Lecture Notes
on
Calculus of Variations I

Karoline Disser

Winter term 2020/2021

Address:  Universitiat Kassel
FB 10 Mathematik und Naturwissenschaften
AG Analysis und Angewandte Mathematik
Heinrich-Plett-Str. 40
34131 Kassel
Germany

Office: 3318
Phone: +49 (0)561 804 4613
E-mail: kdisser@mathematik.uni-kassel.de

Acknowledgements: The contents of this course and these lecture notes are based on the
courses taught and notes prepared on this topic by Prof. Dr. Alex Mielke and
Prof. Dr. Dorothee Knees. Corrections by Philipp Kése, Steffen Polzer, Jan
Schréder, Konstantin Sitnikov. Thank you!



CONTENTS

Contents

1 Introduction

1.1 Mission statement . . . . . .. ... L L Lo
1.2 Examples: sketches and pictures . . .. ... .. .. ... ... ......
1.2.1 Brachistochrone curve — the fastest marblerun . . . . .. ... ..
1.2.2 Catenoid — the laziest chain . . . . . . .. ... ... ... .....
1.2.3 Soap bubble — the smallest surface, the largest volume . . . . . .
1.2.4 Elasticity — the most relazed sponge . . . . . ... ... ... ...
1.3 Examples: famous functionals and some modelling . . . . ... ... ...
1.3.1 Brachistochrone curve . . . . . . ... ... ... 0.
1.3.2 Fermat’s principle . . . . . . . . ...
1.3.3 Minimal surface . . . .. .. ... ... ... ..
1.4 Reminder: the case X =R", I =F € C*(R",R). ... ..........
1.5 Reminder: Weierstrall’ principle. . . . . ... .. .. ... oo
1.6 Strategy for Chapter 3 — how can this be fixed? . . . . . . ... ... ...
1.7 Outlook and Motivation . . . . . ... ... .. ... ... ... ...

Classical Methods in the Calculus of Variations
2.1 Problem set-up . . . . . .. ...
2.2 (Multidimensional) notation . . . . . . ... ... ... L.
2.3 The Euler-Lagrange Equations . . . . . .. ... .. ... .. .......
2.3.1 The Dirichlet integral. . . . . . . ... ... ... 0.
2.3.2 Minimal surfaces . . . . . . . . ... o
2.4 Different types of extrema . . . . . .. .. .. ... ... ...
2.4.1 The double-well functional . . . . . . ... ... ... ... ...
2.5 Some necessary and sufficient conditions . . . . .. ... ... ...
2.6 Typesof Convexity . . . . . . . . . .. .
2.7 Examples . . . . ... e
2.7.1 Minimal surface . . . .. ... .. L
2.7.2 Brachistochrone curve . . . . . ... oo
2.7.3 Linear elasticity . . . . . . . . . ... o

The Direct Method in the Calculus of Variations

3.1 Abstract existence theorems from functional analysis . . . . . .. ... ..

3.2 Reminder: Lebesgue and Sobolev spaces . . . . . . ... ... ... ....
3.2.1 Lebesgue spaces . . . . . . . ...
3.2.2 Convergence Theorems . . . . . . . ... ... ... .. .......
3.2.3 Weak derivatives . . . . . . .. .. Lo
3.2.4 Sobolevspaces . . . . .. ... e

3.3 Properties of I(u) = [, f(z,u(x), Vu(x))dz on WHP(Q) . . ... ... ..
3.3.1 Quasiconvexity and weak lower semicontinuity of 7 . . . . . . . ..

3.4 Examples . . . . ...
3.4.1 p-Laplace . . . . . ...
3.4.2 Optimal Poincaré constant . . . . . ... ... ... .. ......
3.4.3 Phase separation (Cahn-Hilliard energy) . . . . . . ... ... ...
3.4.4 Nonlinear Elasticity . . . . .. .. ... ... ... ..

O© O~ ~J 31O ULOUULU



CONTENTS 3

Literature

(Introductory) Books on the Calculus of Variations

[Rin18|
[Dac08]

[Dac04]

[EKT]

F. RINDLER. Calculus of Variations. Springer, 2018.

B. DACOROGNA. Direct Methods in the Calculus of Variations. Springer, 2nd
ed., 2008.

B. DACOROGNA. Introduction to the Calculus of Variations. Imperial College
Press, 2004.

I. EKELAND AND R. TEMAM. Convex Analysis and Variational Problems.
North Holland, 1976.

Further References

[Adams]
[Alt]
[Ciarlet]

[Evans]

[Klenke]

R.A. Abpams. Sobolev Spaces, Academic Press, 1975.
W. Arr. Lineare Funktionalanalysis, Springer, 4th ed., 2002.
P. CIARLET. Mathematical FElasticity, North Holland, 2004.

L.C. Evans. Partial Differential Equations, AMS Graduate Studies in Math-
ematics, 2nd ed., 2010.

A. KLENKE. Wahrscheinlichkeitstheorie, Springer, 3rd ed., 2013.



1 INTRODUCTION

1 Introduction

1.1 Mission statement

Consider (non)linear functionals
I: M — RU{+oc0},

on a set M C X, where X is an infinite-dimensional Banach space.

Find (local or global) minimizers of I.

1.2 Examples: sketches and pictures

1.2.1 Brachistochrone curve — the fastest marble run

1.2.2 Catenoid — the laziest chain
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1.2.3 Soap bubble — the smallest surface, the largest volume

1.2.4 Elasticity — the most relaxed sponge

Note: (almost) every solid material is somehow elastic!

1.3 Examples: famous functionals and some modelling

1.3.1 Brachistochrone curve

Find a curve S that starts at A = (0,h) and ends at B = (I,0) such that the traveling
time of a marble running along S is minimal (no friction!). The curve § = (z,u(z)) is
given as the graph of a function u: [0,!] — R with u(0) = h the initial height and u(l) = 0.
The total energy of the marble at position z is given by the sum of its potential energy

Epot (LU) = mgu(x) ’

where m is its mass and g the gravitation constant, and its kinetic energy,
1
Ekln(-r) = §m|’U(IL’)‘2,

where v(z) is the velocity of the marble’s center of gravity. Here, as is customary for this
problem in mathematics, we disregard the rotational energy
1

Erot(x) = gm|v(x)|2,



1 INTRODUCTION 6

of the marble. It would only modidy the factor “2” that appears in the following to be

“%H. By conservation of energy, for all x, we obtain the equation

E(0) = mgh + %m|v(0)|2 = mgu(x) + %m\v(m)ﬁ = E(x).

Since the marble starts at zero velocity, v(0) = 0, this gives

[o(@)* = 2g(h — u(z)). (1.1)

At the same time, the velocity of the curve is

0= gutety ) "0 (e )

o(t)|* = &(t)* (1 + ' (2(t))?).

Combining this with (1.1), we get

SO

. 2
o) =\ B

Hence, the Brachistochrone curve is given by the function « with w(0) = h and u(l) =0
that minimizes the functional

T x(t ! t'(z)=zrz¥m5s ! 1
:/ dt tH:(f)/ t'(z) dx R / ——dx
0 0 o Z(t(z))
! 14+ u/(x)?

The problem of finding this curve was first solved by Jakob Bernoulli in 1696. The solution
will be discussed in Subsection 2.7.2.

1.3.2 Fermat’s principle

“Light takes the path of shortest time.” Pierre de Fermat (1607 — 1665) proved this
principle using the calculus of variations. A possible formalization of this prinicple is the
following: Again, look for a parameterized curve (z(t),u(x(t))) that is the graph of a
function u and connects a point A = (z, ug) to a point B = (x1,u;). Light should travel
along this curve in a medium with index of refraction n(w u) > 0. As before, we have

)| = 12@) /1 + v (x

In addition, a constitutive equation as in (1.1) is needed. In this case, it is given by the

law of optics,
c

v(z,u) = m7
where c is the (constant) speed of light in vacuum. Thus, we need to find u such that
u(xo) = up , u(x1) = uy, and such that the total time

- /OT =t / rrr ke / Vi et e

is minimal.
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1.3.3 Minimal surface

Consider a bounded domain Q C ]1§2 with boundary 9. Given a function ug: Q — R,
find a function u: Q — R, u € C1(Q) such that u = ug on 9Q and such that the surface

I(u):/ﬂx/1+|Vu(:c)|2dx

is minimal. (The surface area of the surface given by the graph of u over 2 is calculated
by integrating the cross product of its tangential vectors in this parameterization:

Remark.
1 0 —%u(m)
[ ) 0 X ) 1 =11 —3&ul) |I=vV1+[Vu(@)?)
aT;lu(ff) 372”(95) 1

In this course, we study these and other examples with two different strategies.
In the first part of the lecture, in Chapter 2, we use indirect or classical methods. They
are based on the idea of generalizing necessary and sufficient conditions for the existence
of minimizers from the finite-dimensional to the infinite-dimensional situation. As a brief
reminder of these conditions, let us look at the finite-dimensional case:

1.4 Reminder: the case X =R", [ = F € C*(R",R).
(For proofs see “Analysis II” and Exercise 1.IV.)

Necessary Conditions: If zyp € X is a local minimizer of F', then
1. zq is a critical point, i.e. %F(xo) =0foralli=1,...,n, and,
2. the Hessian Hp(xz¢) is positive semi-definite.

Sufficient Condition: If xg is a critical point of F' and Hp(x) is positive definite, then
2o is a local minimizer of F.

Aims of Chapter 2: Generalize and adapt these ideas to infinite-dimensional X and
specific types of I.

In the second part of the course, Chapter 3 in these notes, we get to know the direct
method in the calculus of variations. Roughly speaking, it is an adaptation of Weierstraf’
Principle to specific infinite-dimensional settings. In the following three short sections,
we look at some aspects and a rough guideline for this adaptation.

1.5 Reminder: Weierstrafy’ principle.

(Karl Weierstrafs (1815-1897), for proofs recall “Analysis I and/or II:) A real-valued
continuous function on a compact set attains its maximum and minimum.
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Aims of Chapter 3: For the problems we would like to solve, the assumptions of
Weierstraft® Principle (compactness and continuity) do not fully apply. Thus, we try to
modify them by using more specific information on M C X and [.

Simple examples: Non-compact X C Y =R and non-continuous, bounded F' —
what can got wrong?

Problem 1. M = X =R (non-bounded) and F(x) = e~ then there is no minimizer of
F:

\

Problem 2. M = [0,1)U(1,2] (non-closed) and F(z) = 0.5+ (z—1)2, then inf,cx F(z) =
0.5, but there is no minimizer in M:

1.5 1

0.5 1

Problem 3. M = [0,2] and

o5+ (z—1)%, z€[0,1),
Flz) = {2, z € [1,2],

(non-continuous), then again inf,cx F(x) = 1, but there is no minimizer:
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1.5 -~

0.5+

1.6 Strategy for Chapter 3 — how can this be fixed?
Let X be a Banach space, M C X, and let : M — R be a functional that is bounded

from below. Then there is an infimizing sequence (4,), C M for I, i.e.

hrrlnl(un) = ulg)f{ I(u)=1.

Now adopt the following strategy:

Step 1. Assume that I is coercive, i.e. for every sequence (un), C M, if |Ju,|x — oo,
then I(u,) — oo. This implies that (&), is bounded without assuming that M is
bounded. In particular, this assumption deals with Problem 1.

Step 2. Assume that M is (weakly sequentially) closed in X or that, for some other
reason, there is a (weakly) convergent subsequence of (@), with (weak) limit M > a =
limy, @, . This assumption addresses Problem 2 — except that the assumption of weak
closedness is stronger than the assumption of closedness of M.

Step 3. Now if I is (weakly sequentially) continuous on X, then limy, I(ay, ) = I(u), so
4 is a minimizer and we are done. However, for the applications we have in mind, this
assumption is far too strong. If, instead, we assume that I is (weakly sequentially) lower
semicontinuous, then still

I = 1i]£nf(ﬂnk) > lim ir]ifl(ﬂnk) > I(u) > 1,

S0 4 is a minimizer. In particular, this assumption is sufficient for avoiding Problem 3
and can be shown to hold in relevant cases (think of the norm on a Hilbert space as a
first example of a weakly sequentially lower semicontinuous functional).

1.7 Outlook and Motivation

This Introduction shows a little bit of everything we will encounter during this lecture.
In particular,
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e we will need

— (multidimensional) calculus, and

— some functional analysis, and,
e we will get to know

— some convex analysis,
— some PDE (Partial Differential Equations) theory, and
— some modelling, and,
e the problems, theorems and examples in this lecture are strongly inspired by and
connected to many other interesting topics in
— analysis,
— geometry,
— (nonlinear) optimization,

— mechanics, and, more generally, physics,

2 Classical Methods in the Calculus of Variations

2.1 Problem set-up

Let n,m € N be (spatial) dimensions for our problem (e.g. “n = 1,m = 1” for the
Brachistochrone curve, “n = 2,m = 1”7 for the minimal surface, “n = 3,m = 3” for the
sponge) and let  C R™ be a bounded domain with smooth boundary 9 (see Remark
below) and outer normal vector field v. Now consider functionals of the form

1) = | fGaule). V@) do+ [ glau(w) do (2.1)

and find (differentiable) functions w: 2 — R™ that minimize I.
In this Chapter,

e the function f: Q@ x R™ x R™" — R, (z,u, A) = f(v,u, A) is called a Lagrange
function or (energy) density and satisfies f € C?(Q x R™ x R™*™: R), and

e the function g: 9Q x R™ — R is called a boundary density and satisfies g € C?(9) x
R™:R).
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0

O

X\
I

It often happens that the sought-for function v € C1(€2; R™) =: X should be restricted

to fixed values ug on some part I' C 92 of the boundary (e.g. u(0) = h,u(l) = 0 for the
Brachistochrone curve). Hence, for given ug € X, we define the set

M :={ve X :v|r=uor}.

Then we denote by
Xo:={veX:vp=0}

the corresponding linear space of test functions with M = wug + Xo and consider the
functional I as a map
I: XD>OM—R. (2.2)

Remark. The assumption on the smoothness of the boundary 0f2 is “technical” — it can be
relaxed and it doesn’t really have an impact on what we would like to do. We will discuss
this point a bit more in Chapter 3. Here, we just need to know that we can integrate over
0 in a reasonable way. The notation dz’ is used for this integral.

The examples in Chapter 1 fit into the form of (2.2) with suitable X, M and I as in
(2.1). You can check this as an exercise even before we discuss them again.

2.2 (Multidimensional) notation

In this Section, we collect specific multidimensional notation used in this course.
In the previous Section and in the following, Vu(z) € R™*" denotes the (transposed)
gradient and the Jacobian matrix of u,

_ 8Uz

N 8xj

(Vu(z)),; (z), ie{l,....m}je{l,...,n}.

We adopt this (transposed) notation because it is used frequently in the literature and in
applications.
On the set R™*"™ of real m x n-matrices we use the scalar product

B:C = trace(BTC') = E?;lEyleijC’ij

for two matrices B, C' € R™*™ and the Frobenius norm |B| = v B: B.
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For f as before and z € Q, u € R™, A € R™*" we write:

a:cf(xa U,A) = (a(zf(xa U’A)) € R",

1<j<n

Ouf(z,u, A) = (af(ammA)) e R™,

Ou; 1<i<m

oaf(z,u, A) = (82”f(x,u,A)> € R™*",
ij

1<is<m,1<j<n

For second derivatives, and v,w € R™, A, B,C € R™*™ we write

m 82
2 . — .
auf(xa ’lL, A)U w A~ 6uzauk f(xv 'LL, A)vlwkv
> >
P A)[B,C] = S A)Bi;Ch,
Af(xaua )[ I } > k<z;<. aAzjaAkl f(x7u7 ) j <kl
<t,k<m,1<j,I<n
62
040y f (@, u, A)w,C] = > mf(xa%A)wiCkl-

1<4,k<m,1<I<n
For a differentiable function A: Q — R™*™ the divergence operator “acts on rows”:

. n O
(div A(z)); = Xj_4 T%Aij (@).

For a k-times continuously differentiable function v € C*(Q;R™), the corresponding
norm ||v||gr of v is given by

k
lollgr = Z max sup [D%v(z)]. (2.3)
1=0

—rzeQ

2.3 The Euler-Lagrange Equations
In the following, let 2,1, ug, X, M, Xy and f,g and I be as in the previous sections.
Definition 4. (First Variation) Let v € M and v € Xj. Consider the map

R D Bs,(0) >t I(u+tv) €R,

with By, (0) an open interval such that u + tv € M for all t € By, (0) and v € Xy. Then
the expression

d
DI(u)[v] := &I(u + tv)|i=o
is called the first variation of I at w in the direction of v. Moreover, we have

DI(u)[v] = /Qauf(x,u(m), Vu(z)) - v(z) + 0af(z,u(z), Vu(z)): Vo(z)dz

+ /6Q Oug(z,u(z)) - v(z)da’
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The first variation can be considered as a directional derivative of I and it is equal to
the Gateauz differential of I. The expression for DI(u)[v] contains the definition (first
:=) which works for general functionals, and it contains a small Proposition (second =)
that follows from the chain rule if we differentiate the integral form (2.1) of I. We can
interchange differentiation and integration as f,g are continuously differentiable. Note
that the directions v need to be in the linear space of test functions Xj.

With the first variation at hand, it is clear how to define critical points of I. As in
finite dimensions, critical points are candidates for local minimizers.

Definition 5. (Critical points of I) A point u € M is called a critical point of I, if
for all v € X¢, DI(u)[v] = 0.

From this definition, it is usually not clear how to find critical points of I. In particular,
we cannot reduce the problem to finitely many equations. The aim of this Section is to
show a necessary criterion for u being a critical point of I, namely being a solution of the
Euler-Lagrange Equations. We start with two important preliminary results.

Theorem 6. (Version of Gauss’ Theorem (Gauss)) Let u € X. Then for all 1 <i <m,
1< 5 <n,
Ou; /
“(z)dx = i (z)v; (x) da’.
[ Sr@ s = [ e

Proof. cf. Analysis I1/TV! O

Theorem 7. (Fundamental Lemma of the Calculus of Variations (FL)) If a: Q@ — R™
and b: 9Q — R™ are continuous and for all v € C°(;R™) such that v|r = 0 we have

/Qa(x) ~v(z)de + / b(z) - v(z)da' =0,

o0

then a(z) =0 and b(z") =0 for all x € Q and 2’ € OQ\T.

Proof. We use an indirect proof. Assume that zo € Q is such that a(zg) # 0. Since a is
continuous, then there exists § > 0 such that Bs(zo) C Q and a(z) - a(zo) > 3|a(zo)|? for
all x € Bs(zp). Here and in the following, Bs(zo) = {x € R": |x — x| < ¢} is the open
ball of radius § with center z. Define x € C*°(R"™;R) by

1
e -7 x| <1,
x(x) = {0 it

[ > 1,

so that suppy = {z € Q : x(z) # 0} = B1(0). Let v(z) = a(xo)x(*5=). Then
v € C®(Q;R™), v|gpg = 0 and

T — X0

Oz/ﬂa(x)'v(z)dm=/Bs(mo)a($)'a($o)x( 5 ) dz

T — X9
—)

1
> Slat@)P [ x
2 Bywo) 0

a contradiction. It follows that a(z) = 0 for all z € Q. Using a = 0 and a similar
argument, we can also show that b =0 on 0Q\ T O

dzx > 0,
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With these two tools at hand, we can prove the main result of this Section.
Theorem 8. (Euler-Lagrange Equations (ELE)) If u € M is a critical point of I and
u € C?(;R™), then it satisfies the Euler-Lagrange Equations
—div (0af (, u(z), Vu(z))) + B f(z, u(x), Vu(z) =0, z €9,
Oaf(z,u(z), Vu(z))v(x) + dyg(z, u(z)) = 0, x € IQ\T,
u(z) = uo(z), zel.

In this case, u is called a classical solution of the variational problem DI(u)[v] = 0.

The proof will also show the converse: if u € C?(;R™) N M satisfies the ELEs, then
it is a critical point of I.

Proof. By Definition 5 of critical points,
0=DI(u / Ouf(z,u(x), Vu(z)) - v(z) + 0af(z,u(z), Vu(z)): Vo(zr)dx
" / Duglir,ul)) - v(a) da,
a0
short / Ouf -v+04af: Vvd:r+/ Oug - vda’,
Q 1)

for every v € Xg (recall that Xy = {v € C*(Q;R™) : v|r = 0}). Here, the last line is just
for introducing a short way of writing the integrands. Using Gauss’ Theorem 6 and the
definition of the divergence operator in Subsection 2.2, we have

/ Z Z BAf”vZujdx

O <i<m, 1<5<n

Gauss/Q ij ((aAf)ij vi) dz

1<i<m 1<5<n

Chain Rule Z div (9 f), vzdx+/ Z Z (Oaf) : Vodz.

Q1<i<m 1<i<m 1<j<n

Understanding this index notation and how Gauss’ Theorem needs to be used is the most
difficult part of the proof. We then have

0= / (Ouf — div(Daf)) - vz +/ (Oaf)v + Dug) - vda, (2.4)
Q o0
for every v € X. Since u € C2(Q;R™), f € C?(Q x R™ x R™*™;R), and g € C?(9N x
R™;R), and the normal vector field v is (at least) continuous on 992 \ T', the functions
Q3 x— (Ouf —div(0af))(z,u(z), Vu(z))
and
0N 3 x— ((0af)V+ 0ug)(z,u(x))

are continuous as well. The theorem now follows directly from (2.4) and the Fundamental
Lemma (FL). O
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Of course, the question is: how do the ELEs help us find critical points? Solving the
ELEs may also be a difficult task. For varying dimensions m,n € N, the Euler-Lagrange
Equations are:

For n =1,m = 1: an ordinary differential equation,

for n =1,m > 2: a system of ordinary differential equations,
for n > 2,m = 1: a partial differential equation, and

for n > 2,m > 2: a system of partial differential equations.

Next, we look at two typical examples of Euler-Lagrange Equations that are a PDE. The
following subsection contains a lot of terms from PDE theory. They appear here so that
if you have seen them before, you can make the connection — but it is not necessary that
you know them already.

2.3.1 The Dirichlet integral.

Here, n > 2, m = 1, the functional [ is quadratic and the corresponding ELEs are a linear
partial differential equation. For a matrix-valued (coefficient) function

K € C?(; R™*™)
and functions fy € C?(Q;R), go € C°(98%;R), define
flz,u, A) = %ATK(.I)A — fo(2)u,
g9(@',u) = —go(2)u,
where z € Q2" € N := 0Q\ T, u € R and A € RX™ = R" so that

I(u) = /Q 5 (V) () K (2)Vu(a) ~ fo(a)ule) do + /8 (e)ula)

Then the ELEs for the critical points of I are

—div (%(K(m) + K(x)T)Vu(x)) = fo(z), nQ,
3(K(z) + K(2)")Vu(z) - v(z) = go(x), on N,
u(x) = ug(x), onT.

(Exercise!) This is a linear elliptic PDE in w if K(x) is positive definite, with Dirichlet
boundary conditions on I' and Neumann or ‘natural’ boundary conditions on N. If

1 0 O
K(.’L‘)Z 0 0 y
0O 0 1

then

—div (;(K(z) + K(z)T)V) — A,

the Laplace operator. In this case, the ELEs are called the Poisson equation (—Au = fy)
or the Laplace equation (Au = 0) on .
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2.3.2 Minimal surfaces

As a second important example, we check the ELEs for the minimal surface problem from
Subsection 1.3.3. Recall that we have a bounded domain Q C R? with boundary 9 and
a function uy € C°(Q;R) is given. The graph of this function on dQ is a frame for our
soap film. The soap film itself is given by the graph F = {(x,u(x)) € R3: 2z € Q} of a
function u:  — R, such that u = up on 99 and such that F' has minimal surface area,

I(u) = /Q V14 |Vu(z)]? de

should be minimal. In this setting, the energy density is f(x,u, A) = /1 + |A[> with
AeR? and M = {u € CY(R) : ulon = uolan}- Since

Oafto ) = < (1)),

VIt IAP

the ELEs are

div (\/1+‘91u($)2+82u($)2> = 0, in Q7
u(r) = uo(z), on DL
Again, we have a PDE because n = 2,m = 1, but now it is nonlinear in w. This

distinction is important as, like in the finite-dimensional case, the theory for solving
nonlinear equations is much less complete than the theory for solving linear problems
(solving nonlinear PDE is a key application of the Calculus of Variations). Here, the

expression div (\/1+8 V(“)(;j_a — is the mean curvature of F. So the ELEs show that
1ulx ou(x

a minimal surface has zero mean curvature.
More examples will appear soon: an ODE in the next Section, systems of PDEs at a
later point in time...

2.4 Different types of extrema

We have seen that the solutions of the ELEs are critical points of the functional I. But
do critical points provide extrema? This need not be true, even in finite dimensions.
Critical points may be saddle points. The aim of this Section is to derive necessary and
sufficient conditions for critical points to be minimizers. As a first step, we need to define
different types of extrema and will give an extensive, but simple example that motivates
the distinction (and that will be used again).

Remark. We only talk about minima and minimizers, but everything could be adopted
to the problem of finding maxima and mazimizers, for example, by changing the sign of
I and its boundary conditions.

Definition 9. (Global, strong, and weak minimizers) Let M C C'(€2;R™) be the set of
admissible functions and let I: M — R U {400} be a functional (slightly more general
than the setting from Section 2.1). Then a point u € M is called

1. a weak local minimizer, if

(36 > 0) (Vv € M)||u—v|lcr <= I(u) < I(v),
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2. a strong local minimizer, if

(36 > 0)(Yv € M)||lu—v|co < 6= I(u) <I(v),

3. a global minimizer, if
(Vv € M)I(u) < I(v).

Here, the norms || - ||c1 and || - ||co are defined as in (2.3).

Remark. In finite dimensions, there would not be any distinction between weak and

strong local minimizers, because all norms on the space of admissible vectors would be

equivalent. The relevance of this distinction in the infinite-dimensional setting derives

from the examples that we look at and from the applications that we have in mind (in

other words: it need not/should not be clear now, but will become clear as we move on).
As a first context for the definition, consider the following implications:

.1 .2 .3 .
u global min. 4 u strong loc. min. :; u weak loc. min. $ u crit. pt.,

and their converse implications:

4 5)* 6
u global min. @L u strong loc. min. %t u weak loc. min. @L u crit. pt.

Then 1) and 2) follow directly from the definition, and we will show 3)* in Theorem 13. 4)
is known already from finite-dimensional counterexamples (not every minimum is a global
minimum), 5)* will be shown in the Example below and 6) is again obvious, because a
critical point may also be a maximum. To summarize, the “unstarred” implications are
trivial, but we will have a second look at the “starred” ones.

To illustrate the definition, we use the following example:

2.4.1 The double-well functional
Let Q = (0,1) and define the energy density f(a) = (1 — a?)? (double-well potential).
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Then consider the functional

L) = [ fala)de = [ 0—u@ia
on the set
M, = {u e C*([0,1];R) : u(0) = 0 and u(1) = a}

of functions with fixed/clamped/Dirichlet boundary conditions u(0) = 0 and u(1) = «
that vary with some parameter o > 0.
Of course, the question is: What are minimizers of I, in M7

Claim 10. We will show the following:
1. The only critical points of I, in M, are u, defined by u,(z) = az.
2. If « =1, then u; is a global minimizer.
3. If @ < 1, then inf,eps, Io(v) = 0, but there is no global minimizer.
4. If « > 1, then u, is a global minimizer.

5. If % < a < 1, then u, is weak local minimizer, but not a strong local minimizer.

6. f0<ax< %’ then there is no weak local minimizer.

_ 1 ise!
7. Ifa= 75 then .... Exercise!
Remark. This example also clearly illustrates the importance of boundary conditions!

Proof. First, we observe that regardless of the choice of o and u, I,(u) > 0. In the proof
of 1., we use the following result related to the Fundamental Lemma and proved in the
second Exercise.

Lemma 11. (Lemma of du Bois-Reymond) Consider
Xo = {v e C*([a,b;R™) : v(a) = v(b) = 0}

and h, H € C°([a,b];R™). Then if

/ h(z)-v(z) + H(z) - v (z)dz =0

for allv € X , then H € C1([a,b];R™) and H'(x) = h(x) for all x € (c, B).

1. For all a € R, we have f’(a) = —4a(1 — a?), so by definition, a critical point v must
satisfy

1
DI, (w)[v] = —/ 4! (2)(1 — o' (z)?)0' (z) dz
0
for all v € X(. By the du Bois-Reymond Lemma,

2u/ ()® — 20/ (x) + ¢ =0 (2.5)
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for all x € (0,1) and a constant ¢ € R (plug in h = 0, H(xz) = f'(v/(x))). Since
(2.5) is a third-order polynomial in «/(x), it has at most three distinct real roots.
If «/(z) takes on the values of two different roots at two different places, then since
u' is continuous it must take on all values that lie inbetween, a contradiction. It
follows that u'(x) = const. From the boundary conditions for v € M,, it follows
that uq(2) = ax is the only possible choice as a critical point. Note that by solving
the corresponding ELEs

(4u'(1 — (u)?)) (z) =0, for all z € (0,1),

with boundary conditions u(0) = 0,u(1) = «, we also turn up u,, but we have not
proved that it is the only critical point in M,,.

2. In this case, I1 (u1) = 0, so u; is a global minimizer because I1(u) > 0 for all u € M.

3. In order to show the first statement, we construct a sequence of functions u,, € M,
such that lim,, o, I (u,) = 0. A first observation is that if u can be constructed
such that u'(z) = 1 for all x € (0,1), then I,(u) = 0. For example, the function

u with
. x, 0<z<eg
u(z) =
—x+2¢c c<x<1,
and ¢ = <t satisfies Io(@) = 0 and @(0) = 0, u(1) = «. However, @ is not

continuously differentiable, its derivative has a jump, and thus u ¢ M, (note that
we have u € PCL(]0,1];R), the space of piecewise C'-functions). So, the idea is
to approximate u by a sequence u, € M, for which the “tip” is smoothened by a
parabola on smaller and smaller intervals around z = c.

U,

In particular, we set

1, 0<z<c-—41,

up () = ¢ —1, c+i<a<l,
—n(z—c), c—L1<z<c+l,

with
T, OSxSc—l,
n
un(x) = ¢ — + 2c, c+%§x§1,
—Q(m—c)2—2n—|—c, c—%gmgc—i—%.



2 CLASSICAL METHODS IN THE CALCULUS OF VARIATIONS 20

Then, w, € M,, there is pointwise convergence of w,(z) to u(z) for all z € [0, 1],
and

c+1/n ct+1/n 9 .
fa(un):/ y (1*n2(x76)2)2dx§/ y Lde = = "0,

Thus, we have shown that inf,ens, Io(u) = 0. The fact that there is no global
minimizer follows from 5. and 6., so we do not give a separate proof here.

4. This follows from the fact that if o > 1, then for all b € R,
f) > fla)+ f(a)(b—a).

Hence, for all u € M,,
1 1
Io(u) = / f(u (2)) da > / £(0) + /(@) (2) — 0) da
= I, (ua) + /() (/0 o' (z)de — a) = I, (uqa).

5. To show that u, is a weak local minimizer, note that if % < a < 1, then f”’(a) > 0,
so there exists a d, > 0 such that for all |b — a| < dq,

f(0) = fa) + f()(b— a),
as in 4. above. So for all u € M, such that

sup |u'(z) — o] = [[u’ — allco < [lu— uallcr < da,
z€[0,1]

we have
Io(u) > 1o (ua)

as in 4.
To show that u, is not a strong minimizer, the idea is the following: construct a
sequence of zig-zag (highly oscillating) functions v, € M,, such that

(a) |lvn — tuallco — 0 as n — oo, and
(b) In(vy)=0.

Then v,, approximates u, in C° but I, (v,) < I (ua), S0 u, cannot be a strong local
minimizer. To get (b), we must have v}, (z) = %1 for all z € (0,1). We set v1 =1
and then make v, “more zig-zag” (more changes in the sign of v/,) as n increases so
that the difference to u, becomes smaller:

3

Q
|
<)

Un

Ue




CLASSICAL METHODS IN THE CALCULUS OF VARIATIONS 21

More precisely, let

() lI-a)z, 0<z<cg,
wy(x) =
' 2c(l—2x), c<ax<l,

so that & = u, + wy. Extend w; periodically to be a continuous function on all of

R. Then set )
wy () = —wi(nx), so that w), (z) = w}(nx),
n

and set v,, ™~ uy+w,, where >~ means that to get v,, € M, we need it to be smoothed
at the tips, as in the parabola-construction in 3.! We ignore this “technical” detail
in the following. We get that

lon — tallon = sup [lwn(@)l] < ~(1 - a)e "2 0
z€[0,1] n
and that
1
L(v)= [ fl(@)da

0
1

= [ fla+w(ne)) de

y_n;) 1 "

= — | fla+wi(y))dy

0

is 1—periodi !
wi s 1_periodic / Flo+ )y (y) dy = In(v1) = 0,
0

which proves the claim.

6. f0<a< %, then f”(a) < 0, i.e. fislocally at a strictly concave. As in the proof
of 5., where we showed that u, is a weak local minimizer, we can now show that
Uq is a weak local mazimizer. Thus, it is not a weak local minimizer. By Theorem
13 (next Section!), it is necessary for a weak local minimizer to be a critical point,
so by 1., there can be no other weak minimizer.

O

2.5 Some necessary and sufficient conditions

In the finite-dimensional case, the definiteness of the second derivative or of the Hessian
give us necessary and sufficient conditions for critical points to be extrema, cf. Section
1.4 and Exercise 1.IV. Here, the idea is to modify these conditions to apply to weak local
minima of the functional I.

Definition 12. (Second variation) Let u € M and v,w € Xy. Then the map

D2I(w)[v, w] = %D[(u +t0)olleo
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is called the second variation of I at u along v, w. If I is as before with integral densities
f, g, we have

D*I(u)[v, w]
— [ &1t ute), Vuta)e(o) - wia)

+ 04 f(z,u(x), Vu(x))[Vo(z), Vw(x)]
—i—auaAf(.’E,U(SC), (x))[v(m),Vw(x)]
+ 0u0a f(z,u(z), Vu(z))[w(z), Vu(z)] dz

+ /8 ORg(e u(@))ola) - w(z) o’

Vu
Vu

(notation from Section 2.2!).

Proof. As for the first variation, we use the chain rule and the fact that differentiation
and integration can be interchanged. This follows from the fact that f and g are twice
continuously differentiable. O

Theorem 13. Let Q, T, ug, M, Xg, f,g as before. Then the following holds:
1. If u € M is a weak local minimizer, then

(a) for allv e Xy, DI(u)[v] =0, i.e. u is a critical point of I,

(b) for all v € Xo, D*I(u)[v,v] > 0, i.e. the second variation is positive semi-
definite.

2. If u € M = ug + Xo is a critical point and there exists v > 0 such that for all
v € Xo,

D2I(u)fv, o] > /Q o(@)[? + [Vo(z) [ de + /@ Jol) s,

then u is a weak local minimizer.

Proof. To prove the two necessary conditions, we observe that a minimizer of a func-
tional should be a minimizer along every direction and thus reduce the problem to a
one-dimensional situation:

1. For u € M, v € Xj define ¢,: R — R,t — I(u + tv). Since u is a weak local
minimizer, there is a § > 0 such that for all w € M,

lw—ullcr <6 = I(u) < I(w).

In particular, for all [t| < ——, |ju — (u + tv)||c1 < 6, s0

lvllgr?
©u(t) = I(u+tv) > I(u) = ¢, (0).
Hence, 0 is a local minimizer of ¢,. By Exercise 1.IV (or Analysis II), necessarily,

. (0) =0 and ¢!(0) > 0.
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Hence, necessarily,
DI(u)[v] = ¢,(0) = 0 and  D*I(u)v,v] = ¢;(0) > 0.

Note, however, that being a minimizer for every ¢, does not imply being a local
minimizer for I, not even in the finite-dimensional situation, cf. Exercise 1.II!

2. Let w € M be a critical point of I and w € Xy. Then by Taylor’s Theorem in one
dimension, there is a 6 € [0, 1] such that

S2(0) (26)

§(pw .

— I(w) + DI(u)[w] + %DQI(u + w)w, w]

I(u+w) = pu(1) = ©u(0) + ¢, (0) +

— I(u) + %Dzl(u) [, w]

1
+ (DI + ), w] — D*T(w)w, w)) (2.7)
where for the last equality, we added a suitable zero and used that u is a critical
point. To prove the claim, it is now sufficient to show that the sum of all terms

adding to I(u) in the last equality is > 0 for sufficiently small ||w|c:. We use
Definition 12 to obtain

D?I(u + w)[w, w] — D*I(u)[w, w] (2.8)
= /(33f(x,u+9w,Vu+9Vw) — 02 f(2,u, Vu))w - w (2.9)
Q
+2(0,04f (z,u + 0w, Vu + 0Vw) — 0,04 f (z,u, Vu))[w, Vw]
+ (04 f(,u + Ow, Vu + 0Vw) — 0% f (z,u, Vu))[Vw, Vw] dz
+ / (02g(x,u + Ow) — 02g(z,u))w - wda'.
re)
Now we use that the function
O2f": QX R™ x R™*™ — R™X™
(z,v,A) = 02 f(z,u(z) + v, Vu(x) + A)

is uniformly continuous on compact subsets of Q x R™ x R™*™ 50 that there exists
a 8] > 0 such that for all w € Xy and z € Q, if ||w||c1 < §], then

|02 f(, u(x) + Ow(z), Vu(z) + 0Vw(z)) — 02 f(z,u(x), Vu(z)))| <

2

In the same way, we choose 87, d4,0, > 0 for the other terms that appear in (2.8).
Adding up, there exists a § = min(d],d5,05,d]) > 0 such that for all w € X, if
lwllcr < 6, then

D?I(u + Ow)[w, w] — D*I(u)[w, w]

L e w(z)||[Vw(x w(z)|?de + 1 w(z)|? dz’
<2 [ @P + 2@V +[Vo@Pde+ ] [ o)

IA

Z/W@W+WM@PM+1/ o) ? da.
2 Ja 4 Jaq
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We insert this estimate in (2.6). Together with the assumption on D?I(u)[v,v], we
get that
Iu+w) > I(u)

for all ||w||cr < 4, i.e. u is a weak local minimizer for I.

O

As a first application of Theorem 13, we look at the double-well functional I, from the
last section. We have shown that u, are the only critical points, so they are necessarily
the only candidates for weak local (and thus strong local or even global) minimizers.
We have f”(a) = 4(3a% — 1) for the double-well density f, so the second variation of I,
at ug is

D?I,(uy)[v,v] = /0 4(3a% — 1)(v'(z))* de.

Clearly, D21, (us)[v,v] > 0 if and only if |o| > %, so there are no weak local minimizers
for 0 < a < =
, then 4

This is an alternative proof of 6. in the last Section. Moreover, if
302 —1) =+ >0 and so

24

1
Oé>ﬁ

D21, (ua)[v, 0] = 7'/

Qv(a:) dxz'y/v(x) +v'(z)" dz

Q

for some v > 0 by the Poincaré Inequality (the Poincaré Inequality may be known from
functional analysis or some PDE or geometry course. If not, don’t worry, it will be
discussed in more detail later!) In particular, by Theorem 13, if o > %, then u, is a
weak local minimizer (compare 3. and 4. in the last Section).

We have seen that the ELEs (Theorem 8) provide a necessary condition for the nec-
essary condition of u being a critical point for being a local minimizer (Theorem 13).
Similarly, with the next result, we replace the second necessary condition in Theorem
13 on the second variation by a weaker, but pointwise necessary condition on f, the

Legendre-Hadamard (LH) condition. The idea is the following:

1. In the second variation, the first term
D?I(u)[v,v] = / 4 f(w,u(z), Vu(x))[Vo(z), Vo(z)]dz + - >0
Q

is the principal part, the most relevant part. The LH-condition is a necessary
condition that asks for the non-negativity of this part only.

2. The condition
04 f(z,u(x), Vu(z))[B, B] > 0 (2.10)

for all matrices B € R™*™ would be sufficient for the non-negativity of this part, but
it would also be too strong to be necessary, as the integral term has more structure.
Instead, the LH-condition replaces B € R™*" with rank-1-matrices £ ® n € R™*"
forE e R™ neR".



2 CLASSICAL METHODS IN THE CALCULUS OF VARIATIONS 25

Theorem 14. (Legendre-Hadamard condition (LH)) If u € X and
D?I(u)[v,v] >0
for all v € Xy, then for all x € Q, for all £ € R™ and for all n € R™,
i,k=174,1=1

in short:
0% f (x, u(x), Vu(x)) [ @ n,E@n) > 0.

In particular, if u is a weak local minimizer of I, then the Legendre-Hadamard condition
holds.

Proof. Fix £ € R™ and n € R™. The idea is to consider the limit

lim D21
lim (u)[vs, vs),

where
o Vus ~ & ®n — not exactly equal, but highly oscillating,
e vs € X and suppvs C Bs(xg) for given z¢ € €,
e v5 = O(4), so that lower-order terms in D?I(u)[vs,vs] disappear in the limit.

Step 1: “Freeze coefficients in the integral and get rid of lower-order terms™ we
show that if D?I(u)[v,v] > 0 for all v € Xo, then for all zp € Q and
w € C§(B1(0)) := {w € C*(B1(0)) : w|op, o) = 0},

/ 02 f (0, u(o), V(o)) [Veo(y), Voy) dy > 0. (2.11)
B;(0)

Fix w € C}(B1(0)), o € Q and J > 0 such that Bs,(zo) C Q. For all

0 < § < §p define
Tr — X

] )
Then Vws(r) = Vw(*5*) and ws € Xo. By assumption, for all 0 < ¢ < o,
we have

ws () = dw(

T — X9 T — X0

1 2
0= g /Bé(:co) Oaf (@, u(@), Vu(@)) [Vl ) ),V 0 )

Tr — X Tr — X

) Tu(T0))

r — X r — X

+ 0205 f (2, u(@), V(@) w(—5—), w(=—5—)] dz

+ 28040, f(z,u(x), Vu(x))[w(

= /B " 9% f(zo + 0y, u(zo + dy), Vu(zo + 6y))[Vw(y), Vw(y)] dy

+ O(9),
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with the substitution y = £=% in the last equality. In this estimate, we now

apply the limit § \, 0 and use the boundedness and continuity of

y — 04 f (xo + 6y, u(zo + 0y), Vu(zo + 8y))
to obtain (2.11).

Step 2: “Construction of vs”: Fix £ € R™, n € R™. Let x € C§°(B1(0); R) with x > 0.
For example, choose

1
e E ] <1,
x(z) =
) {07 2| > 1,

as in the proof of (FL). Then define

vs(y) = ox(w)eos (L) € € Ch(BO).

with y > cos("4?) a suitable “Wellblech™function. It follows that

n-y Ny

Vus(y) = 8 cos(—=)€ @ Vx(y) — x(y) sin(—57)§ @ 1.
We can consider the first term in the derivative as of lower order for § \, 0.
Thus, plugging vs into (2.11), we get

2 2 2,/ Y
0% [ Ot utro), Vulw)le € o) s’ (15 dy

1(0

+0(0) + O(6?).
Taking the limit 0 \, 0 in this equality, we obtain

0 < 637 (w0, (o), Vu(wo)[§ @ n. € @ nllim [ (y)sin®(=0) dy.
V0 By (0) Y

Now note that if n = 0, then (LH) holds automatically. If  # 0, then (LH)
now follows from the following Lemma.

O
Lemma 15. Let y € C3(Q;R) and n € R™\ {0}. Then

. .2,y 1
lim X(y) sin®(—=) dy = f/ x(y) dy.
370/, (0) 0 2 /B, (0)

I . 2y LP(BLU0) 1
(Later, we will show a general result that provides: sin” () 5)

Proof. Note that for all a € R, sin?(a) = (1 — cos(2a)), so

. : 1 1 21 -
[ xwsiay =5 [ xway-5 [ e
B1(0) 2 /B (0) 2 JBi(0)
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We use Gauss’ Theorem to deal with the second term on the right-hand side. By the
chain rule,

2m - ivy ()= m - 2 m -
div, (sin(Z=Eyn) D70 9, sin(TEY) = 2 cos(TLY ) 2
1) 1) 1) 1)
It follows that
) 2n-y
lim cos d
8 o x(y) cos( 5 ) dy
.0 / . ( 2n~y)
= lim —— div,, | sin d
i S Bl(o)x(y) " ( 5 ) ) dy

Gauss

) / .
—lim —— Vx(y) - nsin dy =0,
W8 IE 0 (y) - nsin(—5=)

where in the last line, we have used that x(y) = 0 on 0B;(0) and that the remaining
integral is bounded independently of 6 > 0. O

Remark 16. Some special cases and applications of the (LH)-condition:

e If m =n =1, then clearly, the (LH)-condition is equivalent to
02 f (&, u(w),u'(x)) > 0,

the second derivative of f with respect to the last component being non-negative.
As an example, we look at the double-well-potential:

1
2fla)=120> —4> 0 a > —.

V3

This is a quick proof of the necessity of @ > % for u, to be a weak local minimizer.

elfn =1,m > 1, or n > 1,m = 1, then the (LH)-condition asks that the A-
component of the Hessian of f,

9% fx,u(x), Vu(z)) € RF*F, k=mork=mn,

is positive semi-definite at every x € €). As an example, for the Dirichlet integral,
this means that the symmetric part of K (x),

S (K (@) + K@),

needs to be positive semi-definite at every = € .

e More generally, for m,n > 2, and quadratic functionals I, where the ELEs are a
linear system of PDEs, the (LH)-condition is a particular type of ellipticity condi-
tion.

e The (LH)-condition states that, roughly speaking, f should be rank-one-convez in
the gradient component, cf. the next Section.
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As a next step, we introduce more explicit necessary conditions on f for u to be a strong
local minimizer of I. This leads to the concept of quasiconvezity of f. Recall that, roughly
speaking, being a strong local minimizer means being a minimizer in spite of oscillations,
as highly oscillating functions drop out of the C'-neighbourhood of a potential minimizer,
but may still be in a C%-neighbourhood. In the following, we “quantify” this idea by
looking at C%-perturbations u + w. of u that satisfy ||we|co ~ ¢ and ||[Vwe||co = O(1).

Let u € M be a strong local minimizer of I. In particular, there exists a o > 0 such
that for every w € C3(Q;R™),

lwlco < do = u+we M and I(u+w) > I(u).

We derive a localized necessary condition. Fix xo €  and § < dg such that Bs(zg) C Q.
Now for any w € C§(B7(0); R™) and & < min{d, —2—} = 0, define

lwllgo

).

Then Vwe(z) = Vw(*=2), u +w. € M and [ju — (u+ w.)| co = el|lw||co < 0 s0

Tr — X

we () == ew( 5

Tu+w:) > I(u).
It follows that

1
< lim — —
0< Eh_rg% o (I(u+ we) — I(u))

1 _
i [ ek wa@), Vu) + Ve ) - fe (), Va(o) de
€0 sn Bs(x())
"= lim F (0 + ey, ulwo + ey) + cw(y), Vu(zo + ey) + Vu(y))
e—0 Bl(O)

— f(zo + ey, ulzo + €y), Vu(zo + €y)) dy

- / f (0, u(o), V(o) + Vun(y)) — f(zo, u(zo), Vazo)) dy
B, (0)

- /B o f(zo, u(wo), Vu(zo) + Vw(y)) dy — vol(B}(0)) f (0, u(wo), Vu(zo)).

This motivates the following definition.
Definition 17. (quasiconvexity, Morrey 1952) A function F': R™*™ — R is called qua-
siconver in Ag € R™ " if for all w € PC}(B}(0); R™) (“piecewise C}”),
[ P+ Vuw)ay= [ F(a0)dy = vol( B ) F (o).
B1(0) B1(0)
We say that F' is quasiconver, if F' is quasiconvex in every Ag € R™*",

Remark 18. There are several (equivalent) versions of this definition and we will use them
as needed, without proof:

e B7(0) could be replaced by other suitable types of bounded domains D, for example,
cubes.
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e w € PC}(D) can be replaced by w € C}(D) or even w € C°(D).

A direct consequence of our considerations is the following necessary condition for
strong local minimizers:

Theorem 19. (Morrey 1952) Let u* € M be a strong local minimizer of I. Then the
map
f(zo,u*(zg),): R™™ = R

is quasiconvez in Vu*(xg) for all xy € Q.

Example 20. We look at the (standard) double-well example and claim that f is qua-
siconvex in « if and only if |o| > 1. In particular, this reproves that w, is no strong local
minimizer of I, if o < 1.

Proof. To check quasiconvexity of f: R 3 a — (1 —a?)? € Rin a € R, let w €
PC}([-1,1]). By definition, we need to verify or disprove

1 !
| fasw @)y =26
-1
If || > 1, then, cf. the proof of Claim 10.4., for all 8 € R,

fla+B8) > fla) + f'(a)B.

It follows that

1

1 1
[ o) dy > / fe)dy + 7'(0) / W (y) dy = 2f(0),

-1

using fil w'(y) dy = 0.
If |a| < 1, construct w, € PC*([—1,1]) such that

[1f<a+wg<y>>dy:o:

choose w, as a piecewise affine “hat”, so that for all y € [—1,1], either o + w,,(y) =1 or
a+wl, (y) = —1. More precisely, set

1—-a)(z+1),

() = {( )@ +1)

-1 <x<aq,
(-1—a)(z—-1), a<z<l1.

Then
1 «@ 1
[1f(a+wa<y>>dy:[1f(1)dy+L f(-1)dy =0,

and, at the same time, 2f(a) > 0, so f is not quasiconvex in any |a| < 1. By Morrey’s
Theorem, in this case, u,, is no strong local minimizer of I,. This quickly reproves some
of the results in Claim 10.5. O
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2.6 Types of Convexity

The conditions derived in the last Section suggest that we look more closely at different
notions of convexity for the “A-"component of the density function f for given z,u:

F:R™" -5 R, F(A) = f(x,u, A).

Since it will be helpful later, we allow the function F' to take on the value “4o00”, if it
doesn’t interfere with the definition.

Definition 21. (Types of Convexity)
1. F: R™*" — RU {+o0} is called convez, if for all A, B € R™*™ and 6 € [0, 1],

F(0A+ (1 —0)B) < 0F(A) + (1 — 0)F(B).

2. A locally bounded, measurable function F': R™*"™ — R is called quasiconvezr (qc),
if for all A € R™*™ and for all w € PC(B(0); R™),

| P+ Tu)dy = vol(B (0)F(4),

B1(0)

3. F: R™™ — RU{+oco} is called rank-1-convez (rlc), if for all § € [0, 1] and for all
A, B € R™*" such that rank(B — A) = 1,

F(OA+(1—0)B) < 0F(A) + (1 — 0)F(B).

Even now, the relations between these different notions of convexity are not fully
understood. We know the following.

Theorem 22. (Types of Convexity) Let F': R™*"™ — R, then
1. F convex =F quasiconvex = F rank-1-convez.
2. If min(m,n) = 1, then
F conver & F quasiconver < F' rank-1-convex.

3. If F € C?2(R™*"), then
F rank-1-conver < F satisfies (LH) in every A € R™*™ j.e. (

(VA € R™*™) (Ve € R™)(Vn € R™) 9AF(A)[E@n,&@n) > 0.

Before we proceed to the proof, we discuss Statement 1. in the Theorem in some more
detail: In general, we can say that the converse implications fail,

F convex < F quasiconvex < F' rank-1-convex.

More precisely,
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o If m = n = 2, then the determinant det: R2*? — R with det ( ch Z > = ad — bc
is quasiconvex, but not convex.
Proof. We show first that det is quasiconvex: For A = ( Z z ) € R?*2_ define
adj(A) = < _d _ab > the adjugate of A. Then for all A, A € R2*2

det(A + A) = ad — be + ad — bé + ad + ad — be — be
= det A+ det A 4 adj(A)7” : A.

Let now w € PC}(B1(0); R?), then, using this equality,

Proof.

/ det(A + Vw(y)) dy
B1(0)
= vol(B1(0)) det A

+ /Bl(o) det(Vw(y)) dy + adj(A) : /131(0) Vuw(y) dy. (2.12)

For the last term, we get

w\aBl_(o):O

adj(A) : / Vuw(y)dy Gauss adj(A) : / w(y) @ vdy 0.
B1(0) 9B1(0)

For the middle term on the right-hand-side of (2.12), we get

/ dmwmmwzj" By (y)Bwa(y) — Byws(y)dawn (y) dy
B1(0) B1(0)

%@,/‘ Da0h w1 (y)wa (y) dy
B;1(0)
+/ Bywn (y)ws(y)va(y) dy’
9B1(0)
+ / O 0aw1 (y)wa(y) dy
B41(0)
—/ Bown (y)ws ()1 (y) dy’
9B1(0)

w\aBl_(o) =0

0.

Here, we have actually used w € C&(B1(0); R?) to apply Gauss’ Theorem. It remains
to use Remark 18 to argue that this is sufficient.



2 CLASSICAL METHODS IN THE CALCULUS OF VARIATIONS 32

-1
Now we show by counterexample that det is not convex: Let A = ( 0 ? ) and

(1 0 Rt
B_<0 . ).Thenforé’-27

o o

0A+(1—9)B:(8

).

det A=det B=0det A+ (1 —6)det B =—1 < det(0) = 0.

SO

O
O

e If m > 3, n > 2, then there is an example of a function F': R™*™ — R that is
rank-1-convex, but not quasiconvex [Dac08, Sect 5.3.7]

o If m =2, n > 3, then it is not known whether

F' quasiconvex <= F' rank-1-convex.

Proof. (of Theorem 22)
To prove 2., assume 1.: Then it is sufficient to show that

F rank-1-convex = F' convex,

but this is also trivially satisfied since all A, B € R'*™ or A, B € R™*! have rank one.
To prove 3., first note that for all C € R™*"™,

rank(C) =1 (I eR™)(TIneR™) C=£@0.

To see this, let C' be given such that Im(C') = span(&). Then for all canonical basis vectors
el € R", e := §;;, there exists n; € R such that Ce? = ;€. In particular, Cel = (£@n)e’.
Now proceed through the following equivalences:
F rank-1-convex <& (V€ € R™)(Yn € R™)(VA € R™™) the map ¢%": R — R,
given by ©5"(t) = F(A +t& @), is convex,
& (ve e R™)(¥n € R™)(VA € R™ ")Vt € R,

RF(A+tEnlEon o =($5")"(t) >0,
Y (Ve e R™)(¥y € R™)(VA € R™*™),

AF(A)E@n,E@n >0
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= Given t1,t3 € R and 6 € [0, 1], we have

@510t + (1= 0)ta) = F(A+ 0416 @+ (1 — 0)t2f @ 1)
=FOA+t:£@n) + (1 —0)(A+t ®n))

FSHC OF(A4+t1£0n)+ (1 —0)F(A+tl®n)
= 9<P§{n(t1> +(1— 9)@%”@2)

< Given 6 € [0,1] and A, B € R™*" such that rank(B — A) = 1, there exist
EeR™ neR”such that B—A=£&®m, so

F(OB + (1 —0)A) = F(A+0(B — A)) = ¢5"(0)

:,ai’" convex

< 0057(1) + (1 - 0)95"(0)
—0F(B) + (1—0)F(A).

. This follows from the fact that for all ¢ € C?*(R;R),
¢ convex < Va € Ry (a) > 0.
. This is clear, just set ¢t = 0.
&, This is clear since A+t£®@n € R™*™ holds for all A € R™*™ ¢ € R™, n e R"”

and t € R.

It remains to prove 1.: To show that convex F' are quasiconvex, we use Jensen’s inequality
(for a proof, see Exercise 3):

Lemma 23. (Jensen’s Inequality) Let @ C R™ be a bounded domain in R", let N € N
and let F: RN — R be convex, then for all u € CO(Q;RYN) and for all u € L*(Q;RY) |

Flosi ") < g [ Fuw)an

Let now w € PCY(B1(0);R™) and let F: R™*" — R be convex. In particular, F
is locally bounded and measurable. Then by Gauss, [ B1(0) Vw(y)dy = 0, so for all

A e Rmxn

1 Jensen

1
ml(Bl(O))/Bl(O)F(A—i-Vw(y))dy = F(‘Wal(o))/Bl(o)A—&—Vw(y)dy):F(A),

and thus F' is quasiconvex.
We “extensively sketch” the proof of the fact that quasiconvex functions F' are rank-1-
convex. A full proof is in [Dac08, Chapter 3.]

Let A, B € R™*™ such that rank(B — A) < 1. Then for all € [0, 1], we need to show

F(A+6(B - A)) <(1-0)F(A) + 0F(B).
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Rough idea: Using quasiconvexity of F', with Bj(0) replaced by cubes
Di(0)={zeR":0<z; <1}, vol(D:(0)) =1,

we would get

F(A+6(B— A)) < /D ) P08 = 4+ Vuly) dy (2.13)
:/ F(A)dy+/F(B) dy
Qa Q

=(1-0)F(A) +0F(B),

if w € PCY(D1(0); R™) can be constructed suitably, i.e. such that there exist Q4,Qp C
D1(0) with vol(Q24) =1—6, vol(2p) = 6 and

—H(B—A) =: Ry, y € Qa,

Vu(y) = {(1 —0)(B—A)=:Rp, ye€ps.

Clearly, these properties of w can only be achieved approximately. The following lemma
shows how this can be done.

Lemma 24. (Dacorogna: Lemma 3.11) Let Ra, Rp € R™*™ such that
rank(Rqo — Rp) <1
and such that 0 € co(Ra, Rp), where
co(Ra,Rp) ={C e R™*" : 35 € [0,1]C =sRa+ (1 —s)Rp}
1s the line segment joining R4 and Rp. Then for all € > 0, there exists a
w® € PCY(D1(0);R™)
and Q5,Q% C D1(0) such that

1.1-60—e<|volQ5| <1—0and 6 —e < |vol Q3| < 6,

[\

NwEllee < e,

RA, RS Qi‘u
. Vuw(y) = {RB ye,

w

4. for all y € D1(0), dist(Vw®(y),co(Ra, Rp)) < .

Using this Lemma, we can prove rank-1-convexity of F' in the following way: we apply
the Lemma to R4, Rp defined as above. This is possible, as we have 0 € co(Ra, Rp)
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since (1 —0#)R4 + 0Rp = 0. Following (2.13), for all € > 0, we have
F(A+6(B—-A))

< / F(A+0(B — A) + Vs (y)) dy
D1 (0)

:/ F(A+0(B — A) + Vs (y)) dy
D1(0)\(25UQ%)

+ vol(2%) F'(A) + vol(Q3) F(B)
<eC+(1-0)F(A) +6F(B),

where in the last inequality, we have used 4. from Lemma 24 and the local boundedness
of F'. Taking the infimum over all € > 0 then finishes the proof of Theorem 22. U

Before we sketch the proof of Lemma 24, here is a brief discussion:

e There is a heuristics, why rank(Rp — R4) < 1 is (somewhat) necessary for a con-
Ly, y€Qa,
Lp, AS Op.
in general I may contain n linearly independent vectors z/ € Q. Then for all z € T,
as w is continuous,

struction of this kind: Let Vw(y) = and I' = 904 N 0N, where,

w(x) = Laxr+ca = Lpx+cp,

so for all 27, (L — La)x? = ca — cp and thus rank(Lg — L4) < 1.

e In fact, the functions w® given in Lemma 24 are piecewise affine (see sketch of
proof).

e The Lemma holds not only for D;(0), but for bounded open sets (see Step 2 in the
sketch of proof)

Proof. (Sketch of the proof of Lemma 24)

Step 1: First, we assume that Rg — R4 = ( E 0 ... 0 ) for some £ € R™, i.e.
n = e'. Then all components w$ of w® should be constant except in e'-
direction with slopes —6¢; and (1—6)¢&;. In dependence of y;, we thus construct

wi as a Sdgezahn-function:

w; (y)
e /\/\ /\
0 AA AL >y

— ——
0 ¢ (1-6) 1
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For alli =1,...,m, we set
_ N:=|1
70513 Y1 €l:= UkzlLEJIlw
hwi(y) ~ 4 (1 —-0)&, yed:=UN J,
0, otherwise,

where [Ij, Jy, are defined as in the picture. Here, ~ is used as we must decrease
the height of the “Sége” suitably near the boundary D1 (0) to get w®|sp, o) = 0,
in accordance with 4. For this, the assumption 0 € co(R4, Rp) is used. Set

9:={yeDi(0):y1 € I} and QF := {y € D1(0) : y1 € J}.

It follows that 1 — 8 —e < |[vol Q5| <1 —6 and 6 — e < [vol Q3| < 6 (1.),

—0(B — A), y € Q5,
Vw®(y) ~ ¢ (1-0)(B—A4), yes,
0, otherwise,

(3.) with w® piecewise affine, and ||w®||co < e max; |¢;| (see picture)(2.).

Step 2: It remains for us to see that the situation with general n € R™ in the Lemma
can be reduced to the case 7 = e! treated in Step 1:

Set £ := |n|¢ and 7 := %, so that £ ® 7 = £ ® i and thus w.lo.g. |ij| = 1.
Then we can choose O € SO(n) orthogonal such that 7 = e!O and e! = 7507,
Set Q@ = OD;(0) and Ry = RAOT, Rg = RpOT, then

Rp—Ra=(Ra— Rp)OT =¢®@el.

Now we split Q into many cubes Ds_ (y(’i) with suitable length and midpoints
y(’i, as in the picture, to get that the remaining grey part of € is small. Then
we apply Step 1 to R, R4 on each of the Ds, (y(’i) — after rescaling and
translating to D;(0) — and glue together the resulting functions w‘s’k; after

re-rescaling and translating back — to get a suitable function w® on 2 (note
that we used w™*(dDs_(y5)) = 0 for the glueing). The function

w®: D1(0) = R™, w(y) = o°(Oy),

should then be the right one.
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O

After this extensive discussion and sketch of the proof of the general Theorem 22, we now
look at the much more simple case of quadratic F'.

Lemma 25. Let M € R X(mxn) pe symmetric and F: R™*™ — R given by F(A) =
MA: A, i.e.

F(A) = Z Mijy ki) Aij Art-
i,ke{l,....m},j,le{1,....,n}

Then
F quasiconver < F rank-1-conver.

Proof. “=" follows from Theorem 22. To show “<”, we first observe that if F'is quadratic,
then for all A € R™*" and w € PC(B}(0); R™),

/ F(A+ Va(y)) dy ™ 20 | Bro)MA: A+ 2MA / Vo(y) dy
B (0) B (0)

+ /B o P ay

= IBOWF) + [PV,

where we have used that by Gauss’ Theorem, |, B2 (0) Vw(y)dy = 0. Tt follows that if F is
1
quadratic, then

F' quasiconvex
& Yw € PCY(BY(0);R™) /‘ F(Vuw(y))dy > 0. (2.14)
BT (0)
On the other hand, if F is quadratic, in particular, F € C2(R™*") and by Theorem 22.3.,
if F'is rank-1-convex, then for all £ € R™ n € R,

mxn (LH)
Feon) =MEon: Eon L BrU)tenten > 0. (2.15)

It is interesting that (2.14) can now be shown via Fourier transform: for allw € PC(B7(0); R™),
define the extension wy € PC(R™;R™) by

_Jw(y), ye By(0),
woly) = {o, y <R\ BI(0),

and let
Taln) = [ wnly)e >0 ay
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be the Fourier transform of wg. Then for k =1,...,m,l=1,...,n,

-

(Vwo)ri(n) = / (Do (y))e ™2 ) dy
Gatss —2mi(y,m)
= _/ wo,k(y)(Ore ) dy

— o / wo s (y)me 2" dy
= 2miwo k(Y) M-

Summing up, we get

[ Py = [ 3Vl Vo) dy
B1(0) R
M symm. Plancherel — = .

ymm: 2 MVwo(n) : Vwo(n) dy
R"'L
. (2.15)
=4n® [ F(we(n) @n)dn > 0.

RTI,

By (2.14), this finishes the proof. O

Note that the function det: R2X? — R is quadratic, quasiconvex, but not convex, so
the Lemma doesn’t extend to convexity of F. Recall that if f : R™*"™ — R is quadratic,
then the ELEs corresponding to I(u) = [, f(Vu(x)) dz are linear.

We now go back to studying the functional I. Combining the results of this Section
and of Section 2.5, we have seen how quasiconvexity of the “A-"component of the density
function f, F: R™*" — R, F(A) = f(x,u, A), is necessary for the existence of strong
local minimizers, and how rank-1-convexity of F' is necessary for the existence of weak
local minimizers. Now we look at the situation when I or f are convex. “As usual”’, we
say that

I: M>ur— I(u) € RU{cc}

is convez, if for all u,v € M, for all 8 € [0,1],
I(0u+ (1 —0)v) <0I(u)+ (1—06)I(v).
If we can put < instead of < for u # v, then [ is strictly convez.
Theorem 26. (Convezity of I)
1. If I is convez, then every critical point of I is a global minimizer.

2. If I is strictly convex, then there is only one minimizer and it is global.

3. If for all z € Q, 2’ € 09, f(z,-,-): R™ x R™*"™ — R and g(z’,): R™ — R are
convez, then I is convex.

Proof. The proof is straightforward:
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1. If T is convex, then for all 6 € [0,1] and u,v € M,
0(I(v) = I(u)) = —I(u) + I(u+0(v — u)).

For 6 > 0, we get

1
I(v) 2 I(u) + Gl (u+0(v — u)) — I(u)]
™ I(w) + DI(w)[v — u]
u cri:t. pt. I(’LL)
2. Since all weak local minimizers are critical points, by 1., they are all global mini-

mizers. If there are two distinct global minimizers, «, @, then for all § € (0,1), by
strict convexity,

IOu+ (1—0)u) < 0I(u)+ (1—-0)I(u) = %iﬁj(v)’

a contradiction.

3. This follows directly by applying the definition(s).

The following figure wraps up some of the results of this Chapter:

I convex

Thm 28.1

I(u) pos. def>
Thm 14.2

. . v ) -
w glob. min. = w strong loc. min. = u weak loc. min. = u crit. point
Thm 14.1a)
Thm 20 ¢ Thm 14.1b){}
(Vz) f(z,u(z),-): R™" - R DI(w)[v,0] > 0
quasiconvex
Thm 15 |
f satisfies (LH) in every (z, u(z), Vu(x))
Thm23.3 7

f=F e C*R™",R)
rank-one convex

2.7 Examples

How do the abstract results of this chapter apply? Here, a brief discussion of the minimal
surface problem and a longer discussion of the Brachistochrone:
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2.7.1 Minimal surface

As before, given a bounded domain  C R? and ug € CO(4;R), set
M = {u € C*(%R) : ulag = uolon}

and Xy = C}(;R), so n =2, m = 1. Consider the functional

I: M —R, I(u):/Q\/lJr|Vu(:17)|2d:17.

In Section 2.3.2 we derived the ELEs for this problem — but what are the extremal
properties of its solutions? Are critical points minimizers? Here, Theorem 26.3 applies.
Since g = 0, it suffices to show that f: R? 3 A — f(A) = \/1+|AJ? is convex. This
follows if 9% f(A) is positive semi-definite. For 4,5 = 1,2, we calculate

1
—A;,
J1+ AR

Oaf(A)iy = (L+1AP) 2 6y — (L+AF7) * A4

Oaf(A)i =

with the Kronecker symbol d;; = 1if ¢ = j and §;; = 0 otherwise. To see that the second
derivative is positive semi-definitie, for all n € R2, just apply Cauchy-Schwartz to get

PAF (A = (14 [APR) 2 [pf2 = (14 A2) "2 |4 P2
> (14 [A2) 72 (14 [AP) [ — |A]2[n[?) > o.

It follows that f is convex, so all critical points of I are global minimizers.

2.7.2 Brachistochrone curve

Recall the functional

B ! 1+ u/(x)?
100 = [\ a2

associated to the Brachistochrone problem for
uwe M= {we C0,]],R) : w(0) = h,w(l) = 0}.

It turns out that the abstract results we obtained so far don’t apply well in this case.
But it is still interesting to see how they fail and to do some explicit calculations that
quantify the fastest marble run:

1. What are the ELEs?

The function
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is the energy density for the Brachistochrone problem. We have

B0 f (1 0) = ﬁ(l + a2 u) 2,

\/%(1_‘_&2)—1/2(]1_“)—1/2_
g

After taking out the factor \/%fq and omitting (z) in u(z), v/(z), the ELEs are:

0o f(u,a) =

d oy w—1/205 =172\ , L 2N1/20  oN=3/2 _
dfy(u(l—ku)) (h — u) )+2(l—|—u) (h—u)~3/2 =0,

where the first equality should hold for all z € (0,1).

. Noether’s Theorem and a simplification of the ELEs:

The ELEs look ugly and it is in fact not straightforward to solve them. The following
result is a special case of Noether’s Theorem that is very helpful in this and other
cases.

Proposition 27. Ifn =1 and f does not depend on x, O, f = 0, then the function
E(u,v')=u"-0af(u,u") — f(u,u)
s constant along all solutions u of the ELEs.

Proof. This follows by a direct calculation. In Exercise 4 on “Eshelby’s tensor”,
a higher-dimensional result is shown, which includes Proposition 27 as a special
case. O

We apply this result:
1
E u7u/ — 7(}//2 1_,’_u/2 —-1/2 h—u -1/2
(u, u’) NGT ( ) )

1
— _ﬁ(l + ul2)—1/2(h _ u)—1/2’

so to find a solution of the ELEs, we can look for solutions of the simpler equation

I () 2 ) ) =0 (2.16)

\/72?(1 + U/Q)I/Q(h _ u)—1/2

. Verification of the parameterized cycloid solution:

There are several strategies for solving the ELEs or (2.16). All of them involve
several tricks and they get quite messy!. The solution is a cycloid, usually given in

LFor a reference, see the manuscript “Variationsrechnung und Sobolevraume” by Professor Hans-Dieter
Alber, p. 49,
https://www.mathematik.tu-darmstadt.de/media/analysis/lehrmaterial anapde/alber/vari.pdf.
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parameterized form through the angle ¢ € (¢, ¢;):
1
u(@(9)) = y(p) = h = S (cos(2¢) + 1),
1
z(p) = 5K sin(2¢) + Ko + k,

where k, k', oo, ¢ are constants determined by the boundary conditions

x(po) =0, (2.17)
z(p1) =1,
y(o) = h,
y(p) = 0.

We verify that this gives a solution of the ELEs (this is messy already....): In order
to calculate u’, we use that by the chain rule,
u'(z) = @' (x)y (p(2)),
where ¢ = 71 is the inverse function of z(p) with
. 1 1 1
PO @) T Rl 1D 20 u(@)
Since 3/ (¢) = k' sin(2¢p), we get

! o3 2
o) — Psint2ela))
2(h — u(x))
Next, calculate and simplify
_ 2 12 ia2
L — 4(h — u)? 4 k% sin®(2¢)
4(h — u)?
 k%(cos?(2¢) + 2 cos(2¢) + 1) + k'? sin?(2)
B 4(h — u)?
2k (cos?(2¢) + 1) K

4(h — u)? h—u

It follows that
_ _ K sin(2¢) (h — u)/? 1
(1 2 1/2(1 1/2 _ )
VE sin(2¢) u’

2(h —u) VE

hence, the first term in the ELE is
1 d O(x) d Kk sin(2p)

TR = TR a2 ule)
_ VK K (cos(2p)(cos(2p) +1) + sin®(2¢))
2 2(h — u())?
VE 1

2 (h—u(2))?
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On the other hand, the second term in the ELE also simplifies to

e VF

1 121/2 —2
§(l+u YW2(h—u) T(h—u) .

The boundary conditions are verified in the next paragraph.

Just for fun, we show that it is much simpler to see that u solves (2.16): In fact, by
the above calculations,

E(u,u') = — 1 (1 +u’2)*1/2(h _ u)71/2 _

V29
4. Determine parameters from boundary conditions:

We use (2.17) to determine k, k', o, ;. We get

I) % sin(2p0) + Koo+ k =0,
Im % sin(2¢1) + ko +k =1

I11) 5 (cos(20) +1) =0

V) E(cos(2¢) +1) = h.

From III), we get ¢o = 5. Plugging this into I), we have k = —Zk'. With this, II)
is equivalent to

. 21

sin(2¢;) + 2¢; — 7 = ik

and from IV), using cos(2¢;) + 1 = 2cos?(ip;), we get
2h h

cos(2p;) +1  cos?(¢r)’

Combining these two, ¢; satisfies

in(2 2¢; — i —n/2
g(@l) — SIH( QDI) + 20 —m _ COS(QO[)SHI(QO;) + ¢ 7T/ - (219)
cos(2¢;) + 1 cos? (i) h

In the range § < ¢; < 37”, g is bijective. To see this, we show that g is monotone

which follows from

2 cos® (1) + 2sin(g1) (cos(1) sin(gr) + 1 — 7/2)
cos3 (i)

For ¢; € (7/2,3m/2), this is equivalent to the numerator being non-positive,

9 (p1) = > 0.

(1) = 2cos’(g1) + 2sin(py) (cos(¢r) sin(er) + o —7/2)
= 2cos(y1) + 2sin(yr) (o1 — 7/2) < 0.

To see this, note that n(r/2) = 0 and
n/ (1) = 2cos(r) (1 — 7/2) <0

in this range. Thus,
l

T 37 _
)2p=yg 1(3)-

G2
In particular, g(5) = 0 and limw_ﬁ% 9(p1) = +00, so any positive ratio % is covered.
From there, we can also solve for k¥’ and k.
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5. Before we proceed, we should relate the solution z,y of the ELEs to the standard
cycloid parameterization

The curve (Z(t), §(t)) is traced out by a fixed point on a turning wheel’s rim. The
wheel has radius 7 and ¢ = 0 with £(0) = 0 = ¢(0) is where the wheel starts turning.
At t = 27, the wheel has turned exactly once. The easiest way to see the cycloid is

to write
T t sint
(7 )o-r(1)-(a0)
i ) is the position of the wheel’s axis.
Now from solving the ELEs we have

where m(t) =r

#(9) = K (sin(2) + 20 — ),
y(p) =h — %k’(cos(&p) +1).

This is a cycloid upside down, translated on the y-axis by h. So we set
~ ]- Y k, .
B(t) = 2(p) = Gk (sin(20) + 20 — ) = (¢ — sint),
/

5(0) = ~(yl) 1) = SH (cos(2) +1) = = (1~ cost),

/

fort =2¢p — 7. Weobtain 0 <t<t;, =2¢; —mand r = %
The calculations in 4. can thus be rephrased in the following way: Given h and [,
find the radius r of the wheel and the time ¢; such that

h=g(t;) =r(1—costy),

l=2x(t) =r(t —sint).

(the calculations do not appear to become simpler though).
6. Examples:

(a) Simple explicit values for ¢, k', k are ¢; = %7‘( with % =1+ 1.57m ~ 5.71,
k' = 2h, k = —mh, so h = r. Then

u(()) = ~hcos(2¢).

(b) Another example is the case h = 0: then with ¢, = 37, ¥’ = L (from II)) and

k= —% , we get a solution

- (eos(2p) + 1),

u(z(p)) =

a symmetric curve with minimum y(r) = —L (see 7.).
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7. When does u have a negative minimum?

10.

It is the first striking feature of the Brachistochrone curve that its minimum may
be below the target height u(l) = 0. When does this happen (we have some ideas
about this as we know what the cycloid looks like)?

To get local extrema of u, we check that u'(x) = 0 if
y'(¢) = K sin(2p) = 0.
For /2 < ¢ < 3w/2, this happens at ¢ = 7. In fact,
y"(m) = 2k cos(27) > 0,
so 7 gives a local minimum. The value is
y(m) =h =K,

as k' = 2r = umax — Umin- By (2.18), y(7) < 0. In Example (a), —h = —r is the
minimum! The minimum is attained at x(7) = Tk’ = 7r, after a half turn of the
wheel. However, the negative local minimum is never reached if ¢; < 7. Since g is
monotone, this happens if g(7) = § > %, or, more intuitively, if the average slope
% > 7 is sufficiently large.

. What is the marble’s speed?

Using the relations we determined when we modelled I, the marble’s speed is
o(2)| = [&](1 + ' (2)?) = V/2g(h — u()).

In particular, by assumption, |v(0)| = 0, and we see that |v| is maximal where u
is minimal (cf. 7.), and that |v(l)] = v/2¢gh. This shows that in Example (b), as
expected, the end point (7,0) is reached with zero velocity.

Regarding the slope of u, we note that

u'(0) = lim tan(p) = +oo,
p—m/2

supporting the intuition that the marble should gain speed as quickly as possible.

. So, how long does it take?

With u the solution of the ELEs from above, and using the calculations from above,

B l 1+u’(a:)2 - E Pl B . B
f(u)_/o,/Qg(h_u(m))dx_\/;/g (h— u(@))"2(h — u(x)) dy

2k’ T
= ?(W - 5)-

The Brachistochrone is also the Tautochrone.

The Tautochrone curve describes the marble run (more commonly, it is associated
to a pendulum) with the property that no matter where the marble starts (with
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zero initial velocity), the time it takes to get to the end is always the same. We show
that the cycloid Brachistochrone curve u is also the Tautochrone curve if the end
point is the lowest point at (z(7),y(7) = uy), (cf. 7): The time it takes a marble
that starts at any point (¢, u(z.) = h. = y(¢4)) and runs along u to get to (m, u,)
is, using the calculations from above,

1+ (x
2gh —u(z

2k [T _
- ,/— / (e~ y(e)) ™ 2(h — y(0)* o
2K V/cos(2p) + 1 do,
cos(2¢)+ 1+ k

with & = 222" We use the substitution w(yp) = /cos(2¢) + 1 + £. Then

Veos(2p) +1= /2 —

and
2
wips) =1/ Ve —y(ps) =0,
, sin(2¢) w
w(p) = -2 o= g,
AT R GNTIOR)
2¢ = arccos(w? — Kk — 1),
sin(2¢) = sin(arccos(w? — k — 1))
=/1- (W2 —k—-12=2+4k—wVw? — &,
S0

2k’ w(m) 1
— —_——dw
g Jo V24 Kk —w?

w(m)
2K wV2 + Kk — w?
=4 /— |arctan | —5—F— .
g w2 —Kk—2
0
Since arctan(0) = 0, it remains to insert w(w). We get
2 7 2
=\ o Vi —ym = S VR =R

sow(m)? —k—2=0,s0

w(m)y/2 + K —w(m)?
arctan ( e Ep— ) = arctan(+o0) = —

independently of (., h.). This shows that the time I,(u) = ,/%w it takes the

marble to get “to the bottom” is the same, no matter where the marble starts on
the Brachistochrone curve .
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11. Are these cycloids minimizers?

In the context of this course, the actual question we should ask is whether the
cycloid solutions u of the ELEs are minimizers of I. We have seen two sufficient
conditions for this:

e In Theorem 13: if D?I(u)[-,-] is positive definite on HZ((0,1); R), then u is a
weak local minimizer.

e In Theorem 26: if I were convex, then u would be a global minimizer.
Unfortunately, neither of these criteria seem to apply:

e To check the first condition, we calculate
l
D*I(u)[v,v] = / 02 f(u, u' )" 4 20,00 f (u, u' )" + 02 f (u, v/ )v? da.
0

for v € C}((0,1); R), where we have

0udf (u,0) = “29(1 ) V2 (h— )3,
%fw@w:;%?1+fﬁ“w—urwa
02 f(u,a) = \/% (14 a2 = a2(1+a®)2) (h—w)V2

To have a chance of D?I(u)[v,v] > 7||v|| g1 for some v > 0, we essentially need
to look at 92 f(u,u’). From the calculations in 2.,

02 f(u(x), ! (2)) = —=(1 + /)32 (h — u)~1/2

= (cos(2p(x)) +1) "3 0.

This shows that the estimate fol 02 f(u, v )v*dz > +/[|v/||2, will fail as v’ con-
centrates near 0.

e If we wanted to use Theorem 26 to show that I is convex, we would need to
show that f is convex on R2. By Theorem 22.1, it would be necessary that
f is rank-1-convex at every point, meaning that, also by Theorem 22.3, the

Hessian o2 00
[ 040uf
— u
f”—(@mf 02
is everywhere positive semi-definite. Using the calculations from above,
Hy(u,a)

(14 a2 (h =) "2 4(1+a?) 2 (h - )Y
14+ ) 1/2(h_ )—3/2 (1+a) 3/2(h )—1/2 )

_ i1+a?)? 51 +a*)(h—u)
—C(u’a)<g(1+a2)(h—u) (h — u)> )
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with
(1+ a2)73/2(h — u)*‘r’/2 >0

N7 >

for the most relevant u < h. So for all w € R?,

c(u,a) =

w’ - Hy(u,a)w

= c(u,a) (196511}%(1 +a?)? + wiwqa(l + a?)(h — u) + wi(h — u)z)

= c(u, a) ([iwl(l +a?) + %wga(h — u)} 2 + [1 - 4&} w3 (h — u)2> .

9
Clearly, Hy(u,a) is not positive semi-definite if |a| > 3 (for a numerically
simple example, set a = 3,h —u = h/2,wy = 1/h and w; = —2/15 to get a
value < 0).

12. What about necessary conditions?
It is straightforward to show that the LH-condition is satisfied at u: for all z € (0,1),

O flu(z), ' (x) = (1 +u'(x)?) 32 (h —u(z)) "2 > 0.

In fact, we have > 0, so the “negative” LH-condition for w is not satisfied. At least,
we have thus shown that u is not a (weak local) maximizer. It seems considerably
more difficult to check that, in fact, DI (u)[v,v] > 0, which is also necessary for u
being a minimizer. So, in this sense, the LH-condition is helpful here.

13. Conclusion:

Many elementary, but not necessarily “straightforward” calculations reveal interest-
ing facts about the Brachistochrone curve. Classical methods in the calculus of
variations are about solving these types of problems. Even in this completely one-
dimensional situation, they are hard to summarize in an abstract theory. We have
seen a glimpse of further things that can be done: for example, Noether’s Theorem
and other ideas for gaining understanding of the ELEs.

At the same time, we have seen the limitations of the abstract criteria we proved
in this chapter. They will be more relevant, in a slightly different sense, in the
following chapter on the direct method, in particular, for multidimensional settings.

2.7.3 Linear elasticity
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Basic strategies, thoughts and notation on/for modelling elastic behaviour of an n-
dimensional body:

e aim: model the deformation of an elastic body subject to external forces

e The configuration () of the body is specified by: the open set @ C R™ as a
reference configuration and @: R™ C  — R” as its deformation. The function
F:Q— R"™" 2 V() is called the deformation gradient.

e Depending on its deformation, the elastic body stores elastic energy

(@) - golz) de’ / o(z) - h(z) dz,

Q

I(SO):/QW(I,QD(I),Vgp(x))dIf/a

O\T

where
W:QxR” x R"™"™ — Ry

is a suitable energy demnsity, gg is a boundary density for external loading, and h
can be added as a volume density for volume forcings. At I' C 012, the body is
fixed/clamped, so p(z) =« for z € T.

e Idea: the elastic body is deformed in such a way that it stores the least amount of
elastic energy — we need to model and then (locally) minimize I!

e in this Subsection, we focus on the modelling of W. This is different from what we
did before: in previous examples from geometry and classical mechanics, the model
was given, the mathematics was to be done.

e we should think about: how is elastic behaviour of a body different from rigid,
plastic, fluidic, gaseous, ... behaviour?

e we use continuum mechanics: there are no distinguishable particles — it must be
reasonable to associate a new position ¢(z) € R™ to every point € Q C R™.

Typcial (reasonable?) properties of W:

1. translation invariance: W(x, ¢, F) = W (z, F),
i.e. F' has all the relevant information on ¢, translating the body doesn’t take or
produce elastic energy

2. rotation invariance: (VF)(VQ € SO(n)) W(z,QF) =W(x, F),
ie. I(p) = I(Qy), I is independent of an orthogonal change of coordinates. This is
also called objectivity.

From these two assumptions, it follows that (see [Ciarlet]),

W (z, F) = W(x,C), where C = FTF is the “right Cauchy-Green deformation tensor”.

3. no self-interprenetation: det FF <0 = Wz, F) = oc.
This is to avoid that the material folds in on itself. This is additionally supported
by the condition

n— oo n— oo

det F,, > 0 with det F,, = 0 = W(x,F,) = oo.
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Note that this condition implies non-convexity of W in F: For example, if

1 00 -1 0 0
FF=1010 and Fy = 0O -1 0],
0 01 0 0 1

then det I, = det F, = 1, but det(%Fl + %Fg) =0, so W(x, %Fl + %Fg) = 00. On
the other hand, FTFy = FJ Fy = Iduxn, so W(z, F1) = W(z, Fy) = W(z,Idxn)
and we should have W(x, Id, xn) # o0.

As a consequence, non-convex energies are needed to model “large” deformations

that may get close to det F' = 0. (What are typical situations/materials that al-
low /need det F' = 07)

From here: we assume “small” deformation, and show how to linearize the model in this
setting. The corresponding energy and material behaviour is called Linear Elasticity:

e we replace the deformation ¢ by the displacement u: 2 — R™, given by
p(r) =z + u(xz).

Then
C=Ve'Ve =1dxn + (Vu+ Vul) + Vul Vu,

with 1
e(u) := §(Vu + VuT)

the linearized deformation tensor (with respect to the undeformed state ¢y = Idg.)
e A Taylor expansion of W in Id,, x gives
W (Ve V) = W(Idpxn) + DW(Idy ) [26(w) + VuT Vi
+ %D2W(Idnxn)[2e(u) + VuT'Vu, 2e(u) + Vul Vi
+ terms of higher order.
e now assume that the undeformed state ¢y = Idg is a local minimizer of W and thus,
in particular, a critical point of I. Then with Vg = Id,,xp,, we have DW (Id,,x») =

0. In addition, assume that Vu®'Vu is sufficiently small to be ignored. Then we
may approximate W by the quadratic functional

fei(z, A) := 2D2W(:c, Idnxn)[A4, 4],

defined on the symmetric tensors A € R2*". Recall that the fact that f; is

sym *
quadratic means that the ELEs are linear.

e we have modelled the Problem of Linear Elasticity: Minimize

I(u):/QQDQW(Iann)e(u):e(u)dx—/@mrg-udx’—/giz-udx

on
My = {’LL S Cl(Q,Rn) : u‘p = 0}
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As an important example, we consider linear elasticity models for Isotropic material: in
this case, the material response to loading should not depend on the direction of the
loading (see Picture):

t t
| |
anisotropic isotropic
Then (see [Ciarlet]):
fer(z, A) = @nmﬁ + @m + AT
A(x)

= S lre(w) + p(a)le(u) P,

where A, i € R are called Lamé-constants. They depend on the elastic material properties
— see the discussion below! As f,; is quadratic in A, we have

Oafa(A)[B] = MrAtr B+ %M(A + AT) . (B+ BT),
&2 fu(A)[B, B = 2f(B).
The ELEs are called Lamé-Navier Equations:
div(o(u)) +h =0, inQ,

u =0, on T,
ov+g=0, on 0N\ T,
where
o(u) = 0af(z, Vu) = MrVuld, x, + 2ue(u)
is the corresponding stress tensor.
Now: isfe; convex in A?

Lemma 28. (Convezxity for linear isotropic elasticity) We fix u, A € R. Then

1. fa(A) = 3|tr A + £|A + AT|? satisfies (LH) if and only if p > 0 and A+ 2u > 0,
and

2. fer is convex if and only if p > 0 and nX + 2u > 0.

Since fe; is smooth and quadratic, the (LH)-condition is equivalent to rank-one con-
vexity and rank-one convexity and quasiconvexity are the same (Lemma 25)! But clearly,
also in this case, convexity is a stronger property than rank-one convexity (as long as
n > 2).
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Proof. (compare to Exercise 5 on Assignment 4.)

1. Forall B=¢®n, £,n € R"”, we have

l€¢ @n+n© &P =20+ 2/ 0,

hence
A
D*f(A)[B. Bl = 2f(B) = 5(€-n) + Lle@n+noep
AR e M2 2
= B 1 B
Moreover,

1
V¢, meR? 5((/\+u)(§-n)2+u\€lzlnl2)20
(&-n)?
1€[2]n]2
&Vae (0,1] A+pa+pu>0
< pu>0and A4 2p > 0.

Ve e RMA{0} (A+p) +pu=0

2. First note that convexity of f; is equivalent to fe;(B) > 0 for all B € R™"*™. As a
tool in the proof, we decompose

Rnxn — RIann + Rnxn

dev

in the sense that

1 tr B
R™"™ 5 B = ~tr Bldyyn + (B — ——TId,xn)-
n n

Here, the scalar expression Y2 can be seen as a linearized measure of the change

of volume associated to B (see example below!), and the matrix

tr B
dev(B) = (B — %Idnxn) € R7X™

dev
is called the deviatoric part of B. Note that
Id,xp : dev(B) =Idyxn : B—tr B =0,

so RId,, «,, L R?*™ Hence

dev

A 2 2
Ja(B) = Sltr B + %|EtrBIdnxn +(B+ B = ~tr Bldyx)
A+2
DAL B+ Eldev(B) + dev(B)"2,
n

$0 fer(B) > 0 for all B € R™*"™ holds if and only if g > 0 and nA 4+ 2 > 0.
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We close this discussion of linear elasticity with two prototypes of deformations, their
geometric/physical interpretation in dimension 2, and their representation in fe;.

Let n =2 and u(z) = ( g g ) x, so that the gradient has the decomposition

A= ( o0 ) S ( 00 > — aldays + dev(A).

a>0
RS, E— . B=
N——
< I N

If « > 0, 8 = 0, this corresponds to a stretching of the body in every direction,
p(x) = x + ax, with a corresponding change in volume (Figure on the left). If o = 0,
B > 0, this corresponds to shearing of the body in el-direction, p(x) = z + dev(4)z,
without any change in volume (Figure on the right). We have

falA) = A+ ) + £ 42,

where the first part is the gain of energy due to volume change, and the second part is
the energy absorbed due to shear stress.
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3 The Direct Method in the Calculus of Variations

In this part of the course, we look at

(DP) (Direct Problem in the calculus of variations):
Let (X, ]| -]|) be a real Banach space and I: X — R, a functional.
Can we find a global minimizer v € X such that I(u) = inf,ex I(v)?

Here, R, = RU{+o0} indicates that I can also take on the value +o0o0. This can be used
to model constraints: if actually we are looking for minimizers u € M C X of a functional

I: X DM — R, then we can define

I(v) = {I(v), vE M,

400, otherwise.

Clearly, the minimizers and infimum /minimum values of I and I in M coincide. If the
set where I(v) # +o0o is nonempty, we say that I is proper. We always assume (tacitly)
that I is proper.

3.1 Abstract existence theorems from functional analysis

To solve (DP), we get a first existence theorem for reflexive Banach spaces X that follows
from the strategy outlined in Section 1.6. In the Theorem, the functional I is assumed to
be coercive and weakly sequentially lower semicontinuous. First, we define these notions.

Definition 29. A functional I: X — R, on a Banach space X is called coercive, if for
all sequences (v,), C X, if ||v,|| = +o0, then I(v,) — +oo.

Definition 30. A functional I: X — R, on a Banach space X is called

1. sequentially weakly continuous, if for all weakly converging sequences (v,), C X,

v, — v, we have
lim I(v,) = I(v),

n—oo

2. sequentially weakly lower semicontinuous ((s)wlsc), if for all weakly converging se-
quences (vy), C X, v, — v, we have

liminf I(v,) > I(v).

n—oo

Remark 31. A short discussion and examples for Definition 30:

1. For brevity, we will omit “sequentially” in “sequentially weakly lower semicontinu-
ous” and the first “s” in (swlsc). However, we always use this (sequential) definition.

2. Strongly converging sequences are also weakly converging, so clearly, the property
of I being weakly continuous (or weakly lower semicontinuous) is stronger than the
property of I being continuous (or lower semicontinuous).
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3. Sequential weak continuity of a functional is a ‘rare’ property. We will come back
to this later in the course.

4. The norm || - ||: X — R is (wlsc).

Proof. For all 2/ € X', the space of bounded linear functionals on X, and convergent
sequences, T, — x in X,

2’ [l llznllx > 2 (20) "= ' (2),

soliminf, ||2'|| x/||zn||x > 2'(x). Now choose (Hahn-Banach!) 2’ such that ||z’| x/ =
1 and 2/(z) = ||z||x-

5. In many infinite-dimensional Banach spaces, the norm || - ||: X — R is not sequen-
tially weakly continuous, i.e. weak convergence does not imply norm convergence
(Exercise: example + proof?)

Theorem 32. (Tonelli, “Adapted WeierstrafS Principle”) Let (X, | -||) be a reflexive real
Banach space. Assume that the functional I: X — R is bounded from below, coercive
and weakly lower semicontinuous. Then (DP) has at least one solution.

Proof. We follow the strategy from Section 1.6. Let inf,cx I(v) = I € R (I is bounded
from below). Then there is an infimizing sequence (v,), C X for I, i.e.

lim I(vy,) = 12)f( I(v)=1.
n v

Since I is coercive, (vy,), is bounded. Since X is reflexive, (vy,), has a weakly converging
subsequence v,, — v € X. Since I is weakly lower semicontinuous,

I = li}gn[(vnk) > limkinfl(vnk) >I(u) > 1,

so u is a global minimizer. O
Now, there are two natural questions:
1. How do we see if I is coercive?
2. How do we characterize I that are wlsc?

We will find answers to the first question in the more specific setting

I(u) = /Q £ (@ u(), Vu(z)) da + /6 oz, u(x)) do’ (3.1)

O\

that we already used in the previous chapter. This is the content of Section 3.3 (after
a brief reminder of Lebesgue and Sobolev spaces in Section 3.2). Regarding the second
question, there are a few things that we can say now, in a general /abstract setting, before
we reconsider this problem for I of type (3.1) in Section 3.4.

Lemma 33. (Mazur) Let X be a real Banach space and let M C X be closed and convez.
Then M s weakly sequentially closed.
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Proof. This is a direct consequence of Separation Theorems/the Hahn-Banach Theorem
from functional analysis. We recall one version that is suitable:

Theorem. (Separation Theorem) Let X be a real Banach space, let M C X be closed
and convexr and let xo € X \ M. Then there exist ' € X' and o € R such that for all
reM,

(z) <a and 2'(zo) > a.

Proof. See, for example, [Alt, p. 223, Section 6.11]. O

To prove Mazur’s Lemma, let (u,), C M, v, — u € X be weakly convergent. Assume
u ¢ M. Then M is closed and convex and by the Separation Theorem, there exist ' € X’
and a € R such that
2 (up) <a and 2'(u) > a.

Clearly, this is in contradiction to the weak convergence of u,, to u. O

Mazur’s Lemma allows us to prove the following criterion for I being wlsc. Geomet-
rically, we use that convexity of I implies convexity of its sublevels

Lo(I)={ue X :I(u) <a}.

Theorem 34. Let X be a real Banach space and let I: X — R, be strongly lower
semicontinuous and convex. Then I is wlsc.

Proof. Let (up)n C X, up, — u, be any weakly convergent sequence. We need to show
that
I(u) < liminf I(u,) =: a.

n

We distinguish three cases.
1. If @ = +o0, then, clearly, I(u) < a.

2. If o € R, choose a subsequence (uy, )r such that limy I'(u,,) = a. For ¢ > 0,
consider the sublevels

Lote(I)={ve X :I(v)<a+e}.

By convexity of I, the Ly (I) are convex. By strong lower semicontinuity of I, the
Lote(I) are strongly closed. Thus, by Mazur’s Lemma, the sublevels are weakly
closed. Moreover, for all € > 0, there is a k. such that u,,, € Loyc(I) for all &' > k..
Thus, u € Lay.(I) for all € > 0 and hence I(u) < a.

3. If « = —o0, consider L_g(I) for R — +oo. For all R > 0, we find u € L_p as in
2.. Hence I(u) = —oo, a contradiction.

O

Now we briefly look at a related but different existence theorem for (DP) with “more
convexity but different continuity”. We start with a definition.
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Definition 35. The functional I: X — R is called uniformly convex, if there exists a
monotone function g : (0,00) — (0, 00] such that for all z,y € X, x #y, 6 € (0,1),

I(0z + (1= 0)y) < 0I(x) + (1 = 0)I(y) = 0(1 = O)g(|lz -yl

Theorem 36. Let I: X — Ry be uniformly conver and continuous (w.r.t. the norm in
X ). Then (DP) has a unique solution, i.e. a global minimizer.

Proof. Let (uy,), be an infimizing sequence for I and I = inf,cx I(v) = lim,, I(u,). We
show that (uy), is a Cauchy sequence. We have

1 1
g([Jtm — un”) < QI(um) + QI(un) - 4I(§um + 5“71)

and I(3um + Ju,) > 1, so

lim sup g(||tm — un||) <41 — 41 = 0. (3.2)

m,n

Since g is positive and monotone, this implies that (u,), is a Cauchy sequence in X: If
(un)n wasn’t Cauchy, there would be € > 0 with

lim sup ||t — un|| > &.
m,n

By monotonicity and positivity of g, this would imply

lim sup g(||tm — unl|) > g(e) > 0,

m,n

in contradiction to (3.2). We set w = lim,, u,,. Since I is continuous,

1= lirrlnl(un) = I(u),

so u is a global minimizer. Since [ is uniformly convex, it is also strictly convex. Therefore,
u is unique. O

To close this abstract Section, we summarize different notions of differentiability in
(in)finite-dimensional Banach spaces.

Definition 37. (Gateaux differential and Fréchet derivative) Let X,Y be Banach spaces
and F: X —»Y.

1. The Gdteaux differential of F at xyp € X in the direction of v € X is the limit

. F(zo +tv) — F(xo)
DF(wo)[v] = lim —=—— -

€Y

if it exists.

2. If for g € X, there exists Ag € L(X,Y) (the space of bounded linear operators
from X to Y') such that for all v € X,

DF(x0)[v] = Aov,

then F' is Gateauz differentiable at xo with Gdteaur derivative Ag.
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3. F is called Fréchet differentiable at xg € X if there exists A € £L(X,Y) such that
for all (vy,), C X with lim,,_, o v, =0,
G ) — Flg) — Avally

n—o0 [vll x

=0.

A is then called the Fréchet derivative of F' at xg.

4. Asusual, F is Gateaux/Fréchet differentiable if it is Gateaux/Fréchet differentiable
at every g € X.

Remark 38. 1. If F is Fréchet differentiable at x, then it is Gateaux differentiable at
zg. The converse need not be true.

2. Even if all directional derivatives DF'(zo)[v] exist, F' need not be Gateaux differen-
tiable (counterexample for X = R2,Y = R).

3. If Y =R, then DF(x)[v] is the first variation of F at ¢ in the direction of v. The
Gateaux derivative would be DF(zg) € L(X,R) = X’.

4. Recall that if ug € X is a solution of (DP) and DI (ug)[v] exists for all v € X, then
DI(up)[v] =0 for all v € X, i.e. I is Gateaux differentiable at uy with derivative 0
and ug is a critical point.

5. Note that if I: X — R is convex and Géateaux differentiable, then for all u,v € X,

I(u+v) > I(u) + DI(u)[v].

Proof.
DI(u)v] = }{% Hut tvt) —Iw) _ 2{% I(t(u+v) + (1 —t)u) — I(u)
I ccilvcx gl\n’(l) tI(U + ’U) + (]. t— t)I(u) — I(u) _ I(u n v) _ I(u)

6. Note that even uniformly convex functionals need not be (Gateaux) differentiable.

3.2 Reminder: Lebesgue and Sobolev spaces

We would like to apply the results of the last Section to functionals I: X — R, of type
(3.1). Thus, we need that X is reflexive and contains functions that are differentiable (in
some sense). Moreover, it may be useful if the norm of X also “quantifies” the derivatives.
Sobolev spaces appear as a natural choice for X. In this Section, we recall properties of
Lebesgue and Sobolev spaces that will be important for the remainder of the course that
deals with the coercivity and weak lower semicontinuity of I. Compactness results will
also be useful.
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3.2.1 Lebesgue spaces

Let © C R™ be a domain. Recall the Lebesgue spaces LP(Q) = LP(; R) of (equivalence
classes of) functions f: @ — R for p € [1, 0] with norms

1/p
1l = (/ If(x)l”dx) . proo,

[flloc = esssup | f(x)| = inf{|{x € Q: |f(z)| > r}| = 0}.
2€Q r>0
Some facts we will use throughout this Section and the remainder of the course, see, e.g.
[Alt]:
e For all p € [1,00], LP(Q) are Banach spaces.
e For p € (1,00), LP(Q) is reflexive.
e For p =2, L?(Q) is a Hilbert space.

e Forpe[l,00),1= %—&—;, p' = oo if p =1, the dual (LP(R))" of L?(Q) is isomorphic

to LP' (Q), i.e. for all £ € (LP(€)) there exists a unique v € LP (Q) such that for
all v € LP(Q),

f(u):/Qvg(a:)u(x)dx,

and ]| (zr()y = llvell Lo (). For this, recall Hélder’s inequality: for all f € LP(€2),
g€ L”(Q),

/Q|f($)g(35)|d$ < 1 lpllgllp-
e For p € [1,00), C°(Q) is dense in LP(Q).

e For p € [1,00], 2 bounded, the span of step functions is dense in LP(2).

3.2.2 Convergence Theorems
e Monotone convergence: Let u € L*(Q), (un)n C L'(Q) be such that
0<ui(z) < - <up(z)<--- Su(z) e LNQ) ae.,
then
1
u, B u and  lim Uun(x)de = / u(z) dz.
noJQ Q
(Sketch of proof: fQ up, i monotone and bounded, so convergent. Hence for k > [,

/\kaul\=/uk*/w%0,
Q Q Q

50 (un)n is Cauchy sequence in L(9). )
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o Fatous’ Lemma: Let (uy), be a sequence of measurable functions with 0 < u,, a.e.
Then
lim inf/ up(z) de > / lim inf u,, (z) dz.

(Sketch of proof: Apply monotone convergence to fn = infy>, ug  liminf, un yielding

liminf [ w, > lim inf up = lim inf uy,.)
n—oo [o n Jok>n Q n

e Lebesgue dominated convergence: Let (uy,)n be a sequence of measurable functions
with |u,| < h € L'(Q) and pointwise convergence u,, (z) — u(x) almost everywhere.

Ll
Then u € LY(Q) and u,, = u.
Sketch of proof: Apply Fatou’s Lemma, to gn := h — % |u, — u| > 0 to get
2

limsup [ |un —u|=0.)
n—00 Q

Lemma 39. (Weak convergence) Let p € [1,00), u € LP(2). Then the following are
equivalent:

e u, — u in LP(Q2), and,
e Both

1. 3¢>0 YneN |uylp <c, and,
2. for all sets S < (LP()) = L¥' (Q) such that span(S) is dense in LP (Q),

Vv € S, /vun%/fuu.
Q Q

In particular, we can choose S = C(Q) € L' (Q) (asking p # 1), or span(S) the set of
step functions (asking p # 1 if Q is unbounded).

Proof. “="
1. by Banach-Steinhaus
2. by definition of weak convergence.

“<” For v € LP(Q) and € > 0, choose v. € span(S) such that [|[v — v.|l, < e. Set
¢o := ||ullp. Then, for sufficiently large n,

|/unv—/uv|§|/un(v—v6)|+|/unvg—/uv€|+|/u(vg—v)\
Q Q Q Q Q Q

Holder, 1. 2.
S el — velly + | / (tn — w)ve] + collv — valy £ Ce.
Q
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Example 40. (“Concentrations”) Let Q@ = (—1,1), « € R and

up(x) = {na’ z e (0,5),

0, otherwise.

Then:
o for all z € Q, u,(z) — 0, and

1/n
0

o |lunlb = n? dx = n®?~1 < oo for p € [1,00)

Now distinguish four cases:

61

1. ap > 1, then ||lu,|, — o0, so we have neither strong nor weak (Lemma 39) conver-

gence in LP(Q),

2. ap < 1, then ||lu,|l, — 0, so we have norm convergence and strong convergence in

Lr(Q),

3. a =1 then |lu,|, = 1, so we have boundedness. For p € (1, 00), use Lemma 39:

p

let ¢ € C°(Q2), then

1 1/n . . 1/n . p>1
|/ unie] = |/ /7] = |n /P/ ol < 7 ol P30,
—1 0 0

so u, — 0.

4. a =p=1, then |luy,|l1 = 1. Check what happens for ¢ € C°(Q):

1 1/n
/ unw:n/ © — ¢(0),
—1 0

(Lebesgue differentiation), but there is no u € L'(£2) such that p(0) = f_ll uyp for

all p € C°(Q). We show that (uy,), doesn’t converge: Let v(z) = Y po; X[, 2]
4k’ q

with yas the characteristic function for the set M. Then v € L>®(Q2) = (LY(Q))’

and
1 ik 2/4F 4k 2/4F 4k 1
/ Unv =7 / 71}(%) dz 2 / - — T
—1 0 2 1/4k 2 2

1 o p1/4F 2/4k+1
neak 2 2 1
/ Up U /0 4Fp(z) de = /0 4Fp(z) dz < 4k§4k+1 =3

—1

0 (up), does not converge weakly.

Example 41. (Oscillations) Let @ = (0,1) and v € LP(Q), p € [1,00). Extend u
periodically to @: R — R,

a(x+ k) =u(z), x€(0,1),keZ.
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Counsider the sequence (uy,), C LP(§2) with
un(x) = a(nz), z€(0,1),neN.
Then (uy,), converges weakly to its average, u, Kaze fol u(z) dz.
Proof. Note that the set of step functions on (0, 1) is given by
span({x,q] : 0 < a < 1}),

and it is dense in L? (0, 1) for p € [1,00). Thus, by Lemma 39, to show weak convergence,
it is sufficient to show:

1. the sequence (uy), is bounded, as by a direct calculation,

1 n
=nx 1 ~
IIUnHZ:/ u(na)[? dz "= */ la(y)|” dy = [lull},
0 nJo

and,

2. for all & € (0,1), we have

1 1
/ X[0,a]Un — / X[0,a]¥ = Q.
0 0

1 —nz 1 no R
/ X (@)un () dz 227 L / a(y) dy
0

n

This follows from

1 [na) 1 no
Z*/ ﬁ(y)dy+*/ a(y) dy — o,
nJo n J nal
where -
1 no
7/ tu(y)dy = [na) U — al
n 0 n
as )
ol gy elzne Lo,
n n n
and
1 na 1 [na]+1 R 1
sy [ aw)ldy = Ll o
nJ|nal " Jnal n

O

Corollary 42. (“weak continuity is too strong”) Let g: R — R be measurable with |g(u)| <
C(1+ |ulP) for some p € [1,00). Consider the functional

1
I:LP(0,1) =R, I(u)= /0 g(u(z)) dz.

Then the following are equivalent:
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1. I is sequentially weakly continuous on LP(0,1), and,
2. I is affine, and there exists b € R such that I(u) = I(0) + ba.

Proof. 2. = 1. follows directly from the definition of weak convergence.
1. = 2. in two steps:

Step 1: Consider arbitrary u € LP(0,1) with periodic extension @: R — R and

un(2) := a(nz) for z € (0,1). By Example 41, u, X Thus, by weak
continuity,

I(uy) = / 9(un(2)) dz — I(@) = g(@).

On the other hand, I(u,) =" L[ gla(y)) dy = I(u), so for all u € LP(0, 1),

I(u) = g(u).

Step 2: g is convex and concave and hence, g is affine: Let A € (0,1), o, 8 € R, and

By Step 1,

g(Aa+ (1 =A)B) = g(v) = I(v) = Ag(a) + (1 = N)g(B),

so g is concave and convex. It follows that there exist a,b € R such that for
all u € R, g(u) = a + bu. (Exercise!) This implies that for all u € LP(0,1),

I(u)=a+b/01u(x)dx:1(0)—|—bu.

In particular, I is affine linear.

3.2.3 Weak derivatives

We say that a function u € LP(Q), p € [1,00] has weak derivative D*u € LP(QQ), « a
multiindex, if there exists w € LP(§2) such that

[ wete)do = (1) [ u(@D*e(o)ds

Q Q

for all p € C°(Q) with (classical) derivative D%p. Then we set w = D%u and note that
w is unique in LP(Q).

Note that if u is classically differentiable, then its classical and weak derivatives coincide.
Note that if u is classically differentiable almost everywhere, this does not imply its weak
differentiability (Exercise).
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Example 43. Let Q = (—1,1) and

{0 —1<es<o
u(z) =
2, 0<z<l,

so that w € LP(Q) if and only if § > —%. Does u' € LP() exist?
e Consider ¢ € C°((—1,0)) C C°(Q2), then

1 0 \ 0
/ w</>=/ wwi—/ 0¢" =0,
—1 —1 —1

so w|(~1,0) = 0 in LP((—1,0)).
e Let p € C°((0,1)) C C2°() such that suppe C [e,1). Then

1 1 1 1
/ wep = / wp = —/ 22/ (z) dx = / 6z’ Lo(z) du,
0 € € €

s0 wl(0,1) = 60~V and w € LP(0,1) & 6 > 1—1/p.

e Assume 6 > 1 — % and set

0, 1<z<0,
w(z) =620, 0<az<—1,
2
= xz=0.

Then we show that w = v’ € LP(—1,1): For all ¢ € C(-1,1),

1 1
/ wep = 5/ 22 o(z) d.
-1 0

1 1
- / wp = / 6251 + 20p(2)] gm0 + 200(2) o
1 0

1
=/ wep, if § > 0.

-1

At the same time,

e Note that u is classically differentiable if and only if § > 1.

3.2.4 Sobolev spaces
For p € [1,00] and a domain  C R™, the Sobolev space of order k € N is
WEP(Q) := {u € LP(Q) : Va € N" with |a| < k, D € LP(Q)},

with norm
1/p

el = lullwes = | D (D%l
la|<k

Some facts:
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WkP(Q) are Banach spaces.

If p € (1,00), then W*P(Q) are reflexive.

If p = 2, then WH2(Q) =: H*(Q) are Hilbert spaces.
If p € [1,00), then {u € C*(Q) : |ju]

kp < 00} is dense in W*P(Q). In particular,
WkP(Q) = H*?(Q) = completion of C*(Q) w.r.t. W*P-norm.

Note that in general, C>(f2) is dense in W*?(Q) only if O is sufficiently regular
(for example, in the case discussed in the paragraph on boundary regularity below)

For proofs of these facts and Theorems 46, 47 and 48, we refer to [Adams|. It is a
comprehensive and well-written monograph on the topic of Sobolev Spaces that also
contains some history, sharp results and counterexamples, and details on the requirements
of the geometry of ) that extensively generalize what we are using here. You can find
compact introductions to the topic in [Alt] and in [Evans|. The first one is close to (but not
identical to) what is in these notes, but, for example, defines Sobolev spaces via density.
The second one provides an additional point-of-view, also inspired by applications to
PDEs as well as variational problems.

Lemma 44. (Weak convergence in W*P) Let p € [1,00), un,u € W*P(Q). Then the
following are equivalent:

o u, —u in WFP(Q), and,
o VYo € N with |a| < k, D*u,, = D%u in LP(2).
Proof. (only k= 1) Embed WP(Q) < LP(Q)"*! via
7. Wl,P(Q) — LP(Q)n+1
o — (u,O1u,...,0u).
Then J is injective and norm-preserving. Moreover, J(WP(Q)) is a closed subspace
of LP(Q)"*! (Exercise!). Hence, J is an isomorphism of Banach spaces (Exercise!).

This shows that weak convergence in W1P(Q) must be the same as weak convergence
in LP(Q)" L. O

Example 45. Let Q = (0,27), u, () = L sin(nz), v/, (x) = cos(nx). Then

9 2m 1 ) -
Hu’rLHQ :/O ESID (nq;) dx = ﬁ -0,

2
|ul,||3 = /0 cos(nz)?dx = T,

so |lunllf, = (1 + %) < 27 Abstractly, since H'(0,2n) is reflexive, the bounded
sequence (uy, ), has a weakly convergent subsequence. However, we know more: We have

2 2
Uy, 5o (by norm convergence) and by Example 41, u/, L o5 = 0, hence, by Lemma 44,

Hl
Un — 0.
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Boundary regularity: In the following, unless stated otherwise, we fix €2 to be a
bounded domain with Lipschitz (graph) boundary, in short, bounded Lipschitz domain, see
e.g. [Alt, A 6.2]:

A bit more precisely, this means that there is a finite number of open sets U, ..., U* C R"
that cover 9 in such a way that the sets 0QNUY, j =1,...,1, are each given as a part
of the graph of a Lipschitz continuous function ¢: R*~! — R, and QN U7 is located on
one side of this graph.

This assumption is stronger than what is needed for most of the following Theorems.

They may also hold for less regular and/or unbounded domains/unbounded boundaries.
However, the assumptions needed for sharper statements quickly become technically in-
volved. In particular, there may be an interaction between the types of unboundedness
and the types of non-regularity that are admitted. For a comprehensive overview and
treatment, including important counterexamples, we refer to [Adams|. For the func-
tionals we study in this course, the assumption of bounded Lipschitz domains seems an
acceptable compromise between achieving maximal generality and avoiding too many
technicalities.
In particular, due to the local Lipschitz graph property, for bounded Lipschitz domains
Q, it is straightforward to define the integrals, LP-norms and spaces LP(9€) for functions
f: 09 — R via coordinate transform to R"~1. For example, if supp(f) C U7, then we
can set

n—1
[ f@ar = [ A e+ eI PP o
i=1

which is well-defined due to Lipschitzianity of ¢/ and, e.g. Rademacher’s Theorem. For
details, see e.g. [Alt, A 6.5.1 and A 6.5.2].
Moreover, if 2 is a bounded Lipschitz domain, the unit outer normal vector field

v: 90 = R", ve L*0NR"), (3.3)

is well-defined, i.e. it is independent of the choice of a local representation of 9%, cf. [Alt,
A 6.5.3].

Theorem 46. (Sobolev and Holder embeddings) Let Q C R™ be a bounded Lipschitz
domain. Let k > k € Nyg. Then

1. If p,p € [1,00) satisfy
n_- n
—>k—-=

p b

then WFP(Q) — W’;‘ﬁ(Q), i.e. there is a constant C(<2, k, lz:,p,ﬁ) > 0 such that for
all w € WHEP(Q), also u € W*P(Q) with

k —

)

”uH}E,ﬁ < Cllullk,p-

2. If

k — 21~c+'y,

SRS

with p € [1,00) and v € (0,1), then

WhP(Q) — CF(Q),
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with C’-“V(Q) the Holder space given by
CO(Q) :={u € C(Q) : ||Jul|cor < o0},

lalloon = lufloe +  sup LB ZU®I
eyeQaty T =y

or, for k #0,
CR(Q) = {u € C*(Q) « |[u gi., < o0},

[Du(z) — Du(y)|
lullgrn = llullor + sup
k. Ck |aZ_,; R |33 _ y|’y

The number k — 3 is called Sobolev number of Wkr(Q).
The proof of this Theorem is elaborate. Here, we just sketch two heuristics:
1. How can we trade weak differentiability for larger integrability exponents (and how
does the spatial dimension come in)?

We look at one specific example: Let n = 2,k = 1,p = 1 and assume that u €
WL(Q) with v = 0 on 9. Then we can extend u by zero to u € W11 (R?). We
see that u € L?(Q) by the following estimates:

We have - s
U(xl,xz) Z/ 31U(y1,352) dy; Z/ 82u(x1,y2) dy2,
hence
)| < [ Valaygldy, firi= 12,54 (3.4)
R
Consequently,

)l < ([ 1vutesmidn ) ([ 19un.zldn).

Integrating with respect to x1 and x5 gives the estimate we were looking for,

ull? < ( [/ |w<x1,y2>|dyzdx1)( [ |Vu<y1,m2>|dyldm2) < Jlull2,.
RJR RJR

2. How can we trade weak differentiability for Holder regularity?
We just look at the case n =1,k = 1. Then

Y , Holder , 1=1/py, 1
lu(@) —u() =1 [ v (s)ds| < Ul (yypllelly = [z =yl
T

with 0 <~y =1—1/p <1 the Hélder exponent and |||, the Hélder norm.

Also worth thinking about: there is clearly no ‘partial’ vs ‘total’ weak differentiability —
the definition is ‘partial’, but ‘global’ (what does this mean?). The Embedding Theorem
shows that sufficient (for example, second-order, large p) Sobolev regularity implies (total)
classical differentiability.

The following compactness theorem will also be crucial for our analysis of (DP).
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Theorem 47. (Rellich Compactness Theorem) With the same assumptions as in Theo-
rem 46, if 2 holds for the conditions on the Sobolev number in 1. or 2., then the corre-
sponding embeddings are compact.

In particular, note that this means that if a sequence, e.g. an infimizing sequence, is (a

priori) bounded in WkP(Q), it has a strongly convergent subsequence in W*?(Q), with
k,p, k,p subject to the assumptions of Rellich’s Theorem.

Since we are interested in functionals of type (3.1), defined via volume and surface integral
densities for functions u € WP(£2), we need to understand and quantify the properties of
won 9Q. If u € WP(Q) is insufficient for u € C(Q), we need to think carefully about the
definition of the integral [, g(u(z)) dz’. The essential tool is the following trace operator
that uniquely determines u|sgq.

Theorem 48. (Trace operator) Let Q@ C R™ be a bounded Lipschitz domain. For p €
[1,00], define

00, if p>n,
p* = < arbitrary, but < oo, ifp=n,

p(n—1) i

S 2P if p<n.

Then there is a bounded linear operator
v WEP(Q) — LP(99)
u = y(u) = ulgg
that is the extension of the restriction operator
7: CHQ) = C(09Q)
U uloq-
Foru € WhP(), we call ulaq € LP () the trace of u on 0Q.

We see immediately that if p > n, then W1?(Q) < C(Q) by the embedding theorem
and the trace of u is just its continuous extension. Otherwise, more work is needed to
obtain the right estimate, see e.g. [Adams, Thm 5.22] that can then be combined with a
density argument.

Heuristics for the right estimate in the case n = 2,p = p* = 1, locally, assuming that
UJ C span(e!) is flat. As in (3.4), we have

(a1, 0)] < / 1B, o) dy,
R

for every (z1,0) € U, so
[uC, 01wy < IVullprey < [lufli
Now for general bounded 2 C R™ and k > 1, p € [1,00), recall the spaces

WEP(Q) = Co() ™7 c whe(q),

given by closure of the set of C°(Q)-functions in W*P(Q2). Without proof, we note that
if Q2 is a bounded Lipschitz domain, then they relate to the usual Sobolev space in a

sensible way, i.e.
WoP(Q) = {u e W'P(Q): ulgg = 0}.
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Theorem 49. (Poincaré inequality) Let Q@ C R™ be a bounded domain and p € (1,00).
Then

1. For § = diam(Q) = sup{|z — y| : z,y € Q} < oo, for all u € WyP(Q) (defined
above), we have
[ullp < dl[Vullp. (3.5)

2. Let ) be a bounded Lipschitz domain. Assume thatV.C WYP(Q) is a closed subspace
with the property
uweV and ||Vu|pro) =0=u=0.

Then there exists a constant C}, > 0, called Poincaré constant, such that
[ullip < CpllVull, (3.6)

forallueV.

Proof. For these two versions of “Poincaré”, it is convenient to use two very different
strategies:

1. By density, it suffices to prove (3.5) for u € C2°(€2). Extend u to R™ by 0 (and still
call this function u). For z € Q and e! the first unit vector, we have x +de! ¢ Q, so

5 5
u(z) = u(x + de') — / Ou(z + se')ds = —/ dru(z + se')ds,
0 0

and thus,

u(a)p =

5
/ O1u(z + set) ds
0

5 p/p
/ 1ds
0

5
< or/’ / |Vu(z 4 se')|P ds.
0

1
Holder

5
< / |01u(z + seb)|P ds
0

Hence, by Fubini,

s
/ u(z)|? do < 67/7 / / |Vu(z + se')|P dsdz
e zeQ JO

=T sel ! J
y=z4 5P/p/o / o 1|Vu(y)|pdyds
ye se

<ot [ vat)py
= 0% |[ulf}.
2. By contradiction: Assume that for all n € N, there exists u,, € V such that

”un”lm > nHVuan.
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Now consider v, = p— with lonllip =1 and
n|l1l,p
[Vunllp _ 1
Vv = < —. 3.7
|| n”P ||un| 1p n ( )

Since WP(Q) is reflexive and (v,), is bounded, there exists a weakly converging
subsequence (vy, )i of (vy)y with limit

Up, — Us.

Since V. C W1P(Q) is a weakly closed subspace (is is linear! — apply Mazur), we
obtain v, € V. By (3.7), we conclude Vuv,, — 0 in LP(Q2). Using Vv,, — Vv,
(Lemma 44!), this means that Vv, = 0, so v, = 0 by assumption. At the same
time, by Rellich’s Compactness Theorem, there is a subsequence of (vy, ) with
Un,, — Ux = 0 strongly in LP(£2) (here, some boundary regularity is used). This
contradicts ||v, |1, = 1.

O
Remark 50. What are choices for V' in Poincaré’s Theorem?

e Let ' # () be a part of the boundary I' C 9Q of a bounded Lipschitz domain .
Choose V = Xy = {u € WHP(Q) : u|r = 0}. Then if u € V and Vu = 0, u = const.
Depending on T', e.g. if it is open in 912, this implies u = 0. Weaker assumptions
on 2 and I' may suffice.

e Another typical choice: V = {u € WhP(Q) : u = ﬁfg“ = 0}. In particular,
Theorem 49 implies that for all u € WHP(Q),

lu = all1p < Cpl[Vullp.

More useful facts that close out this section:

e Gauss’ Theorem holds, i.e. in Theorem 6, it is sufficient to ask that €2 is bounded
Lipschitz and u € W11(Q), to get

/Q dyu(w) de /8 ulon (o) (o) A’

with v € L>(0€;R™) the outer normal vector field as in (3.3) and u|gq € L'(09)
by the Trace Theorem.

e Product rule: if u € WHP(Q), v € W' (Q), then uv € WH'(Q) and (w) =
uw'v + wv’ (just use “Holder”).

e Chain rule: (take care!) If f: R — R is uniformly Lipschitz and u € W1P(Q),
then fou € WHP(Q) and (f ou) = (f owu)u'. For p € [1,00), the mapping
Tr: WHP(Q) 3w fou € WHP(Q) is bounded.
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3.3 Properties of I(u) = [, f(z,u(x), Vu(z))dz on W*(Q)

The aim of this section is to provide necessary and sufficient conditions on p, ), f and g
for the functionals

I:WH(Q) D X — Ry,
u»—)/Qf(a:,u(m)7Vu(x))dsc—l—/agg(a:,u(:n))dx

of the form we looked at in Chapter 2, to allow us to solve (DP). The strategy is to apply
Tonelli’s Theorem 32, so, in particular, we want

e X to be reflexive (choose p € (1,00) and X = W1P(Q) or a suitable subspace, see
Examples),

e [ to be well-defined (Proposition 52),
e ] to be coercive (Theorem 54), and
o ] to be weakly lower semi-continuous (see Subsection 3.3.1).

For simplicity (and clarity), for the moment, assume that g = 0. Criteria for general g
are discussed in the Exercises.
We start from the following definition.

Definition 51. (Carathéodory function) Let @ C R™ be open and N € N. Then f: Q x
RY — R, is called a Carathéodory function if

1. for a.e. z € Q, f(z,:): RN — R, is continuous, and,
2. foralla € RY, f(-,a): Q — R, is measurable.

The point of this definition is the following result on I being well-defined if f is
Carathéodory and satisfies a suitable growth condition.

Proposition 52. Let f: Q x RN — Ry, be a Carathéodory function. Then

1. Ifu: Q = RY is measurable, then

h: Q — Ry

z = f(z,u(r)),
18 measurable.

2. For p € [1,00), if there are a € L*(Q2), b € R such that for allu € RV, a.e. x € Q,
f(z,u) = a(x) 4 blul?, (3.8)
then the functional
I LP(;RY) 5 Ry, I(u) = / f(z,u(z))dz,
Q

1s well-defined.
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Proof.

1. Recall that measurable functions can be approximated by step functions [Klenke,
Satz 1.96] and that pointwise limits of measurable functions are measurable [Klenke,
Satz 1.92]. We first show 1. in the case that u is a step function,

k
u(r) = Z aixa,(z)

where a; € R, and A; C Q are disjoint measurable sets with U¥_; 4; = Q. Then
for every a € R, the set

{zeQ:h(z)<a}=UL {z€A;: fz,u(x)) <a}

=UE (AN ((—00,a); o)

is measurable, as it is the union of measurable sets, as the functions f(-,a;) are
measurable by the Carathéodory assumption. Now we approximate general mea-
surable u by step functions u,, and use the continuity of f(z,-) to get that for a.e.
x € Q,
h(z) = f(z,u(z)) = lim f(z,un(x)).
n—oo

Hence h is measurable as the limit of measurable functions.

2. What is needed for I to be well-defined? By 1., it remains to see that the in-
tegral [, f(x,u(z))dz does not return the value —oo, i.e. (f(-,u(:)))_ should be
integrable. But this follows directly from (3.8).

O

Example 53. Let f(z,a) = k(z)|al? with k € L>°(2) and p € [1,00). Then

1) = [ f(a,Vu(a) da

R

is well-defined on W1P(Q).
Theorem 54. (Coercivity) Let @ C R™ be bounded Lipschitz. Assume that

FrOxR™ x R™*™ — Ry
is a Carathéodory function (N = m + n-m) that satisfies

f(@,u, A) = | A = () |ul” — h(z),

for a.e. x € Q, all u € R™ and A € R™*"™. Here, p € (1,00), ¢ > 0 is a constant,
rell,p),d e L (Q) and h € LY().
Then there exist constants C > 0 and 8 € R such that

I(u) = /Q f(u(x), Vu(z))dz > Cllul?, — B

for all w € WyP(Q). Hence, I is coercive on X = ug + Wy (Q) for any ug € WHP(1).
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Proof. Let u € W, ?(Q). By assumption,
I(u) > ¢| Vull2 - / 5() ua)” dr — ]|

By Poincaré’s Inequality, c||Vullb > & ||lully ,. Together with Holder’s Inequality with

(2) >1, (g)/ = p%ﬁ, this gives

1) > Z-lu

z Tp = ol 2 [lully, = 11211
p

p—r
Note that this can be shown for any u € V where V is a subspace of W1P(Q) such that

the Poincaré Inequality holds. Note that since p > r > 1, there exists an sg > 0 such

that 55—s? > ”(SHﬁST for all s > so. Set § = H(SHﬁsg, then

s+ B8] s >0

2Cp
for all s > 0. Then we have shown
I(u) > gl + B = [kl =: Cllullt, — 5.
O
Example 55. (Dirichlet problem) Let @ C R™ be bounded Lipschitz and
I(u) = / V(o) da.
Q
Then I is coercive on W, () if and only if p < 2.
Proof. There are two cases to be considered:
p<2 Then there exists 8 € R such that for all s > 0,
2> P — .
It follows that
1) 2 [ [Vu@)lrdo- g0l E i, - sl
Q P
so I is coercive on WP (€).
p>2 Let ug € Wo2(Q) \ WyP(Q) and choose (uy,), C C°(€) such that u, — ug

strongly in W12(Q). Then
I(uy) = ||Vun |3 = I(ug) < o0,

but
”un”l,p — 00,

. . 1
so I is not coercive on Wy ().
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Example 56. (Is r < p necessary?) Let p € (1,00), A € R and
In(u) = / |Vu(z)|P de + )\/ lu(x)|? dz.
Q Q

Let Cp be the optimal constant in the Poincaré inequality (3.6) on Wy?(Q). Then I, is

coercive on W, *() if and only if A = —&7— =: —¢. This shows that we cannot just
P

-1
omit the condition r < p in Theorem 54.

Proof. Note that from (3.6), we get that ¢ is the optimal constant in the inequality
[Vul[f > &ull? for all u € Wy P(9).

A > —¢: Then I, is coercive (Exercise!)

A< —&  We show that Iy is not coercive on W, ?(Q). Let @ € W, P(Q) \ {0} with
[Va|p = él|la||b. (We prove later that the optimal constant ¢ > 0 and the
minimizer of constants @ exist.) Let o € R. Clearly,

lat|1, = 00, as |a] = oco.

On the other hand,

I(ail) = |af? (/ \Va(x)\pdx—&—)\/ i) P dx)
Q Q
= [alP(e + A)[lal}.
Since ¢+ A < 0, this shows that I («i) < 0 for all « € R, so I is not coercive.

O

3.3.1 Quasiconvexity and weak lower semicontinuity of I

In this Subsection, we show that, roughly,
1. if I is wlsc in WP, then f is qc in the gradient component,

2. if f is qc in the gradient component and satisfies a growth condition, then I is wlsc
in Whe,

We start out from the necessity of quasiconvexity and show only the simpler case of no
2- and u-dependence in f.

Theorem 57. Let Q C R™ be open and bounded and let f: R™*™ — R be continuous
and

I(u) := A f(Vu(x)) de.

Then for p € [1,00), if I is wlsc on WP(Q), then f is quasiconver.
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Proof. We show that for [0,1]* = D C R"™ the unit cube, for every £ € R™*" and for
every w € Wy'P(D;R™),

ﬁ /D F(€+ V() dy > £(). (3.9)

Recall Definition 17 of quasiconvexity of f). Let w € Wi (D; R™) be extended period-
( 0
ically to R™, i.e.

w(x +z) =w(z), foralzeDandzelZ".

Consider the sequence

1
wi(z) = %w(kx) € W, P(D;R™).

Then wy — 0 in I/VO1 P(D;R™) by Lemma 44 and Example 41 and an exercise: the result
of Example 41 modified to hold on cubes D (instead of intervals (0,1)). Now define
ug(z) == &x € WHP(Q; R™) (Q is bounded!) and

g () = {udx), x €N\ D,

ue(z) + wi(z), z € D.

Then uy, — ug in WHP(D : R™) and
) = [ 1(Vun(o)do = ARiCL [ e+ vunio) o
= I\DIFE) + 5 [ 7€+ Vul) dy

— 12\ D|f () +/Df(€+Vw(y))dy-

Taking the limit and using wlsc’ity of f gives (3.9) via

Iug) = 21£() < liminf I(w) = |2\ DIA(E) + [ €+ Vulu) dy

Corollary 58. Ifn=1 or m =1 in Theorem 57, then f is necessarily convez.
Remark 59. Theorem 57 holds more generally for f that also depend on x and u [Dac08,
Lemma 3.18| and it can be shown also for unbounded € [Dac08, Theorem 3.13].

We now want to prove something like a converse statement to Theorem 57. We first
prove a simple preliminary results on continuity of separately convex functions that satisfy
a growth condition:

Definition 60. (Separate Convexity — should have been included in Chapter 2!) A
function f: RN — Ry, is separately convex or convex in each variable, if for every x =

(z1,...,2zN), for every i = 1,..., N, the functions
fyit R = Ry
Yi f(fly-~-al’i—1,yi7$i+17-~-a$N>

are convex.
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Remark 61. Clearly, a rank-1-convex function is separately convex. The converse is not
true, consider, for example, the function f: R? — R given by f(x1,72) = z129. It is
separately convex but not convex. This example also shows how separate convexity is not
objective in its dependence of the choice of coordinates.

Lemma 62. Let f: RY — R be separately convex and such that for some o >0, p > 1,

for every x € RV,
|f(@)] < a1+ [=["). (3.10)

Then there exists 3 > 0 such that for every x,y € RN,
[f(2) = f@)l < BAA+ 2] + [y)P~ e —yl.

Proof. In three steps:

Step 1: If a function g: R — R is convex, then for every A > p > 0 and every t € R,
t+pu)—g(t t+ A —g(t
gt £p) —gt) _ 9 AA) 9(t) (3.11)
1

(Picture!) This is proved by

glt=p = g(SE=N +1- D)0
< St =X + (1= Dg),

using convexity of g.
Step 2: Now fix 2! = (22,...,7x) € RV~! and define
g(t) = f(t.x")
for t € R. Then we show that there is 81 > 0 such that
l9(21) = g(y1)] < B+ |z] + [y)P~ a1 — i) (3.12)
Wlog, let 1 < y1. In (3.11), set

ANi=14+z|+ |y, p:=yi— a1,

then
g(y1) — g(x1) = g(x1 + (y1 — 1)) — g(x1)
g(z1 + 1+ [z| +[yl) — g(z1)
and

g(w1) — g(y1) = g(yr — (y1 — 21)) — g(v1)

g(yr — (L + |z + [y]) — 9(y1)
< (- ) T R

Using (3.10), this proves (3.12).
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Step 3: With

f(@) = f(y) = (f(x) = flyr1, 22, ..., 2N)) +
o (flyry s Y, @iy e 2N) — f(Y, e Yiy Tig 1y ey TN)) e
+(f(y17"',yN—1axN)7f(y))7

the result follows from Step 2.
O

Theorem 63. (Quasiconverity and growth condition imply wisc’ity) Let p € (1,00) and
f:R™*™ R be quasiconvez, additionally satisfying the growth condition

0<f(6) <all+[) (3.13)

for every € € R™*"™ and some o > 0. Let Q C R™ be open and bounded and
I(u) :== / f(Vu(z)) da.
Q

Then I is wisc in WHP(Q; R™).
Proof. In two steps:
1. show wlsc’ity only for u,, — u with u(z) = Az + b affine.

2. show wlsc’ity for general u using approximation by piecewise affine functions and
Step 1.

Note that a consequence of condition (3.13) is that f is quasiconvex in A if and only if
Jp f(A+ Vw(y))dy > |D|f(A) holds for all w € Wy (D;R™) (instead of: only for all
w € PCY(D;R™)).

Step 1: Let (un)n C WHP(Q) with u,, — u and u(z) = Az +b for some A € R™*" and
b € R™. If we knew u,|sq = u|oq, then u, = u + w, where w, € Wol’p(Q).
Then from quasiconvexity, we would get

I(uy) = / A+ Yy (2) dz > [ F(A) = I(u) (3.14)

and we would be done. However, in general, u,|gq # ulsq so we need addi-
tional arguments:
Consider

e aset Qo C € such that R := 1dist(Q, Q) > 0,

e arbitrary L € N\ {0},

e for integers 1 < i < L, the sets

Q= {z e Q: dist(z, Q) S %R},
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e cut-off functions p; € C} (%), with 0 < ¢; < 1, ila, , =1, and [Vip;| <

2(L+1)
R bl

as in the Figure below:

4 )

1973

- Y

Now let

Vi 7= U+ @i(Un — ),

then I(v;y) > I(u) as in (3.14). Moreover, (omitting the argument “(z)” in
the following),

— / f(Vu)dz —i—/ (Vv ) dz +/ f(Vuy,)dz
O\, Q\Q1 Qi1

f20
< /Q\QD f(Vu)d:er/Qi\QH f(Vvi,n)da:—i—/Qf(Vun)dm_

Since
Vv pn = (1 —vi)Vu+ ¢;Vu, + Vo, (u, —u),

by (3.13),

< / C(1+ |Vvin|?)de
Qi\Qi—1

Young 2L 1 P
< / CO+ |Vul? + |Vu, P + (w) ft — ul?) d.
Qi\Qi—1 R

Putting the estimates above together, summing over ¢ and dividing by L, we
get

f(Vu)dz
Qo

C 2(L+1)\?
< —/(1 + [ Vul? + [Vu,|P + L)) |un, — ulP) dz
T Jo R

+ /Q f(Vuy,) da.
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Step 2:

Now recall that u, — u weakly in W'?(Q), so [, |Vun(2)[P dx is bounded
and by Rellich, u,, — u strongly in LP(Q), so taking n large,

(2(L£—I)>p/ﬂ|un—up(m)dx

is bounded independently of L. Taking the liminf and using wlsc’ity of the
norm, we obtain

f(Vu)de < — Jrhmlnf/ f(Vuy,)d

QO n—oo

As Qy C Q and L € N were arbitrary, conclude

n—oo

f Vu)de < hmlnf/ f(Vuy)dx

Now we look at general (u,), C WHP(Q) with u,, — u € WP(£) not nec-
essarily affine. We approximate by S(I) cubes D! of size %, [l €N In
particular, for given § > 0, [ can be made so large and the cubes can be
placed so that

H =U)9Dca with |9\ HY| <, (3.15)

see Figure below:

Q

—
L 11

Set §l ‘D,‘ fDl Vu(z)dz. Then for € > 0 we can choose [ € N such that

l
Z/Dl |Vu — P da < e. (3.16)
i=1 i

(To see this, approximate Vu € LP(§; R™*™) by we C C(€;R™*™) such that
[Vu—w|[5 < e. Since w, is continuous, it follows directly that for sufficiently

small [,
E dy|?d .
/l | l| w(y) y| xr<e

It is then straightforward to show (3.16).)
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Now look at

T(un) — I(u) = / F(Vun) — £(Vu) da

Q

- / F(Vun) = (V) de
Q\H!

—|—/ f(Vu+ V(u, —u)) — f(Vu)dz
H!
=Jt gt

From (3.13), using (3.15), we get

Jt> ¢ (1 + |Vu(z)[?) dz "Z5° 0.
Q\ H!

To estimate Jg’l, let ¢! be the piecewise constant function with ¢'(z) = 524 if
x € D! and set

Tyt [ HE Vs
+ [ f(Vu+V(up —u) — f(E + V(u, —u))dz
H

+/ —f(Vu)dzx.
H!
= Tt Tt 4 T
From Step 1, for all DL we obtain
liminf [ f(&+V(un —u))de > | f(&)da,
n—oo Di DLI
so we have
liminf S5 + Jby > [ f(€'(2) = f(Vu(@)) de = Jb.
n—oo Hl
Now by Lemma 62, there exists 5,C > 0 such that
< [ 1€ @) - F(Tu(w)do
< B/Hl(l + 1€ (@)| + [Vu(z) )P~ e (@) — Vu(e)| dz

Holder

< BIA A+ 1€+ [VuD)P Ml g 1€ = Vil Lo e
= BIL+ 1€+ [Vl oy 1€ = Vaull oy
< ClIg" = Vullpocy,
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where we used that [|¢!, is bounded by [Vul|, considering (3.16). In the
same way, for large n,

T8 [ 1 I+ 9]+ [Vl e~ Val do
H!
< C|Ig" = Vul| o sy
Putting everything together, we obtain
. A n,l n,l
hnrglogf I(uy) — I(u) > hnni>10%f JI+ s

> lim inf Jf’l + JSQ’Z + J:l,,

n— oo

>—C (1 + [Vu(z)[P) dz = C||E" = Vul| Lo ar)
Q\H!

l—o0

— 0,
and have proved the claim.

O

Remark 64. The growth condition (3.13) can be weakened, but it cannot be omitted, as
the example f(Vu) = det(Vu) shows. If m = n = 2, then f is quasiconvex, but clearly,
(3.13) is not satisfied, as the determinant could be negative. Moreover, I is not wlsc in
Wh2(Q) [Dac08, Example 8.6].

Remark 65. Theorem 63 holds more generally for f that also depend on z and u [Dac08,
Theorem 8.8].

Remark 66. In spite of the results of this Subsection, for a given non-convex function it
remains difficult to decide whether it is quasiconvex and/or weakly lower semicontinuous.
Moreover, the assumption of quasiconvexity and the growth condition (3.13) may be too
restrictive. The need for functionals

Fr QX R™M 5 [0, 00]

that are Carathéodory, non-convex, but with more straightforward structure than qua-
siconvex functions, and such that I: W1P(Q) — R, is wlsc for suitable p leads to the
concept of polyconverity, see e.g. [Dac08, Chapter 5].

3.4 Examples
3.4.1 p-Laplace
Let Q C R™ be bounded Lipschitz, p € (1,00). Consider the functional

! P — z)u(x) dz
mozégwmmwm Lhw()d

in Wy?(Q). Then for every h € L? (£2), there exists a unique minimizer of I in W, (Q).
Proof and discusssion in four steps:
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1. I is well-defined and coercive in W1P(Q)

Consider f: @ x R x R* — R, f(z,u,A) := %|A|p — h(z)u. Clearly, f is a
Carathéodory function. We can estimate f from below,

1 1 1 /
fla,u, A) = ];IAI” = |h(@)fu] = E(IAI” = |ul?) = ly\h(x)l”

In the second estimate, if h € LP(Q), then |h|?" € L'(R2), so the condition in
Proposition 52 is satisfied and thus I is well-defined. The first estimate shows that
the growth condition in Theorem 54 is satisfied with » = 1 if h € LP'=P/P=1((Q),
Hence, I is coercive on Wy"*(€).

2. I is wlsc
The function f;: R™ — [0,00), A — %|A|p is convex and satisfies the growth condi-

tion in Theorem 63, so for a weakly convergent sequence u,, — u in WO1 P(Q), using
h e LY () C (W, P(Q)), we have

hmmf[ (un) /f1 (Vu( ))dm—hm/h Yup (z) dz

/ fi(Vu(z))dz — / h(x = I(u),
so I is wlsc in Wy (Q).

By Tonelli’s Theorem, 1. and 2. give the existence of a minimizer of I in VVO1 P(Q).

3. Uniqueness of the minimizer follows from strict convexity: Exercise!

4. Why p-Laplace?

The Euler-Lagrange equations for I are

div(|VulP~2Vu(z)) + h(z) =0, z € Q,
u(z) =0, z € 0f.

They generalize Laplace’s Equation (the case p = 2). By the direct method, we
have shown the existence of a unique (weak) solution.

3.4.2 Optimal Poincaré constant

Let Q € R” be bounded Lipschitz, p € (1,00). Then there exist & > 0 and u € W, () \
{0} such that for all v € Wy** (),

[Vollh > ¢llv]b, (3.17)
and

IVully = ellull}- (3.18)
We prove this in three steps:
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1. Reformulation as a minimization problem with constraint

If (3.17) is true for all v € Wy P (Q) with |[v||, = 1, then it is true for all u € W, (1)
(if (3.17) is true for some u € Wy*(Q), it must hold for v := %-.) Thus, we

lullp

minimize
I(u) ::/ [Vu(z)|P de = HVqu
Q
in the set M := {v € WyP(Q) : ||v]l, = 1}.
2. Application of the Direct Method
Let (un)n C M be an infimizing sequence for I.

e Since I is coercive (Poincaré’s Inequality), (uy), is bounded.

e Since W, (Q) is reflexive, (uy,), is weakly convergent.

e If M is weakly sequentially closed, then the weak limit u,, — u is again in M.

e Since I is wlsc on M (wlsc on W,?(Q) by convexity and Theorem 63), then
liminf, I(u,) > I(u), so u € M is a minimizer.

It remains to show that M is weakly sequentially closed. Since M is not convex,
Mazur’s Lemma does not apply. Instead we use Rellich’s Theorem: Let (uy,), C M
such that u, — ug € WHP(Q). Then ug € W, P(Q) since W, *(Q) is a linear and
thus weakly sequentially closed subspace of WP(Q). By Rellich’s Theorem, there

is a subsequence u,,, Y ug that converges strongly in LP(Q), so
ol =l fum, [l = 1
and hence ug € M.

3. Conclusion

By 2., there is an u € M such that ||[Vu||} < [V} for all v € M. Define ¢ := I(u),
then
I(v) = [[Volly = éllv]l}

for all v € M and hence for all v € W, ?(Q) by 1. In addition,
IVully = &- 1= éfullp,

so (3.17) and (3.18) are proved. It remains to check that & # 0. Assume ¢ = 0, then
Vu = 01in 2, so u = const. on each connected component of 2. Since u € Wol’p(Q),
this implies w = 0. But this is in contradiction to ||ul|, = 1.

3.4.3 Phase separation (Cahn-Hilliard energy)
Let Q C R? be bounded Lipschitz and «,e > 0. Define

I(u) := /Q %|Vu(w)\2 + g(l —u(r)?)?da (3.19)

on the set

Vi={uecW"3Q): /Qu(m) dz =0}

— the double-well potential has returned! Then, I has a minimizer in the space V.
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1. Proof

Since the Poincaré Inequality holds in the reflexive Banach space V and for all
u € R, (1 —u?)?>0, I is well-defined and coercive. If we show that I is wlsc in V,
then by Tonelli’s Theorem, we have a minimzer v € V. To show that I is wlsc, it
remains to show that
IL: Wh2(Q) — R
u = Jo(1—u(x)?)? da

is wlsc in V. This follows from the following proposition using that

gRDOu— (1-u?)?eR
is continuous with |g(u)| < C(1 + |u|*) for some C' > 0 and that the embedding
Wi2(Q) < L7(Q) is compact for r = 4.

Proposition 67. (Non-convex functionals of lower order) Let Q C R™ be bounded
Lipschitz, p € (1,00) and r € [1,00) such that the embedding WP(Q) < L"(Q) is

n

compact, i.e. 1 — 3 > —3t. Moreover, let g: R™ — R be continuous with [g(u)| <
C(1+ |u|") for all w € R™. Then the functional
I,: WW(Q) — R
u = o g(u(z))de

1s weakly sequentially continuous.

1.p
Proof. Consider u,, W Let (tn,, )r be an infimizing subsequence of (u, ) such
that

liminf Iy (u,) = h}Icn Iy (tn, ).

. . . L7(Q
By Rellich’s Theorem, there is a strongly converging subsequence uy,, %( ) U, SO,

in particular,
r r k' =00 r
/Q(1+|unk,(fv)l )dz = [ + llun,, 7~ =7 192 4 [Jull7

and we can choose (unk/)k’ such that it converges pointwise a.e. to u. We obtain

limninf Ig(un) = hkr,nlg(unk/) =+ C(|Q| + Hunk/ ”:) - C(|Q| + Hunk/ ”:)

Fatou . C r T
= [t (0 ) g 090+ T 1)) = €9 + s )

:/mwmm:%w.
Q

Here, the condition |g(u)] < C(1 + |u|") ensures that Fatou is applicable as the
integrand is positive. In the same way, we prove that

—limsup Ig(uy) = liminf —Ig(u,) > —Ig(u),

n n

hence, limy, I,(u,) = I(uw). O
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Remark 68. Note the importance of g acting in the lower order: Otherwise, g and
I, would be affine (Corollary 42) or g would have to be convex (Theorem 57).

2. Discussion — why “phase separation”?

Consider u as the volume density of a given compound material, re-scaled, so that

u(z) = 1 =~ material A at x (e.g. zinc),
u(z) = —1 ~ material B at = (e.g. lead),
u(z) € (—1,1) ~ mixture of materials A and B at z.

The assumption u € M just means that the total ratio of 50% zinc and 50% lead
is fixed. Then I in (3.19) is an energy associated to the phases’ wish to separate:
the states u(x) = 1 and u(xz) = —1 are preferable, due to the double-well potential.
Mixed states are more costly, as well as changes of material composition (Vu #
0), due to the first integrand. The minimizer will thus be mostly constant with
a minimal size of the separating layer S. (see Picture). S can be considered to
approximate (¢ — 0) the free surface that separates two natural phases.

(;@ﬂ S u=1)

3.4.4 Nonlinear Elasticity

Recall the modelling and notation for elasticity from Section 2.7.3. Recall the condition

n—roo n—r oo

det £}, > 0 with det F,, = 0 = W(z,F,) — o (3.20)

on the deformation gradient F' = Vi that was introduced to avoid self-interprenetation.
This condition implied that elastic energies would need to be non-convex.
For n = 2, set
%HAHP—Fﬁ, dCtA>0,
400, det A <0,

W(A) = {

as a model energy density for nonlinear elasticity that satisfies (3.20). Set

H@:LWWWWM

as the corresponding nonlinear elastic energy. What are properties of I?7 Do minimizers
exist (in what space)?
As usual, we want to apply Tonelli’s Theorem.
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e For p > 1, I is well-defined in VVO1 "P(Q) by Proposition 52 and coercive by Poincaré’s
Inequality,

1
I(p) = ];IIVsDIIZ > Cllelfyeay:

e To show wlsc’ity for p > 2, it remains to show wlsc’ity of

L) = /Q f(Vep()) dx,

where

L detA>0
A) = det A’ ’
2(4) {—i—oo, det A < 0.

We decompose I on WP (Q) into the operator
B: WHP(Q) 3 ¢ — det(Ve) € LP/2(Q),

(this uses p > 2), and the functional
Jo: LP2(Q4R) 3 0 — Jo(6) = / g2(0(x)) dz € [0, 0],
Q

where

1
=, s> 0,
92(3) = {S

400, s<0.

Note that go is positive, continuous and convex. Thus, wlsc’ity of J holds by the
following result.

Proposition 69. (Convexity and “+00”) Let Q C R™ be open and bounded. Assume
that
f:QxRY = [0,00]

s a Carathéodory function that satisfies
f(x,): RY —[0,00] is convex for a.e.x € Q.

Then for all p € (1,00), the functional

I(u) = /Qf(:r,u(x)) dzx
is wisc in LP(Q).

Proof. Note that by assumption, I is well-defined. Since f(z,-) is convex, I is
convex. Thus, by Theorem 34, it suffices to show that I is strongly lower semicon-
tinuous. Hence, let (uy)n, C LP(Q) such that u, — u € LP(2). Let (un,)r be a
subsequence such that

li}gn I(up,) = limninf I(uy,).
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Let (un,, )& be a further subsequence that converges pointwise a.e. to u. Since the
f(x,-) are continuous and non-negative, by Fatou, we obtain

liminf/ fz un(x)) :hminf/ [z, u,,, () ds
n Q k' Q .
Z/Iimf(x,unk,(x))dx
Q ¥
= / fz,u(x)) da.
Q
O
To prove wlsc’ity of Ip, it now suffices to show that the operator B is weakly

sequentially continuous. So assume ¢, — ¢ weakly in VVO1 P(Q). We need to show
that det(V,) — det(Vy) weakly in LP/2(Q). By Lemma 39, it suffices to show

L. || det(Ven)|p/2 < C for C > 0 independent of n € N (this also shows that B
is well-defined), and

2. [odet(Von(2))(x)de — [, det(V(x))y(x) dz for all ¢ € C2(Q).
To show 1., note that for any v € WP(Q),

| dEt(VU)HZ; < C/Q 9101 D202|P/? 4 |91 020001 [P/? de
S C/ |81’l)1|p + |62’l)2|p+ |81’U2|p + ‘821)1‘p dx
Q

= C||Vv|lh < +oc.

Since (¢n)n is weakly convergent, it is bounded, and this proves the claim.
To show 2., apply Gauss’ Theorem:

/det(V@nWZ/(aUPnlaz(Pnz—82Un1alun2)1/1

Q Q
o . 020,
= [ atou ( %72 Y
Gauss 022 ] o
= Lo () (00)

32@2 31¢
e (50 )-(50)
:/det(Vgo)i/).
Q

In conclusion, we have shown that the elastic energy defined above has a minimizer in
WP (2). Tts density of the form f(A) = g(A,det A) with convex g is a special polyconvez
function. The notion of polyconvexity is important in nonlinear elasticity theory. Roughly
speaking,

f convex = f polyconvex = f quasiconvex = ...,
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and, at least in general,

f convex < f polyconvex < f quasiconvex ...
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