
= — S
r(2) 10 ° €
and set )
fo(z) —e==0"g
r(z)

It follows that f € Go(X,Y), as fo € Go(X,Y), 2z — 0’z € Go(X,Y) and |r(z)] <
1, 7(z) # 0if z # 0 and 7/(f) # 0. By Lemma 5.5, it follows that there exists an
approximating function

fi(z) =

, z€AS8.

n
fa(z) = ZﬂieéiZZJr’\izxi
=1
with & >0, \; € R and 2; € X NY such that || f1 — follg(x,y) < &. We now set

f(z) = =04 +7(2)fa(2), z€S8S.

It follows that f € V(X,Y) and that

Ifllexyy < lfollexy) +IIf = follaxy)
< lzllpxyy, + &+ ez +rfi = folloxyy + I7(f2 — f)llay)
< [xllixy), + 2e

5.3 The complex interpolation functor

Theorem 5.9. For every 6 € (0,1),
Fo:¢ — C {X,Y}— [X,Y]g

is an ezact interpolation functor of type 0, where €, denotes the categories containing
complex Banach spaces and complex interpolation couples.
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5 Complex Interpolation

Proof. Let {X,Y},{X,Y} be complex interpolation couples and T' € L({X, X}, {Y,Y}).
For every z € [X,Y]p, let f € G(X,Y) such that f(0) = z. We set

Il \ "
o) = || TR, zes.
1Tl zvv)
It follows that g € G(X,Y) and that
ol < 1T 5 171 3 FGx.

lg(L + it) IS 1T 5 1L )y

A

IN

Y
Therefore, lgll e sy < 17145 IT1% 5 1 l60xy) and so Tz = g(6) € [X, ¥y We
have the estimate

ITallix 1, < Iolocey < ITIES 5 1T w5 I e v,

so that by taking the infimum over f, we get HTHL([X,Y]Q,[Y,?}Q) < ||T| Zf(,Y)HTHi(Y,?)'

Following the ideas for Theorem 5.9, we can prove the following result.
Theorem 5.10. Let {X,Y}, {X,Y} again be interpolation couples. For every z € S
let T, € LIXNY,X +Y) be such that z — T,x is in G(X,Y) for every x € X NY.
Moreover, assume that Ty € L(X,X) and that Ty it € L(Y,Y). Assume further that the
following suprema are finite:

My := sup HTz‘tHc(X,Y), M := sup |’T1+it||£(yy)'

teR teR
In this case, for every 6 € (0,1), we get
—0 710
1Toz|lx v, < My~ MY||2|l1x v,

so that Ty extends to an operator in L([X,Y]s, [X,Y]g).

Proof. The proof is an exercise, using the proof of Theorem 5.9 and Proposition 5.8. O

5.4 The space [X, Y]y is of class Jy and of class Kj.

Corollary 5.11. For every 6 € (0,1) we have

—0, 110
ylley, < lWIX vl v e XNY,

ie [X,Y]p € Jy(X,Y).
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5 Complex Interpolation

Proof. The idea is the same as for real interpolation spaces. We consider the operators
TyA = My, T € L({C,C},{X,Y}) and use Theorem 5.9, i.e. the exactness of the
interpolation functor, to get

—0 0
lllix vy, = 1Tyl cexvie < Iyl Y5

O]

To prove that [X, Y]y € Ky(X,Y) needs more work. The main idea is to use a Poisson
integral formula for Banach-space valued holomorphic functions on the strip 5.

Theorem 5.12. For 6 € (0,1), the spaces [X,Y ]y are in the class Ko(X,Y).
Proof. We do not give a detailed proof, but name the basic steps and ingredients.

1. Preliminary observation: for a € [X, Y], in order to estimate

K(ta,X,Y) = inf {lzlx+¢lylyv}

we split a and therefore f € G(X,Y) with a = f(0) into f = fx + fy, where
fx 8 = X, fy : § — Y, recovering estimates for fx and fy in terms of the
boundary values f(it), f(1 + it).

2. The Poisson formula: The Dirichlet problem on the open unit ball D, given by
Au = 0, in D,
u(A) = h(A), ondD, (5.1)
can be solved by the Poisson formula

1 1—[¢f?
h
Nig=p

dA. (5.2)

u(§) = mm A=t

If A is continuous, u is unique. Therefore if f is holomorphic on D and bounded
on 0D, it satisfies (5.2) with u = f and h = f|sp.

3. The solution formula (5.2) transfers from D to S: By the Riemannian Mapping
Theorem, this will work for all connected open subsets of C. If there is a conformal
map ¢ : 2 — D, then the Dirichlet problem (5.1) is equivalent to the Dirichlet
problem

Av = 0, in £,
o) = (hog)w), ondQ

and v = u o ¢. In particular,
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5 Complex Interpolation

is a conformal map from S to D. The Poisson formula for S is thus given by

oo = [ et smm)[ h(it)

sin?(mz) 4 (cos(mz) — em(y—1))2

h(1 + it)
dt
* sin?(mz) + (cos(mxw) + eﬂ(y—t))2] ’

(5.3)

where z = z + iy € S and it is satisfied by every function f € G(C,C) with v and
h replaced by f.

. It follows from the Hahn-Banach theorem, that equation (5.3) also holds in X +Y
for f € G(X,Y), as for every 2/ € (X +Y)/, the function f, : z — (f(2),2) is
holomorphic and satisfies (5.3). In particular, we can write f = fx + fy, where

Fx(z) = /_ i) (Cg 5220) . (64)
z) = - W0 sin(mrz f+a)
fre) = /—oo ’ ( )Sin2(7rx) + (cos(mz) + em(W—1))2 de. (5.5)

. The two kernels in (5.4) and (5.5) are positive and we have that

/ ™= sin(rx) [ !

—00 sin?(mz) 4 (cos(mx) — em(y—t))2

1
T a = 1,
sin?(mz) + (cos(wz) + em(¥—1))2

from considering f = 1, so that

0 < /OO o™ (y=1) sin(ﬁx)smz(mg) n (Costh) PR dt < 1,
> 1
0 < /_ . ) Sin(m)SmQ(m) (costrn) oo X <L
It follows that
Ifx(2)llx < sup If(iT)lx, z€S and
Ify(2)lly < sup lf@+im)|y, z€8.

. From these estimates we get that for every t > 0, f € G(X,Y) and f(f) = a €
[X, Yo,

K(t,a, X, Y) < [[fx(0)]x +tlfv(0)ly < sup 1) llx + tsup [F L+ im)lly
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5 Complex Interpolation

For every f, we can also apply this estimate to the function g : z + t9=% f(2), which
is also in G(X,Y) with ¢g(f) = a, to get that

K(t,a) <t"sup || f(ir) || x + " "tsup | f(1 +im) ]y < 2°| flaxy)-
TER TER

Taking the infimum over f yields the claim.

Corollary 5.13. [t follows that for every 0 < 6,00,01 <1, 1 < p < 0o, we have

(X, Yoo: [X, Y01 )gp, = (X, Y)ag(1-6) 166, p

and that
(X,Y)g1 — [X,Y]p — (X,Y)g,c0-

Remark 5.14. More reiteration and relations of real and complex interpolation spaces,
without proof.

1. In general, it is not true that [X, Y]y = (X,Y)y,, for some p. We will see later that
if X and Y are Hilbert spaces,

[X, Y]g = (X, Y)gg for 0 < 6 < 1.

2. X —-YorY — X, ORif X and Y are reflexive and X NY is dense in X and
in Y, then
[[X, Y]Gm X, Y]el]e = [X, Y](1—9)00+901

3. If X,Y are reflexive, 0 < 0,0p,01 < 1, and 1 < p < oo,

[(X7 Y)Qo,pa (X7 Y)Ql,p]@ = (X> Y)(1—9)90+961,p'
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6 Examples

6.1 Complex interpolation of L? -spaces

Let (2, 1) be a measure space with a o-finite measure p. For 1 < ¢ < oo, we use the
notation L? = L9(§2, p).

Theorem 6.1. Let 6 € (0,1) and 1 < pg,p1 < co. Then we have
1-6 0
+ N
Po n

1
[LPo [Pty = LP,  where — =
p
with coinciding norms.

Proof. Note: see Theorem 1.2.
Strategy: We show that

L. for every a € LP* N LP*, ||allizro 1), < |la||lr» and
2. for every a € LP° N LP, |lal Ly < |lallizro,Le1,,

so that the identity is an isometry between LP° N LP1 with the [LP°, LP']p-norm and with
the LP-norm. The claim follows from LP° N LP* being dense both in [LP°, LP']y and in LP
and from the fact that [LP°, LP1]y and LP embed into LPY + LP'. Let now a € LPO N LP!.
W.lo.g. (exercise), we say that [|a|» = 1.

1. For every z € S, we set

~—

1—2 a(w

fE)@ = la@" T
f)(x) = 0, forzeifa(z)=0.

for z € Q,if a(x) # 0,

It follows that f € G(LPo, LP'), i.e. f is holomorphic on S and continuous on S
with values in LPO 4 LP' ¢ +— f(it) is bounded and continuous with values in LP'
t +— f(1+4t) is bounded and continuous with values in LP! | since we have

£ty @)] = lal/™, | F@)]zo < al2,
FA+ @) = laPP, Qi) < [lall2
It follows that || f||q(zro,zr1) = 1 and so since f(f) = a, we have

lallizro,e1)y <1 = llal Le-
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2. We know that

1=|lallzr = sup{y/ a(x)b(z) dz| : b€ LPo N LY N (simple functions), [|b]| ,» = 1}
Q

(easy: % = 1p—/9 + }%, where % =1- %) For all b € LPo N L1 with |||,y = 1, we
0 1
again define

PO M)
[b()]
g(z)(x) = 0, forxeQifb(z)=0

for x € Q,if b(x) # 0,

and we define for every f € G(LP°, LP') with f(0) = a,

Flz) = /Q F(2)(@)g(2)(@)dz, =€ 8.

It follows that F'is holomorphic, by the following argument. From the definition, g

, , i 1—/z+i’
is holomorphic on S with values in LPo N LP1, as in particular, b € L ( Po ”1) N
rot(l=2_ z , ,
Lplp( P +p/1). It follows that g(z) € LPo N L1 is in the dual of LP° + LP* for all
z € S. It follows that

F(z+h) — F(z)

(f(z+h),9(z+h) = g(2))

pim h = h
+ i ) = 1(2).9(2)
h—0 h

= (f(2),4'(2)) + (f'(2), 9(2)),

where (,) is the dual pairing for LP° 4 LP1. Moreover, F' is continuous and bounded
on S, so that by the maximum principle 5.2, for every z € S,

P() < max{sup |F(it)], sup |[F(1 + it)]},
teR teR

where
[F@@t)] < (1 @t)lleollg(it)]] by = Hf(it)lleolle’;p/,pO = ||f (@) Lro,

[F+it)] < [|f(L+it) o gL +it)| oy = [ FQ+it) ] zo [BIE 7 = £ +it)]| o,
so that
|F'(2)| < I fllapro,ney, 2 €S
It follows that
|| ala)pla) de] = [FO)] < Il

Taking the sup over b and then the inf over f gives

lallze < llallizro,Lorj,-
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6.2 Real interpolation of LP-spaces

Again, let (Q, 1) be a measure space with a o-finite measure pu. For 1 < ¢ < oo, we
use the notation LY = LI(Q2, u). Now, we may consider real- as well as complex-valued
functions. As a roadmap for this section, we will

e define Lorentz spaces LP9 = LP9(Q, 1)
e show that (LpO,Lpl)g,q = Lp,q7 where % — 10 + Pil

e prove the Marcinkiewicz Theorem

6.2.1 Lorentz spaces

Definition 6.2. (non-increasing rearrangement)
Let f € L' + L. We define the distribution function ps: Ry — Ry U {oco} of f by

pi(o) = p({z € Q:[f(x)] > a}).

The non-increasing rearrangement of f onto [0, 00) is given by f* : Ry U{0} — Ry U{o0},
F(t) = inf{o - pug(o) < 1},

where inf ) = oo.

E1 E2 E3 X
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w(Ea) [ p(Er) + p(E2) + p(Es)
p(Er) + p(Es)

Proposition 6.3. (Properties of iy and f*)
The functions py and f* are non-increasing, positive and right-continuous. Moreover,
the functions |f| and f* are equimeasurable, i.e. for every 0 < oy < o1,

{t>0: £(t) € oo, ]} = ulw € 2 [£(z)] € [o0, 0]} (6.1)

Proof. Clear: non-increasing, positive, equimeasurable.
Right-continuity of us: We look at the sets F(0) = {x € Q : [f(x)| > o}. For every

oo € R4, we have .
E(oo) = | J E(0)= (oo + ).

o>00 neN
It follows by the monotone convergence theorem that

p(on+ 1) = w(Eloo + 1)) 7 u(B(o0)) = iy(ov).

Right-continuity of f* : Note that f* itself is the distribution function of j; with respect
to the Lebesgue measure m on Ry, ie. f*(t) = sup{o : pg(o) > t} = my, (o), so
right-continuity follows as for jy. O

Proposition 6.4. The functions f and f* have the same LP-norms, i.e. for 1 < p < oo,

/Qfl”du = /Ooo(f*(t))f’dt and

esssupf = ess sup f*= f(0).
Q R4+ U{0}
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Proof. Exercise. O

Definition 6.5. (Lorentz spaces)
For 1 < p,q < 0o, we define the Lorentz spaces by

%) 1/
P, 1) = {f e o 1% e = ([0 ) - OO}

for ¢ < co and by
LP(Q,u) == {f € L'+ L ||f|| e = supt/PfH(t) < oo}
>0

otherwise. The LP**°-spaces are also called Marcinkiewicz spaces. Note that LPP = LP
by Proposition 6.4.

6.2.2 Lorentz spaces and the K-functional
Theorem 6.6. For 0 <60 <1 and 1 < g < oo, we have that
1 00 — qu
(LY, L%>)g,q = L1021,
Proof. We prove the theorem in two steps:

1. We show that .
K(t, f, L1, L) = / £*(s)ds (6.2)
0

for all ¢ > 0. Note that historically, the Lorentz spaces were used before this
connection to real interpolation spaces was discovered. In the following, let t > 0
and

E = {zeQ:[f(@)]> )}
Dy = {zeQ:|f(x)l =B}

so that p(E:) <t < pu(E: U Dy). From (6.1) and Proposition 6.4, we get that for
every y € D, - which we need if u(D;) #0 -,

t
| r@as= [ 1r@ldu+ ¢ - pmisl. (63)
t
Rigorously, this can be seen from the following argument. We may write

(xg.f)"(s) = f{o: p({zr € Q:[xp (2)]-[f(z)] > o}) < s}
= inf{o: p({xz € Q:|f(z)| >0} NE) < s}

= inf{o: pu({z € Q:|f(zx)| > max(co, f*(t))}) <s}. (6.4)
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In the case s > u(Ey), if f*(t) > 0, we get (xg,f)*(s) =0, as

p{z e Q:|f(x)] > f7(1)}) = w(Er) < s,

otherwise if f*(t) = 0, then (xg,f)*(s) = f*(s). In the case s < u(E), we see
from the last line in (6.4) that (xg, f)*(s) = f*(s). If f*(t) =0, then (6.3) follows
because |f(y)| = 0. If f*(t) # 0, then

/Otf*=/0#(Et)f*+/:(Et)f*Z/Et!fH/qut)f*

by Proposition 6.4. Moreover, we have f*(s) = f*(t) = |f(y)| for every s €
[L(Ey),t] as clearly f*(t) < f*(s) < f*(u(E¢)) and by definition,

Fu(E) =inf{o >0 p{z: |f(2)] > o} < pfa: [f(2)] > [N} < F70).

This gives (6.3).
It follows that for a decomposition f = f1 + foo with f; € L! and foo € L, we
have

IA

/f%@m Al A+ (¢ — p(E) F1()]
0 on

+ pu(Et) Sup | foo ()] + (t — p(Er))| foo (y)]

< faller + tll fooll oo

A

For the other inequality, we may choose the following decomposition of f,

“]o otherwise.

fi(z) = { f(@) = (@) for z € By,

and
foo = f_fl-

First, we show that
w(Er)
nmm=A F4(s) = £*(t) ds.

This follows from Proposition 6.4 if f*(¢) = 0. Otherwise,

u(Er) .
5l = [ el = [ si)as
Q 0
by (6.4). On E;, we have fi = (|f| — f*(t))e’®& 7 so that

[fil = (1= £ (&) xE.-
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Since |f1]* = f5, we get
i - inf{o
= inf{o: p )
IO E nlo s u({a: 1f] > 0+ 11 (0)) < 5)
- inf{o > £(6) : pl{z s 1f] > o)) < sk — (0. (65)
Now if o < f*(t), then
p{z: [f > 0}) = p{a: [f] > f7(8)}) = u(Er) > s,
so that from (6.5) we see that
fi(s) =inf{o: p({z : |f[ > o}) < s} = f7(t) = [7(s) = [ (D).
It follows that

{2 xm (= 7 (#)}) < s}
(

wu(Et) t
il = [ o -rwas< [ red-re
and that
[foo(@)] < | (O)xe (@) < f71), xeQ,
so that .
K612 2%) < il + i = [ ()ds
. From (6.2), the claim follows fairly directly. Note that fot f*(s)ds > tf*(t), as f*
is non-increasing, so that for ¢ < oo, we have

© dt]
e = | [ eomen ]

> [/OOO 1100 ( (1)) Oﬂ 1/q

= 1 iy
and for ¢ = oo,

sup [t K (t, f)] > sup [t fA ()] = | fll 1, -
t>0 t>0 L

On the other hand, by the Hardy-Young inequality, Lemma 3.2, we have

) . o0 —0 ¢ * ds ? dt
erenly = [T ([areS) ¢

5 e

IN

S

1
L q
= L,

47



6 Examples

and also

b d
sup K0 < 00 ([ 5 ) sup(s 1) = A1,

t>0 s>0

Theorem 6.7. For 1 <pg<p; <00, 0<80<1andl<q< oo we have

1-6 0
+

1
(LPo,LP1 ) o = LPY,  where — =
p Po h

In particular, if po < ¢ < p1 and 6 = % (ﬁ), then

(L7, LP)g, = LA
Moreover, for 1 <pg <p; <o00,0<0<1andl <qy < q < oo, we have

(Liﬂoﬂlo7 Lphth)aq = P4

for p as above.

Proof. By Theorem 6.6, we know that LP = (L?, L)1 _1/pp,s0 LP € Jl,l/pﬂKl,l/p(Ll, L™>).
We can therefore apply the Reiteration Theorem 4.4 to get

(LpoaLm)O,q — (LI’LOO)w’q’

where w = (1 — 6)(1 — 1/po) + 6(1 — 1/p1). By Theorem 6.6, (L', L>),, , = LP4, where

% =1l—-w= 1:0;00 + pil. The same argument yields the third statement. O

6.2.3 The Marcinkiewicz Theorem

Definition 6.8. Let (€2, 1) and (A, ) be two o-finite measure spaces. A linear operator
T : LY, p) + L®°(Q,u) — LY(A,v) + L®(A,v) is called of weak type (p,q), if there is
an M > 0 such that

supo(v{y € A: [Tf(y)| > o))"/ = iglo)tl/q(Tf)*(t) < M| fllze,p-

o>0

for all f € LP(S, p), i.e. the restriction of T to LP(€2, ) is bounded from LP(Q, i) to
L2 (A, v).
T is said to be of strong type (p, q) if its restriction to LP(2, u) is bounded from LP(£2, u)
to LY(A,v).

Clearly, every operator of strong type (p,q) is also of weak type (p, q).
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Theorem 6.9. Let T : L'(Q, u)+L%°(, p) — LY(A,v)+L%>(A,v) be of weak type (po, qo)
and (p1,q1) with constants My, My, respectively and 1 < pg,p1 < 00, 1 < qo,q1 < 00,
q #q1 and po < qo, p1 < q1- For 0 <60 <1 let

1 1-0 0 1-60 6
= + + —

1
P P P ¢ Q@ @
Then T is of strong type (p,q) and there is a constant C, independent of 0, such that
1—6 3 r0
ITfllaawy < CMy "My || fllze (o)

for all f € LP(Q, p).

Proof. For i = 0,1 , T is bounded from LPi(Q2, u) to L%°°(A,v) with norm M;. Since
real interpolation is exact of type 6, Theorem 2.4, it follows that

HT”E((LPO,LPl)g’p,(quvw,qum)g’p) < Mol_eMle.

By Theorem 6.7, (LP°,LP1)y, = LPP = LP(Q, ) and (L4 L1:2)g ., = LIP(A,v).
Since p; < ¢;, also p < ¢, so that LY? — L[99 = L9(A,v) by Theorem 2.5. This yields
the claim. O

6.3 Holder spaces

Reminder: f € C'(Q) & f: Q C R"® — R is continuously differentiable and Ifllcr) =
Hf”oo + 2?21 ||D1f||oo < 00.

Definition 6.10. For # € (0,1), we define the Hélder space C?(Q2) for every open set
Q C R™ n €N, as the space of bounded and uniformly #-Hélder continuous functions f
with the norm

1oy = I loo + [floo = 1f oo+ sup LI

z,yEQx#y ’m - yw
Theorem 6.11. For 6 € (0,1), we have that
(C(R™),CH(R™))p00 = C*(R")

with equivalence of norms.

Proof. For convenience, we may write C,C! etc. in the following. First we show that
(C,CY)g.0o — C?: Clearly, for every f € CY, ||flloc < Ifllc1- For every decomposition

f=fo+f1, foeC, f1 € Ct, wehave || flloo < [ follso + I f1llos, SO

[1fllee < K1, £,C,CY) < Ifl(cicnyp.nn-
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Moreover, if x # y, we have that

[f (@) = FW)l < [fo(z) = fom)| + [f1(2) = f1(y)] < 2 folloo + [[f1llcr ]z = yl.

Taking the infimum over these decompositions gives

f(z) = f(y)l < 2K(lz = y|, £,C,C) < 2|z =y (| fllc.omne

by (2.2), so that f must be 6-Hélder continuous and || f[lce = || flleo+[flo < 3 fll(c,c1), o0 -

Now we show that C? < (C,C1)p : Let f € CY. We want to decompose f into a C-
and a Cl-part with good estimates. Let ¢ € C™ such that ¢ > 0, suppy C By and

llellzr = 1. For every t > 0, we consider

fo@ = 5 [ e,
foulz) = f(z ) fri(z).
It follows that fo(2) = & [gn (f [z —2))p(%)dz, so

Iodlle < ooy / ,ym(y)dy —lfleo [ Jul’p(w)du.

tn t

It also follows that || f1 ¢[|cc < || f]leo- It remains to look at the derivatives, fori =1,...

D;f14(x t"“/ fly y)dy.

Since ¢ has compact support, we have fR" NJ( 2)dy = 0. We get that

Difiele) = s [ (Fla = 2) = @) (Do) (5 d,

so that

1 _ ) —
IDifitlloc < e /n |f(z |Z)|9 f(x)’|2|0(Di<p)(':)dz

For 0 <t <1, it follows that
0Kt f) <0 (folleo + tl freller) < Cllfllco-
For t > 1, we set fo; = f and f1; = 0 to immediately get that
K ) <70 flloo < 11 Flloo-

It follows that f € (C,C')g .~ and that I fllc,cny
on the choice of .

Goo—

20

(6.6)

(6.7)

< C|lfllce, with C' depending only

O]



6 Examples

Remark 6.12. The following results are mostly taken from [4], Chapter 2: 1. follows
immediately, 2., 3., 4, could also be an exercise:

1. By Reiteration, Theorem 4.4:
(C* g0 = ((C, 000, (C: €M) o0)g00 = (Cr C oo = C,
where o, 8 € (0,1) and w = (1 — ) + 65.

2. It holds that
n((j7 Cl)l,oo” — Llp(Rn),

where Lip(R") is the space of Lipschitz continuous and bounded functions,

_ |f(z) — f(y)l
I liprn) = [1flloe + LR PR

3. C! is not dense in CY.

4. For any interval I C R, X a Banach space, 0 < 0 < 1,
(C(I; X),CH(I, X))g.00 = C°(I; X).
5. Let m € N and 6 € (0,1). If §m is not an integer,
(C,C™)p 00 = C™.
6. In the situation of 3., if ém = 1, then
(C,C™)g.00 = C,
where for every 0 < a < 2, C® is given by

o= (feC [flew = sup TEZHEIHIWI

TH#Y |x_y|a
[fllee = Iflloo + [flce-

For o # 1, these spaces are equivalent to the C'%’s.

6.4 Slobodeckii spaces

Dilemma I: How to define W*P(R") for « ¢ N, 1 <p < oo and n € N?

1. WP = (LP, WP, , for 0 < a < 1.

ol
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2. WP ig the set of functions f € LP, such that

Flay = < /}H @) = fWP dy> 7

[z — ylov+
endowed with the norm ||f||we.r = ||f|lzr + [flwer.

Theorem 6.13. The two definitions above coincide.
Dilemma II: How to define W*P(Q) for open sets 2 C R"?

1. asin 1. above.

2. W*P(Q) is the space of functions which are restrictions of functions in W*P(R")
to €.

Theorem 6.14. The two definitions above coincide if Q is a domain with uniformly
C'-boundary.

Definition 6.15. On an open set  C R™, for « € (0, 1), the (Sobolev-)Slobodeckii spaces
W (Q) are defined by

W (Q) = (LP(Q), WP (Q))ap-

Proof. of Theorem 6.13. It works similarly as the proof for Holder spaces, Theorem 6.11.
First we show that W < WP, defined as in 2.:

Note that for every f; € WP and h € R™\{0}, we have that (exercise)

([ (Db =0 )™ < o

For all f € (LP,W'P),, and h € R", we set fo;, € LP and f1, € WP such that
[ = fon+ fin and

[ fo.nllze + 11 fLallwre < 2K([A], f)-

Moreover,
[f(z+h) = f@)” _ o1 ([on(z + 1) = fon()” n |fip(z +h) — fin(@)P
DRI B B
and so
/ |f(x+h) = flz)l dr < 2p—1/ |for(z +h) — fon(x)P n [fin(z+h) = fin(@)P
" |h’ap+n — n |h|ap+n |h|ap+n

< oplfonllie | opa [RIPIID funlllZs
— |h’o¢p+n ’h‘ap—i—n
< Cplh|P7" (|| fonllee + B/ f1,0llwre)?
< Cplh[T*PTK([R], )P

92
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Therefore,

= [ MRS,

v

IN

Cy [ In7=" K (. 7 an

<K )
= Cﬁn 0 ‘;EEIT*dT
= Cp,anHZ()Lp,Wl,p)ayp-

From the embedding (LP,W'P),, < LP + WP = LP we also get that |f|r» <
C’HfH(Lle,p)ayp, so that in conclusion,

[fllwar < Clfllwrwirya,

We now check the other embedding: For every f € WP, we define fo; and fi; as in

(6.6). It follows that
. p
o= (L@ sl ay) o

< [ i@ -l et dyas

| fo,e

from the Hdélder inequality applied to

X

[f (@) = F) "o (——

We get that

o 0 i - 1 x—y dt
/0 t prO,tH}Zp n S/0 (/Rannt PIf (@) = f(y)|pﬁ@( t )dydx) t
o 110 ([T ) v

B © a1l x—y dt
= [ l@=swr (/Mt P oL >t) dyda

<l WSO g,
R xR"™

= ap+n [ — ylovn

= Clf1la

a,p*

By using (6.7), we get that

-1
_ OV Diglloe
o ap+n

Lﬂgp7

o dt
| D,
0
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where C; = [p. |[Di¢(y)|dy. We also see directly that ||fi¢llze < ||fllzellellzr = |f|lze,
SO

1
dt 1

t(1—a)p p < P

|, § < =l

It follows that

UKt f LP W) <t foulloe + £ frellwes € L2(0,1)

and that its norm is estimated by C| f||wer. Again, this suffices to get that f €
(L2, W), =

6.5 Functions on domains

This section follows parts of Chapters 3,4 and 5 in [1], in particular, pages 147-152.

Definition 6.16. A domain  C R" satisfies the uniform C™-regularity condition if
there exists a locally finite open cover {U;} of 092 and a corresponding sequence {®;} of
m-Diffeomorphisms taking U; onto the unit ball B;(0) with inverses ¥, = <I>j_1 such that

1. for some finite R, every intersection of R + 1 of the sets U; is empty,

2. for some § > 0,

Qs = {z € Q: dist(z,00) < 6} C Uj\I/j(Bl/Q(O)),

3. for each j, ®;(U; N Q) = {y € B1(0) : y,, > 0},

4. there is a finite constant M > 0, such that for every j, [|®)[cm@,) < M and
15llcm By (0)) < M.

Proof. Of Theorem 6.14. We use that for every uniform C'-domain 2, there is an
extension operator E, such that

E € L(LP(Q),LP(RY)), E € LWYP(Q), WhHP(R™)), (6.8)

and E € L(W*P(Q), W¥P(R™)). Here, W*P(R") is given as in Dilemma I.2 and W*P(Q)
is given as the space of functions which are restrictions of functions in W*P(R"™) to €.
This operator can be constructed similarly as before, first for the half-space, then by
localization. However, in order to get that £ € L(W*P(Q), W*P(R™)), we take functions
from WHP(R") and extend by exact reflection, not as in the proof of Theorem 6.19 for
continuously differentiable functions.

From (6.8), it follows that £ € LW (), W(R")) as real interpolation is exact of
type 0. For every f € W*P(Q), we have that Ef € W*P(R") = W(R"). Moreover,
the restriction operator R : f € LP(R™) — f|q clearly belongs to L(LP(R™), LP(Q2)) N
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LWEP(R™), WHP()) and thus to LW (R™), W (€2)). It follows that R(E(f)) belongs
to W3¥(€2) and we have the estimate

[fllwg@) < CellEANwg @y < CraplE)lwer@n < Clifllwerq)-

On the other hand, for f € W(Q2), we know that Ef € W*P(R") and so R(Ef) = f €
WP(Q) and
1fllwer@) < IENwern) < [1fllwee):-

Remark. In the same way, we get that for Q C R” with a uniformly C'-boundary,

(C(92),C1(Q)p,00 = C* ().
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7 Function Spaces from Fourier Analysis

Reminder I:

e S(R™) Schwartz space, S'(R™) the dual space of S(R™)

e Fourier transform:

(Fo)O) = 6€) = Gz [ Dol

and F,F1: S(R") — S(R"), S'(R") — S'(R"), F € L(L*(R")) unitary, F :
PP if1<p<2.

o D*(Fp)(€) = (=) F(a%p(x)) and €*(Fp)(€) = (=) F(D¥p()).

Definition 7.1. (Bessel potential spaces)
Let 1 < p <ooand s € R, we define

12 (@) = {f € 8@ : | fllerar) = 57 (1 + 162 3F fll oy < o0}
Remark 7.2. Hopefully, we will be able to show that H/™P = [LP TW™P],.

Reminder II: Sobolev spaces: 1 <p < oo, k € N,

WHP(R?) == ¢ f € LP(R") : [|f lweo@ey = D 1D fllLoqny < o0 ¢ -
|a|<k
Question: If 1 < p < 0o, k € N, then H*?(R") = Wk?(R")?

1. k=0: LP(R") = HOP(R") = WP(R")
2. p = 2: true, using Plancherel

3. p # 2: also true, using Mikhlin multiplier theorem

We immediately see 1., we look at 2. and 3. in the following.

Note that for any multi-index |o| < k and £ € R",

MES

e < lefleh < (1 + ¢ (7.1)
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7 Function Spaces from Fourier Analysis

and that for every f € H*? we automatically have f € L. Tt follows that

1 fllwez < D IFDflle < > €2 FF e < CUF A+ €2 F |12 = C| | e

|or| <k lal<k
(7.2)
Conversely, let p : R — [0,1], p € C*°(R) and p(s) = —p(—s) such that
0, t<l 1+ [¢[2)3
p(t) = ’ ~ 2 so that ( —:|£|k>2 s =1 .
1, t>0 L4+ Y70 pR(&)ET 1gl—0,00
It follows that
k
(1+£%)2 < Coi (1 + Zp’“(&)&f) : (7.3)
i=1

We get that

Ifllgee = N1+ €D 2FFE) L

_ P T ek 2
eSS <1+;p (a)a) FFOI

IN

Crk (HffHLz + Hpk(&)éfff(ﬁ)Hm)

i=1
< Cuk (HffHLz +)° \I(—i)kf(wf)(x)Hm)
i=1 ¢

< Clfllwe.z-

Now we look at the case p # 2 and introduce a preliminary concept, without proofs.

Definition 7.3. Let 1 < p < oo and m € L>*(R";C). Then m is called a Fourier
multiplier, m € 9, if there is a constant ¢ > 0, such that for all f € S(R"),

1F " mF fllpe < el fllze,

so that the operator
T : S(R™) — Co(R™), f s F i'mFf

can be extended to a bounded operator on LP.

Theorem 7.4. (Mikhlin-H6rmander)

Let 1 < p <oo. Then m € cls] THR™\{0}) is a Fourier multiplier in M, if there is a
constant c,, > 0 such that
€[ D7 m(€)] < em

for all £ € R™\{0} and multi-indices |3| < L%J + 1.

o7



7 Function Spaces from Fourier Analysis

Proof. For example, [3], Theorem 6.1.6 for a proof and a more general version of the
theorem. O

Theorem 7.5. Let 1 < p < oo, k € Ny, s € R. Then H*P(R™) is a Banach space and
we have
WEP(R™) = HFP(R™).

Proof. The idea is as in the case p = 2, only we use Theorem 7.4, too. We know that
I llwes = D IDNFLFH e = Y IF HEFFE) -
la|<k lo| <k
It follows that || f|lyyk.r < C| fllgrp, if we can show that
1 ea _ k
IFHEFFE) e < CopllFHA+E7) 2 Ffrr
for all . We define

ga
Map(€) = ———
T et

for |a| < k and show that it is a Fourier multiplier. For |a| = 0, we have |mq 4 (§)] < 1
by (7.1). If |a| =1, we get

9 ¢o €0 5;’%—1 ..... gon(1+ |E2)M/2 — &5k (1 + |€|2)k/21
[3 ¢, W = [¢] (1+ |€2)F
ik
- e [ | <
By more similar calculations and induction, the claim can be proved. It follows that
IF e F e = NF  map(L+ €22 F || e
= | F tm,, k:j:]:_l(l + I PFf| o
< CugllF A+ €A F S|

for every f € LP.
For the converse estimate, we define

(L+[¢P)k?
1+370, Pk(fi)fzk
and show that it is a Fourier multiplier. For |a| = 0, we have ]mpk(£)| < Gy by (7.3).
For |a| = 1, we use the notation 1+ Y"1, p*(&)€F =: p, (1 +|€|?) =: Mg and calculate:

SRMEP ™o — M [kph 1 (6)0 (688 + 0t ()R]

mp,k(f) =

€| gz mon(@) = 1 ~
k/2—1
< I Mg(kﬂ)/z — M (Ck 4 Mg(k—l)/Z)’
k/2—1
< Cugo M= M2 < O 2 () < O

2
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7 Function Spaces from Fourier Analysis

Again, we could calculate similarly for |a| > 1 and use induction to get the claim. We
now use that & — p¥(&;)(—i)"* is a Fourier multiplier for every 1 < j < n, to get that

1Fllee < 1F g fllioe < CallF~puF f oo

< CU e +1FHQ MENEDNF fllw)
i=1

= C(Iflle +IIF 1 p" (&) (=) F(OF )l r)
i=1

CUlf e + D108 fllze) < Cllfllwsr-

i=1

IN

O]

We will come back to Bessel potential spaces, but now want to define and consider Besov
spaces.
Definition 7.6. A sequence of functions (¢;)jen C C2°(R™) is called dyadic partition of
unity, if and only if

1. suppy; C 4j, j € N, where

Ay = Bsy(0),
Aj = {zeR": 2 <z <27t 4 #0,

2. E]Oi[) (P](.’IJ) =1,
3. for all multi-indices v = (v1,...,7) € N{, there is a constant c¢,, such that
2| D7gj(x)] < ey
Example: If ¢ € S(R™), supp ¢ C B2(0) and ¢(x) = 1 for || < 1, then setting po = ¢
and p;(z) = p(277z) — (277 1z) for j # 0 yields a dyadic partition of unity.

Definition 7.7. (Besov spaces)
Let s e R, 1 < p,q < 0o and (¢;)jen a dyadic partion of unity. Then the Besov spaces
B5 (R™) are the spaces of all functions f € S'(R™) such that

00 oisdll e 1/q
(S50 2 F T fldyen)) s a< oo
supjen, 2° |1 F 1o F fll Lo @y, q=00

||f||B;7q(R") = < 00.

Remark 7.8. We will show that (LP, W™P), . = Bgfg, so that in particular, By, = Wj.

Proposition 7.9. By (R") is a Banach space and choosing two different dyadic parti-
tions yields equivalent norms.
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7 Function Spaces from Fourier Analysis

Proof. Exercise.

In order to get interpolation results for Besov spaces, we start from the following type of
spaces. ]

Definition 7.10. Let X be a Banach space, 0 € R and 1 < p < co. Then [7(X) is the
space of sequences (z;)jen C X such that

o gjop p 1/
(Z2o2llagly ) ™ p<oo

supen, 277 ||zl x, p=00

[2]l1g (x) = < 0.

Remark 7.11. Tt is a Banach space. If X = C and o = 0, then [5(X) = IP. Moreover, if
1§r§p§oo,thenlf<—>lg.

Proof. Exercise. O

Theorem 7.12. Let X be a Banach space, sg,s1 € R, sg # s1, 1 < pg,p1,p < 00 and
0 <0 <1. Then we get

(Lo (X), 151 (X))o = (X,
where s = (1 — 0)sg + 0sy.

Proof. Use Theorem 2.5.6 and show that

(123,15 )0.p = 1y — (I7°, 17" )op (7.4)

(e ohihge o)

to get that
by = (5%, 100 = (o 1oy — (12, 13)op — 1
We now first show the first embedding in (7.4). We know that
Kt 10,00 = it (sup20[Jalx + ¢ sup 2! 2} x)
—a04 , ,

'y Voo Yoo
for all z € 150 + 151 = 12205051 W o0k at

0

x; 2050 < ¢2is1 A X
?—{ I " and ' =2 — 39,

0, otherwise.

to see that
K(t,z,132,13)) < 2supmin(27%°, t27%)||z; || x.
J

On the other hand, clearly,

supmin(QjSO,t?Sl)ijH < Sup(QjSOHa??HX+t2j51Haz}HX)
J J
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7 Function Spaces from Fourier Analysis

for all decompositions z = 2" 4+ z', so that

K (t,@,133,151) ~ supmin(27°, £27%")||z;] x.

» Yoo Yoo
J

Wlog, we assume that sg > s1, since we could consider (l;} , l;g)l_gg instead. We treat the

case when p < oo and use the decomposition (0,00) = UOC’:_OO[Q(’“*U(SO*SI),2’“(50*51)).
For x € (I22,154)6,p

[ ehige e}

00 2k(sg—s1) dt
—0
el iy, = O K (1, 1200, ()P
0000 /0,p e oo 2(k—=1)(sg—s1)
oo 2k(sp—s1) dt
> 7 27 OPkloms) gup min (29507, ghplsoms) i) g / T
k=—00 J 9(k—1)(sg—s1)
o0
> C Z 9—0pk(so—s1) min(Qk‘Sop’Qkp(80—81)2k81p)||xk||§((30 — 51)1In(2)

k=—00
oo
= O 2§ = Oz,

k=0

The case p = oo follows analogously.
Now we show the second embedding in (7.4). Again, we may assume that so > sj.
Analogously to the [,-situation, we see that

oo
K (ta, 17, 13) ~ D min(27°0,£27%1) | | .

=0
For p < oo and z € [}, we calculate
2k(so—s1) i~ . )
”le()z;’O,zil)o,p - Z /2(k . 51> o—0p(k—1)(s0—s1) Zomin(2]80’2k(soSl)HSl)ijHX
j=
[oe} oo P
< 020]3(80—81) Z Qkps Zmin(z(j_k)so,2(j_k)81)||l'j||X
k=—o00 j=0
oo k P
S oS | et 3 20-B
k=—o00 j=—00 j=k+1
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7 Function Spaces from Fourier Analysis

For every tg,t; such that sg > tg > s > t; > s1, we have

& & 1/p’ i 1/p
Z Q(j—k)50||$].||X < 9—kso Z 9d(so—to)p’ Z 2jtop||mj||§(
Jj=—00 Jj=—00 j=—00
& 1/p
< oo | 3T Rl |
Jj=—00
o o 1/p' o 1/p
I DOl I B S
Jj=k+1 j=k+1 j=k+1
o 1/p
< ot T Il |

j=k+1

so that

00 k 0o
N el) DLl P S PO e e S T

IN

e .
€ 30 Pyl = Cllally,
P

j=—o0

This proves the theorem.

O]

We now summarize several results on real and complex interpolation of Besov and Bessel
potential spaces in the following theorem, and then set out to give a proof for the “real”

part, 1.-4. and some arguments for the “complex” part, 5. and 6.
Theorem 7.13. Let 0 <0 <1, 5,50 #s1 €R, 1 < p,po,p1,49,9,q < oo and

1 1-0 0 1 1-46 0
sop=(1—0)so+0s1, — = = —= +—.
Po Po p1 de q0 q1

Then we get
1. (BSqu pql)quzB;?m
2. (B;&qo? p1,q1)9,P9 = B;g,qga Po = 46,90, 1 7 1
8. (H*P H*P)y, =By, 1<p<oo,
4. (H5PO HPY)g py = H*P0, 1 < po, p1 < 00,
5. 1Bpo.aor Biranlo = Bpfap:
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7 Function Spaces from Fourier Analysis

6. [HSO,PO’Hslypl]H = H%Po 1 < py,p1 < 0.

Let (;); be a dyadic partition of unity. To show 1., by looking at the map
Sy By = la(LP), [ (F ' F ),

we get the idea that we can interpolate B, , as the we interpolate [J(L”) by Theorem
7.12. The following notion is helpful.

Definition 7.14. An object X in a category is called a retract of another object Y, if
there are morphisms S : X — Y and R : Y — X in the category, such that Ro S =idy.
In this case, the map R is called retraction, and S is called coretraction.

Clearly, the following holds true.

Lemma 7.15. If {Xo, X1} is a retract of {Yp, Y1} in € with retraction R and coretrac-
tion S, then for every interpolation functor F, F({Xo,X1}) is a retract of F({Yo,Y1})
with retraction F(R) = R and coretraction S.

Proposition 7.16. The space B, , is a retract of I5(LP) with the coretraction S and the
retraction

Ry I3(LP) = By, (x5); = Y F o Fa;.
§=0

Proof. Clearly, Sy, € L(B,, ,,15(LP)). On the other hand,

2
o ~ 1/q
IRo(z)sllg, = | D2 UF " 7O F onFay)|ls
7=0 k=0
1/q

IN

o
c| D2,
5=0

if we use that v;p;_1, ¥jp; and ¥;p;1 are Fourier multipliers on LP. Clearly,

RoSyf =Y FlophFf=> FlFf=F.

J=0 Jj=0

Theorem 7.13.1 now follows from Theorem 7.12 and Proposition 7.16.
Next, we want to show 2.

Proposition 7.17. For 1 < qp,q1 < oo and an interpolation couple {Xo, X1}, we have

(lg0 (X0), lg1 (X1))a,0 = lgg (X0, X1)0,45)-
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7 Function Spaces from Fourier Analysis

Proof. Unpopular but elementary exercise. ]

We get that by this Proposition and Theorem 6.7,

(Bpo.go> Bpt.ai)o.pe = (L (L), 15, (L))o, = lgg (LP°, L )g ) = Lgg (L) = Bgg

which is 2.
In order to show 3., we use the following embeddings.

Proposition 7.18. For 1 < p < oo and s € R, we have

571 - HSJ) - B;7007 (7'5)
and in particular,
By, — LP — B) . (7.6)

Proof. We note that (7.5) follows from (7.6) if we use that the operator J° = F~1(1 +
|€]2)7/2F is an isomorphism from H*P to H*~%P and from B, , to B;;O. For the first
embedding in (7.6), let f € Bgl. We can write

f=2 F o7,

=0
to see that

1l < 3217 s F e = £ 1o,
j=0

For the second embedding, let (¢;); as in the example above Definition 7.7. For f € S,
we get

FloFiw) = @n [ dvioe [ i) ayae

n

G R I TOR e

= 20 [ =) [ g g anas

= 207Dnam)y™2 [ f(z - 2)F (2771 2) da
R’VL

It follows that
IF i Fflle < €200 £l / F o (2 12)] d
RTL
= Ol F .

In conclusion,
1£llsg = sup |l F~ 0, fllzo < ClIf 1o,
’ J€No

which shows the second embedding in (7.6). O
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7 Function Spaces from Fourier Analysis

By 1., the above Proposition and Theorem 2.5.6, we have

Byl = By, Bpl)og — (H*P, H g g — (Byis, Byloo)o.g = Byly-
This proves 3. Note that in particular, B;'i,’f, = (Lp,Wk’p)qu by Theorem 7.5, so that
By, =W?if s ¢ 7.
Regarding 4., we know that (LP0,LP')g,,, = LP? by Theorem 6.7. The claim follows if
we again use the fact that J°: H%P — LP is an isomorphism.
For 5., the idea is to use Proposition 7.16 and the complex interpolation result

[lg0 (Xo), 15, (X1)]o = 157 ([Xo, X1]e)-
For 6., we have to work much harder. The idea is to show that H®P? is a retract of
the space LP(15), which involves defining the Fourier transform for Hilbert space-valued
functions and a corresponding Mikhlin multiplier theorem and then use the Riesz-Thorin-

type result
[LP°(Xo), LP' (X1)]p = LP*([Xo, X1]p)-

Reminder: Sobolev embedding theorem:

whe e g-2>C Do
q p

=

Remark, without proof: We have
By, — H?” — B, 1<p<2

but

Byy— H*P — BJ 2 <p<oo. (7.7)

For Besov and Bessel potential spaces, we get the following embedding results.

Theorem 7.19. Assume that

n
§——=8—-—),
P
then
Byo—=Bpig 1<p<pi<00,1<qg<q <005, €R,
and

HP — HWPL 1 <p<p <o0,8,5 €R.

In particular, WP — WLPL,

Proof. We prove the first embedding directly and then use interpolation to get the second.
It suffices to show the estimate

1F ouF fllm < €230 F o P f | 1o (7.8)

65



7 Function Spaces from Fourier Analysis

to get that
00 Vg
I, = <Z2kslq1|!f‘lsokffll‘fm>
k=0
o] 1/q
< C<22k8q|-7:_180k]:f”%p>
k=0
< Clfllas,,
as q1 > q. We show (7.8).
Reminder: Young’s inequality. Let k € LP, f € LP, 1 <p < p, p% = 1% — %, then
1B flloer < [[Elleo [l £l zo-
Proof: Riesz-Thorin....
We write: F Lo Ff = F YHop- f) = @p* f € LP and
oo
FlronFf = Y F lowpiFf
j=0
k+1
= > Flewarf
j=k—1
k+1
= > @xlerrf).
j=k—1
By Young’s inequality,
k+1
1F " ouF fllim < Y 185l llF " ouF £l o (7.9)
j=k—1

We now estimate ||@;]|z». Note that by the example above Definition 7.6, we can write
vj(@) = p(279z) — p(279 T x). Tt follows that

95](5) = /n em{@(Q_jl') dx — /n €i$’£¢(2_j+1x) dax
— 2jn¢(2j§) _ 2(j—1)n(p<2j_1£).

We directly get

IN

@5l ze

(/n(zﬂ'"sb(zjg))p dp> 1/p N </n(2<j1)n¢(2(j1)§))pdp> 1/p

QjN(l—l/p)||¢HLp + 20=Dn(1-1/p) [

2. an(l/p—l/p1)||¢”Lp_

IN
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7 Function Spaces from Fourier Analysis

This implies (7.8) via (7.9).

It remains to prove the second embedding. It suffices to consider the case s; = 0 and then
apply the isomorphism J*'. For every 1 < p < pi, by definition, we see that B , — B, ,

if §>r. If we set
n

n
p n
and moreover use the first embedding and (7.6), we get

S==s

S

s 0 p1
p71 - Bp171 - Bp171 - L :

Now choose 0 < § < 1 and s’ < s. We can then define s”,p} and p/ via

s = (1-0)s'+0s",
, n n
S —— = —
p P1
n n
g -
p P1

to get
B;jl - Lp/lv
B;:ll — LPY

By 7.13.1, Theorem 2.5.6 and Theorem 6.7, this implies

s s/ s// / /1 ,00
Bp,OO = (Bp,17Bp71)9,OO (SN (Lpl’Lpl )9’00 (SN Lpl .

From (7.5), it follows that
H*P — By o — LPV*.

Now choose again 6 and 1 < ¢} < p;. Define ¢’ by s — 7= —qﬂ,, so that 1 < ¢’ < ¢j. We
1

can then define ¢” and ¢f via

1 1-0 0
p 4 "
1 1-0 0
no 4 4
and obtain s — ﬁ = —qﬂ,l,. As above, we can get the inclusions

J 2 N Lqi»OO7

s Lq{'7007

and therefore, by Theorem 7.13.4, Theorem 2.5.6 and Theorem 6.7,
P — (Hs,q”Hs,q”>9p N (Lqi»OO7Lqi'v°°)9p — [P

Since p < p1, we have LP1P «— [PLPL = [P1 which proves the claim. ]
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8 A Trace Theorem

We consider the trace operator
T:S@R") — SR,

given by
Tf(2') = f(0,2'), 2’ = (xa,...,2,).

We want to show the following.

Theorem 8.1. Let 1 < p < o0, 1 < g <00, s> 1/p. Then T can be extended to a
bounded operator

. s n s—1 n—1
T: By (R") — By /P (R, (8.1)
T : H¥P(R") — Bs YP(R™ ). (8.2)

Proof. First note that S(R") is dense in H*P(R") and B, ,(R") as long as 1 < p,q < oo,
s € Ry. We know that § is dense in LP. Given f € H%P we can approximate in L? by
gn and therefore we can approximate in H*P by J ¢, € 8 Density in By, then follows
from Theorem 7.13.3. Thus, in the following, we consider functions in & (R") and show
the norm estimates.

The Theorem holds for all s > 1/p. We will only give a proof for 1 > s > 1/p, which is
the crucial part.

We split the proof into several steps. Step 2 is the crucial one. Its proof will be given
further below, in a seperate theorem. Step 1 is a trace theorem we may obtain from
the trace method. The remaining steps are concerned with using interpolation results
suitably.

Step 1. As an exercise, we deduce from the trace method, that Wplfl/p(]R”_l) is the
space of functions which are traces of WHP(R"), i.e. T : HYP(R") — B;;l/p(]Rnfl) is
bounded and onto.

Step 2. We show below that 7" : B;{lp(]R”) — LP(R™1) is bounded.

Step 3. From 1 and 2, we can now deduce (8.1). We set 0 < @ < 1 such that s = (1—0)+¢
Then by Theorem 7.13.1,

S n n n T — n— n— — — n
B (R") = (BL (R"), BYP(R™)gy 5 (BL VPR, LP(R™Y))g,, = B OOV (R,

)
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8 A Trace Theorem

It remains to calculate (1 —6)(1 —1/p) =s— % —(1- 0)% s — %.

Step 4. By the embedding (7.7), we immediately get (8.2) if 2 < p < oo:
T ps— n—
H (") < By, (R") 5 By e (R ),
Step 5. It remains to show (8.2) in the case 1 < p < 2. We know that

T HOARY) — By ARV, s> 1/2,

T:H"Y(R") — B3 /P (R™Y), 1< py < oo.

From the complex embeddings, Theorem 7.8.5 and 7.8.6, for % = % + pil and s =

(1 —0)so+ 0, we get

T:HPR") = [HO*(R"),H'" (R")]
=By AR By R
B(l—?)(so—l/Zl+9(l—l/p1)(Rn71)

-1 -1
= B VPR
Now if s > 1/p and 1 < p < 2, we can choose p1, 1 < p; < p, so that

s—0 _1/p—06 -0

0T 197 T1-6  1-46
1-6 0
- T—FE—GPS?%—@
1-9 ~ 1-6
1/2 1
- T1-6 Y

O]

To really show the theorem, it now remains to show Step 2. We will give an equivalent
characterization of B;AR”) for s > 0, which helps. We define the modulus of continuity
by

w;n(taf) = Sup ||A;nf||Lp7
lyl<t

where A" is the m-th order difference operator

A=Y (1) ks k)

k=0

Interesting for us is the first order:

Ayf(z) = flz) = fla+y), wp(t,f)=sup |[f(z) — f(z+y)|Le.

ly<t

The following holds.
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8 A Trace Theorem

Theorem 8.2. Let s > 0, m, N € Ny, such that m+ N > s and 0 < N < s. Then for
1 <p,q < oo,

n 1/q
o0 ONF. _dt
N—s, m
||f||B;,q(Rn>~||f||m+jzl(/0 (t wp<t,ax§v>>qt> .

The proof follows the proof in [3], Theorem 6.2.5. Before we go into the details, we need
to consider some more facts about Fourier multipliers, in particular, because we would
like to cover the cases p =1, co.

Theorem 8.3. We let 1 < p < oo and consider the space M, of all Fourier multipliers
p € S8'(R™) with norm ||pllan, = |T,|lz(rry, where T,f = F~pFf. Then the following
holds true.

1. We have M, = M,y with equal norms.

2. p € My iff
[FpF F0)] < Cllfllos

for all f € S(R™).

3. If pe Mp, NM,,,, 1 < po,p1 < o0, then
—0 0
lpllon,, < llpllo, lollom,, -
4. In particular, if 1 <p < q <2, then

My — M, — My — Ma.

5. Let a : R™ — R™ be a surjective affine transformation. Then the map a defined by

is isometric from M, (R™) to M,(R™) (the space of Fourier multipliers which are
functions on R™). If m = n, then a is bijective.

6. Let L > % be an integer and p € L*(R",C) and D% € L? for |o| = L. Then for
1<p< oo, peM, and

lpllom, < CHPHILEQ(ISFPL 1Dl 2)",
al=

— n
where 0 = 57 -

7. We have Mo = L and for every p1,p2 € My, p = p1p2 € L and

ol < llo1]lom, [|p2]lom, -
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8 A Trace Theorem
Proof. for 1.: For f € LP, g€ LP and p € M, we have
[ 17 eFg@) f@lde = [ prgfo)ds

= /nﬁ*f-g(w)dw

= [1F " pFfllelgll o
< lpllom, [1£ e lgll Lo -

A

The second statement follows from the fact that the translation operators commute with
T, .

The third statement is a consequence of the Riesz-Thorin theorem. It directly implies
the fourth statement.

Regarding 5.: Ok to see: 9, isometrically invariant under non-singular linear coordinate
transforms. After that, choose coordinates in a good way and look at the integrals (See
[3], p- 134).

Proof of 6.: From 4. and 2. we may deduce that it suffices to show the estimate in the
case p = 1, where

rmmh:/\mmMm
Rn

We consider first

IA

/'Jﬂ%ummme
xT|>

Ct= 22 sup || D%]| 2.
a|=L

!LMW@HM

IN

Then we see
[ iota)lds < ce .
|z| <t

We can choose t such that ||p||2 =t~ sup|q|=r, [[Dpll 2 to get

—0 0
lplla, < llollon, < Cllpl;2 (‘SlupLHDapr) :
al=

Proof of 7.: Clearly, if p € L*, then p € 9y with equal norm. Conversely, if p € 9,
then

sup [[F ' pF fllr2 = sup ofllc2 = llollz< £l 2-
Ifll2=1 fer2

O

We turn now to the proof of Theorem 8.2. We reduce it to the case where 0 < s < 1
and let m =1, N = 0. As an exercise, one can consider the situation when additionally,

p=q.
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8 A Trace Theorem

With this simplification, it remains to prove that

1/q
o0 d
IflBg, ~ [l flle +n </0 (¢ sup [[f() = f(-+y)llee)? t) -

lyl<t t

We can immediately guess that the proof requires finding the right Fourier multipliers
in order to move from one norm to the other. The first observation is, however, that
instead of the right hand side, we may consider equivalently the norm

[fllze 47 < > (2% sup [|Af]l) ) v, (8.3)

1=—00 ‘y|<2 g

The basic argument is that w! = w, is monotonely increasing in t. We set (0,00) =

. . p
Uiez(2~,2771) to get

2— i+1

/0 i, ) & at Z/ Sqwqtf)dt

1=—00

The integral on the right hand side can then easily be estimated from above and from
below by

—i+1

2
2—sq—1225qwg(2—z7f) < /_v t—sq—lwg(t’ f) dt < 25q2(z—1)sqwg(2—z+l7f)_

We now assume f € B, , and want to estimate f in the Norm in (8.3). Note that for
fixed 0 # y € R”, we can write

floty) = FFfoty) = / [ etemeen g andg
= FEIE)
and set p,(£) =1 — €Y to get

f@) = fla+y) = Y FlaFfx) - F 'oFflz+y)
k=0

= Y Flor-pFf(@).

We must now consider the multipliers ¢, and p, to show the estimate

1F " (pr - py - F)llze < Cmin(L, [y25) | F (op - F)1o- (8.4)

Since |F~1p, Ff(0)] = f(y) < ||f||Le, we have ||py|lam, = 1. As an exercise, we can show
that r, € My, where r,(§) = y—gpy(f). From Theorem 8.3.6, we get that

I

ol () llom, < C,
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8 A Trace Theorem

which implies

(g, Yo (27" oy ey = 11y - (27 ) lamy () < Cly|2,

if we use the calculation
Fly e FrO] = [ [ e e ) dne
:c:2: ke Qk//y2k:(}g0 —12 :cr]f( )dxdn
Z:_2kn k —izT -
= 2 /R/Rymgp(:n)e f(27%2) dedz
< Hfl [ Foe el

< C2||f|lpee.
In conclusion, we have
IF pyorF fllor < CIF orF fllLe

as well as

IF " pyorF fl v

IN

77 0O P )2 = o)

Clyl2"|F~ onF fll e,

IN

so that in conclusion, we get (8.4). The remaining step in the proof of the first inclusion
is to see why this estimate is helpful, in particular, why the case |y|2* < 1 is important.
We get that

o0
25w, (27 f) < €27 sup || F pyonF e
ko lyl<27¢

< CZQ *min(1,2~ ’+k)25k||f YorF £l Lo

The right hand side is a convolution of the two sequences by, = 2 min(1,27%), and
ap = 2°%| FYorF fll e, k € Z, where aj, = 0 for k < 0. We can use that

o0

i by, = Z 2% min(1,27%) < oo

k=—o00 k=—o0

to get

0 1/q > 1
( > <2i5wp<2-i,f>>q> <c (Z az) = Clillz;,
k=0

1=—00

73



8 A Trace Theorem

It remains to prove the converse estimate, by using a similar technique. We set

Pik(&) = pa—re,)(§);
where e; is the jth unit vector. The crucial part is to prove the estimate
n
IF o flle < C Y NF " pinF fllze- (8.5)
j=1
It then follows that

1/q

A

k=1 j=1

IfllBs, < pr+C<Z(2’“ 17 i flle)?

n ] 1/q
< |f||Lp+cz<§j<2’“ sup |f<->—f<~+y>|m>q>

j=1 \k=1 ly|<2=F

o0 1/q
< Wl + 0o ([T upe i)

In order to prove (8.5), we use the following construction: For n > 2 there exist functions
x;j € S(R™), such that

n
ij = 1 on supp<P1=B2(0)\B1/2(0>v
j=1

1
, RY||€:] > ——
suppyx; C {£€R"[|§] > 3\/5}

for 1 < j < n. Idea, why this is true: consider k € S(R) satisfying supp k = {£ € R||{| >
ﬁ} and taking positive values. Choose [ € S(R"~!) such that suppl = {¢£ € R*!||¢] <

3} taking positive values. Then with &= &1y, &-1,&541, - - -, &n), the function

o k(&)1(E5)
G = @)

works.
By Theorem 8.3.5, we see that

1

m & x(©e1(€) g

is a map in L? and similarly, its derivatives, as we only need to consider the last multiplier
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8 A Trace Theorem

for 0 < <& <2< 27 It follows that m € M, 1 < p < 0o and so

a\

|F Yo Fflle < Or\f—lso @ ) F fllee

IN

OZHJE m(2 M) FF L piF f Lo

IN

C Z |F " pjnF fllie-

j=1
Now that we have a new characterization of the Besov norm from Theorem 8.2, we are
much closer to proving Step 2 in the Trace Theorem 8.1.
We need the estimate

ITfll o1y < CHfHB;(f(Rn) (8.6)

for all f € S(R™). From the Embedding Theorem 7.19, we know that B;ép(R) — L*(R)
for every 1 < ¢ < oo. It follows that

75 < OIS gy o (8.7

for all 2/ € R*~1. To deduce (8.6) from this, we use the following characterization given
in [1, Theorem 7.47], which is not trivial and is shown by taking the B, ,(R™) norm from
real interpolation: for 0 < s <1, 1 <p<oo,1 < g < o0,

S dt . dh
Il ~ I lle + /0 (T KRy ot / 18 o e

We now take the p-th power of both sides of (8.7), integrate over R"~! and take the
1/p-th root to get that by the Minkowski inequality,

| T fll e @n—1)

1/p 00 dt\ P 1/p
c( [/ If(:cl,:v’)”dwldx’) +c( / ( | ))
Rnfl R ]Rnfl 0 p t
1 , dhl p 1/p
< C\If\le<Rn)+C( / ( J /puAhlfc,x)m(R)) )
rn-1 \JR |ha

IN

M.I. Y , , NP dhy
< C||f||Lp(Rn)+C/ |1 p(/ 1/ |f($1,$)—f($1—|—h1,:n)pdx1dx) il

Rn—
=+h 1/p dt
S CHJCHLP(R" +C/ t=1/r (/ /’f T, flxy + ¢, x ]pdxldx> "

Rn— 1

~1/p dt
< Ol fllzrwny +C ; \Slllp HAnyLP(Rn —
y|<

< CHfHB;/lp(R”)’

which proves the claim.
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9 More Spaces

In this last chapter and in the last lecture, we want to briefly introduce and consider
a few function spaces which have not appeared before, but which are at the same time
somehow related to our previous topics. There is no time for proofs, but they can be
found in the references.

9.1 Quasi-norms

In contrast to a norm, a gquasi-norm does not fulfill the triangle inequality, but the
following more general condition. There exists a constant C' > 0, such that for every
elements z,y of the quasi-normed space (X, || - ||),

[z +yll < Clzll + [lyl)-

Typical examples of quasi-normed spaces are the LP-spaces, when 0 < p < 1, which are
defined as in the p > 1-case.

We have met a quasi-norm in Section 6.2. For 1 < p,q,po,p1 < o0, and 0 < 6 <
1 appropriately, the spaces (LP9,|| - ||z»q) are quasi-Banach spaces, whereas (LP4, || -
l(zer, LP0), q) are Banach spaces. We showed that they have equivalent quasi-norms.

Remark 9.1. For quasi-Banach spaces, the K-method still works as before, giving a quasi-
Banach space as the interpolation space. One can choose 0 < g < oo as interpolation
parameter, |7, Remark 2, p. 27].

9.2 Semi-norms and Homogeneous Spaces

In contrast to a norm || - ||, a semi-norm [-] does not satisfy
|z]| =0= 2 =0.
Typical examples of semi-normed function spaces are those which only care about the

properties of (higher order) derivatives of a function. These spaces are called homoge-
neous.
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Example 9.2. For a domain Q C R", m € N, 1 < ¢ < oo, we set
D™I(Q) = {f € Lioe(Q) : D'f € LURQ),|I| = m}.

It follows that D™%(Q) — W, 24(Q2) by Poincare Inequality. If € is a local Lipschitz
domain, then
D™AQ) — W),

loc

We look at the semi-norm

1/q

Aoma = | 32 [ 1D

[l|=m

We have that [f]pm.e = 0 if and only if f is a polynomial of degree at most m — 1,
f € Pp—1, D™ modulo P,,_1 is a Banach space.

Example 9.3. In the Fourier analysis context, we can define homogeneous Besov and
Bessel potential spaces, see [3, Section 6.3]. We choose ¢ € S(R™), such that

(0),

1
o) > 0, S<lé<2

suppe = B3(0)\B

N[

o0

> et = 1, ¢#0.

k=—00

We define ¢, (&) = o(27%¢) for all k € Z.

1. Then we consider for all f € S'(R"),

[e¢) 1/q
. _ skq —1 ~ q
i, = ( > 2MF smfflb) .
k=—00
The space of all f € &', for which [f], is finite is called the homogeneous Besov
. p,q
S . .
space Bj .. We have that HB;;,q B,
supp F f = {0}, which happens if and only if f is a polynomial.
We have that B, , = LP N B, , if s > 0 and that

[f] . ~ Z /Oo(tN—swm(t &))q g v
Bqu 0 p 78£U§V t

J=1

is a semi-norm and that [f] = 0 if and only if

as in Theorem §8.2.
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2. S.imilarly, the homogeneous Bessel potential spaces H*P are defined. We set f €
H®P for f e &' if

figew = | Z FHIEP@R)Ff e < o0,

k=—00

meaning that the sum on the right hand side converges to an LP-function. Then
(H5P, []j7sp) is also a semi-normed space and [f]p., = 0 if and only if f is a
polynomial.

It follows that H*P = LP N H*? if s > 0 and that

oN f
HNPNZH Hva 1 <p<oo,

if f vanishes in a neighbourhood of the origin.

Interpolation and embedding results from the usual (inhomogeneous) spaces mostly carry
over to homogeneous spaces, e.g. Theorem 7.13 and Theorem 7.19.

9.3 Orlicz Spaces L4

Orlicz spaces can be cousidered as a type of generalization of LP-spaces. We ounly give a
very brief introduction here following |1, Chapter 8] and also refer to |2, Section 4.8].

Idea: fe LPif [|f(z)[Pde < oo, fe Laif [A(|f(z) dz < oco.
Problem: If mp =1, p > 1, then for a good domain 2 C R™,

W™P(Q) — LI(Q), p<g<oo, but W™P(Q)Z L>®(Q)
so there is no optimal target LP-space for the embedding.

Definition 9.4. Let a : [0,00) — R be a function such that

1. a(0) =0, a(t) > 0if t > 0 and limy_, a(t) = oo,
2. a is nondecreasing,

3. a is right continuous.

Then the function A : [0,00) — R, given by

is called an N —function.
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It follows that A is continuous, strictly increasing and convex, that lim; g A®) — 0 and

Tt
lim; o0 # = oo and that @ is strictly increasing.

Examples: A(t) = t? and A(t) = e®) —1if 1 < p < oo, A(t) = ¢ —t — 1 and
A(t) = (1+1t)log(1+1t) —t.

Definition 9.5. Let Q@ C R” be a domain and A an N-function. The Orlicz class K 4(2)
consists of all equivalence classes [f] modulo equality a.e. on € of measurable functions
f, such that

/ A(|f(x)])dz < oo.
Q

The set K4(Q2) is convex, but it may not be a vector space.

Definition 9.6. (and Theorem) The Orlicz space L4(2) is the linear hull of K 4(2).

The function
100 :mf{k>o:/A (%”) dr < 1}
Q

is a norm on L4(€). It is called the Luzemburg norm. (La,| - ||,) is a Banach space.

Next, we look at some basic results.

Definition 9.7. Given a as in Definition 9.4 above, we consider

a(s) = sup t
a(t)<s

and A(s) = Jo a(o) do. We have that @ also satisfies 1. - 3. in Definition 9.4 and

a(t) = sup s,
a(s)<t

so that A is also an N-function. A and A are said to be complementary.

For A and B given N-functions, we say that B dominates A globally if there exists a
constant C' > 0 such that

A(t) < B(Ct), forallt>0. (9.1)

We say that B dominates A near infinity if there exists a constant ¢y > 0 such that (9.1)
is satisfied for all ¢ > ¢.

Examples: For 1 < p < oo, ]% + ]% = 1, the functions A and A given by A(t) = % and
A(s) = ‘%, are complementary N-functions, as well as the functions B and B given by

B(t)=¢' —t—1and B(s) = (1 + s)log(1 + 5) — s.
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9 More Spaces
Definition 9.8. Hélder Inequality: If A and A are complementary N-functions, then

< 2fullzallvllz ;-

/Q w(z)v(z) dz

Embedding: We have that
Lp(Q) — La(2)

if either B dominates A globally or B dominates A near infinity and u(Q2) < co.

Theorem 9.9. Let Q C R" be a suitable bounded domain. Let mp = n and p > 1 and

set
At = 77 _ 1 = 00Ty,

Then the embedding
W™P(Q) — La(Q)
holds true.

More: Orlicz-Sobolev spaces, trace theorems, interpolation.

LP(I)(Q)-SpaCes: For a function p : @ — R, 1 < p(z) < oo and A > 0 consider
fg |@‘p(9€) dz. Luxemburg norm ~» LP(*)(Q).

9.4 Hardy Spaces

Hardy spaces are complex Banach spaces of holomorphic functions, endowed with an
LP-type norm, usually defined on the unit disc or on the half plane. We consider the
latter case, following the first part of |2, Section 5.6].

Definition 9.10. Let Cy = {z + iy : x € R,y > 0} be the upper complex half plane.
The Hardy space HP(C,) is the Banach space of holomorphic functions F' on C, with
finite norm

00 . 1/p
SUPy >0 (f_oo |F(x +iy) ) dx) , 1<p<oo,

| F'llpp () =
SuPzec, |F(Z)’, b = 0.

We know: There is a unique solution u for the Dirichlet problem on C if f € L'+ L>®(R):

Au = 0, inCy,
lim wu(t,y) = f(x), ondCs.

t+iy—x

It can be shown: if F € HP(C,), then its boundary value f satisfies f € LP(R;C).
Moreover, if F1 and F, are functions in H!(C, ) which have the same real part fr at the
boundary, then by Cauchy-Riemann they can only differ by an imaginary constant, which
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must be zero for Fy — Fy € H'. This implies: H! as a real Banach space is isometrically
isomorphic to the space R(H') of functions fr € L' which are real parts of boundary
functions of functions F € H', where the norm is || frl| gy = [|F |3

Philosophy: R(H!') C L', but nicer than L.
Theorem 9.11. If0<0<1,1<g<o0, and § =1—1/p, then

(R(HY), L™®)g,, = LP1.

9.5 The Space BMO

BMO means: bounded mean oscillation.

On a domain 2 C R™, we consider the mean value f, of a function f € L] (2) on a
(Lebesgue) measurable set A with 0 < u(A) < oo,

— 1
fA—M(A)/Afd/L-

Definition 9.12. The space BMO(R) is the space of functions f € L{ (Q) which satisfy

loc

Flparo = wpéﬁéﬁw—ﬂmu<w

O<p(A)<oo H

where [-|papo is a semi-norm and [f]paro = 0 implies that f is constant.
The following holds true:

e if () < oo, then L>®(Q) — BMO(Q) — LY(Q).

e if 2 is a bounded Lipschitz domain, then BMO(Q) is contained in every LP(2),
1<p<oo.

e if Q2 is a bounded Lipschitz domain, then for 0 < 8 < 1, 1 < g < 0o, we have
(LH(Q), BMO(Q))g,g = LT7().

e BMO(R) modulo constants is isomomorphic to R(H!)’, [2, Theorem 6.17].
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