
Introduction

These notes should serve as an introduction to the Internet seminar on non-Newtonian

�uids held at TU Darmstadt in the summer term of 2010. It is a short collection of
notions from modelling and analyis of (non-) Newtonian �uid �ow with some emphasis
on the �rst part. The main purpose is to raise mathematical questions regarding the
analysis of non-Newtonian �uids to be discussed in the seminar meeting and during its
preparation. Furthermore, it is an opportunity to list and relate to selected literature on
the subject.
Each part of the notes has a particular topic. The �rst part is on basics from contin-

uum mechanics and the modelling of �uids and it contains a motivational chapter. The
subsequent parts will be in particular on generalized Newtonian �uids (May 4), Oldroyd-
B type �uids (May 18) and modelling and problems for dilute polymer solutions (June
1). The focus in all parts is on stating the inital and boundary value problems and on
existence and uniqueness results in three space dimensions. A detailed table of contents
will be added later and each part will contain references, but they will also be included
in one bibliography later on. The literature on the subject is extensive and my overview
is very limited. Suggestions are very welcome! Books on modelling and mathematical
analysis of non-Newtonian �uids are for example [1], [4] and [7].
Understanding the analysis of non-Newtonian �uids as well as organizing my �rst

seminar seem to me to be two very di�cult tasks. I would be very happy to receive your
comments and corrections and I look forward to our discussion!
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1 Basics from continuum mechanics and

the Navier-Stokes equations

We start out with some basics from continuum mechanics and repeat some basic steps
in the modelling of the Navier-Stokes equations. Even though non-Newtonian �uids are
those that show �ow behaviour which cannot be described by these equations, they are
still �uids and their governing equations inherit characterisitic features from the Navier-
Stokes equations, e.g the presence of a pressure term linked to the �divergence-free�
condition and the non-linear term (u · ∇)u, which shows that the �uid velocity is trans-
ported by itself. Roughly speaking, the di�erence will �only� appear in the constitutive
equations for the stress tensor of the �uid, but of course, this will also be the term of
highest order in the velocity u.

The following remarks on modelling are brief and simplifying. For a detailed back-
ground and explanations, we refer e.g. to the books [1] and [10]. Moreover, I got great
help for preparing this chapter from the lecture of Professor Bothe on Continuum Mechan-

ical Modeling of Flows and from Professor Robertson's Lecture Notes on Non-Newtonian

Fluids1.

1.1 Continuum hypothesis

A basic assumption in continuum mechanics is that the behaviour of the material at
hand can be described by quantities which are piecewise continuous functions of time
and space. This continuity assumption makes the process and the quantities involved
macroscopic. This is an idealization of the real situation which makes sense if the scales
of the process are su�ciently big.

For non-Newtonian �uids, it is assumed that their �ow dynamics is in�uenced by the
structure of the molecules they contain. This makes modelling very di�cult. In many
models, this in�uence is implemented �within� the continuum mechanical framework as
an extra continuous stress on the �uid. In the fourth part of the notes on dilute polymer
solutions, we will see how di�erent scales are included in one model. There will be
a continuum mechanical part of the problem as well as a contribution from molecular
forces, Brownian motion. Moreover, the continuum mechanical Oldroyd-B model will
arise as a special case of a coupled dilute polymer model.

1I found them on: http://numerik.iwr.uni-heidelberg.de/Oberwolfach-
Seminar/Robertson_NonNewtonianNotes.pdf. Professor Robertson teaches at the University
of Pittsburgh. Please also look at [8]. Both texts also contain very good references on the topic.
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1 Basics from continuum mechanics and the Navier-Stokes equations

1.2 Balance equations

Consider some extensive quantity Φ which has value Φ(t, V ) at time t on a volume V .
The term extensive quantity means that Φ can be assigned a value for every volume V
and that it is additive with respect to V , i.e. Φ(t,∪i∈NVi) =

∑
i∈N Φ(t, Vi) for given

volumina Vi. For example, Φ can be a mass m, a momentum mv or an energy 1
2mv2. By

the continuum hypothesis, a pointwise limit and a density φ can be assigned to Φ, i.e.

φ(t, x) = lim
R→0+

Φ(t, BR(x))
|BR(x)|

,

where BR(x) denotes the ball centered at x with radius R.
The balance of Φ over a volume V is an equation for the rate of change of Φ on V and

it is given by
d

dt
Φ(t, V ) = −

�
∂V

j · n dσ +
�

V
f dV,

where j is the �ux of Φ through the boundary ∂V and where f gives the rate of change
of Φ attributed to sources and sinks within V . By the Divergence theorem, this gives
the transport equation

∂φ

∂t
+ div j = f

in terms of the density φ. The rate of change of Φ on V is thus decomposed into exactly
the two components j and f . The question remains how j and f are to be modelled by
constitutive equations. In the next two sections, we turn to the speci�c balances of mass
and momentum.

1.2.1 Balance of mass and incompressibility

We can assume that there are no sources or sinks of mass in a material, i.e. f = 0. The
rate of change of mass m on a volume V is given by the rate with which mass is being
transported out of V through the boundary ∂V . The �ux j of mass is proportional to
the density ρ of the material and its velocity v at the boundary, so that the balance is

dm

dt
=

d

dt

�
V

ρ dV = −
�

∂V
ρv · n dσ.

This gives the continuity equation

∂ρ

∂t
+ div (ρv) = 0 (1.1)

in ρ.
In these notes, we will always assume that the Newtonian or non-Newtonian �uid

under consideration is incompressible, so ∂ρ
∂t = 0, and that ρ is moreover constant, so

that (1.1) reduces to
div v = 0. (1.2)
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1 Basics from continuum mechanics and the Navier-Stokes equations

1.2.2 Material derivative and balance of momentum

If we assume constant mass m, a formulation of the balance of momentum is Newton's
second law mdv

dt = F or

d

dt

�
V (t)

ρv dV = FV (t).

The term FV (t) = Fb + Fc includes two types of forces, Fb and Fc, which may act on the
volume V (t).
Body forces Fb are external forces. They arise from an external �eld like gravity or

an electromagnetic �eld and can be written in terms of a density f on the material, i.e.
Fb =

�
V (t) ρf dV.

Contact forces Fc act on the boundary surface ∂V (t) from the surrounding continuum
itself. They depend on the position of the surface given by its outer normal n, Fc = Fc(n).
Cauchy's Theorem states that this dependence can only be linear and that we can write
Fc(t, x) = T (t, x)n(x) for some matrix or tensor T , which is called the stress tensor.
It is not easy to give a precise proof of this theorem, even though it seems somehow
reasonable. For a survey and new proof we refer to [2].

In conclusion, the balance of momentum in integral form is given by

d

dt

�
V (t)

ρv dV =
�

∂V (t)
Tn dσ +

�
V (t)

ρf dV.

We can calculate the derivative of the integral on the left hand side (see also the Reynolds
Transport Theorem),

d

dt

�
V (t)

ρv dV =
�

V (t)
ρ
Dv

Dt
dV

where Dv
Dt denotes the material derivative of v,

Dv

Dt
=

∂v

∂t
+ (v · ∇)v.

The corresponding transport equation is also called the Cauchy equation. It is given by

ρ
Dv

Dt
= div T + ρf, (1.3)

where (div T )i =
∑n

j=1 ∂jTij denotes the divergence of the ith row of T .

A principal aspect of the remainder of the notes is to determine the relation between
T and v by constitutive equations for particular types of �uids, which will determine the
model. The next brief section is concerned with the basic linear constitutive equations
for Newtonian �uids, which yield the Navier-Stokes equations.
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1 Basics from continuum mechanics and the Navier-Stokes equations

1.3 Constitutive equations for Newtonian �uids

In all �uid models we consider,

T = S − pId (1.4)

will be devided into a deviatoric part S and a spherical part pId, where p is called the
pressure. If the �uid were compressible, additional constitutive relations of p to density
or temperature would be needed. In incompressible �uids, it is the mechanical pressure
which arises as part of the solution, due to the incompressibility constraint. In other
words, the stress includes a part which does not result in a motion which satis�es the
solenoidal condition.

We only give some ideas of how to derive S.

1. Relative rotation of the �uid should not a�ect its internal stress, i.e. the stress
acting on a control volume from the surrounding medium. In the case of relative
rotation, there is no internal exchange of momentum. This property is called ma-

terial frame indi�erence. Therefore, S only depends on the symmetric part of the
gradient of v, the deformation tensor D(v) = 1

2(∇v + (∇v)T ). It does not depend
on the rotation W (v) = 1

2(∇v − (∇v)T ) and it is invariant under rigid motions in
the sense that T (QDQT ) = QT (D)QT for every orthogonal matrix Q.

2. From the balance of angular momentum, it can be seen that T and thus S should
be symmetric, like D.

3. It is assumed that the �uid is homogeneous, so that its basic properties do not
depend on time or position, i.e. S does not depend explicitly on t or x.

The above assumptions 1,2,3 reduce the possible relations of S and v to that of a Stokes

�uid,

S = αId + βD(v) + γD2(v), (1.5)

where α, β, γ only depend on the �rst three invariants of D(v), tr(D), D : D and det(D),
see e.g. [8, Section 3.1] or [6]. Note that the incompressibility condition implies that
tr(D(v)) = div v = 0.
For Newtonian �uids, it is assumed that this relation is linear. In (1.5), this means

that γ = 0 and that β is constant, whereas α can be absorbed into the pressure, so that

S = ηD(v), (1.6)

for some constant η ≥ 0. The coe�cient η determining this linear dependence is called
the viscosity of the �uid. We can think of η as a �di�usion coe�cient� for momentum,
roughly measuring how strongly �uid particles interact with each other.

In the non-Newtonian models we consider, the incompressibility condition and the
decomposition of T as in (1.4) will be preserved, as well as assumption 1. The model
(1.5) also applies to generalized Newtonian �uids (cf. the second part of the notes). For
the other models in the notes, 2 and 3 may be false.
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1 Basics from continuum mechanics and the Navier-Stokes equations

1.3.1 Dirichlet boundary conditions

If we consider �uid �ow in some domain Ω, boundary conditions have to be prescribed
on ∂Ω. We always use Dirichlet boundary conditions, i.e.

v|∂Ω = 0, (1.7)

if the �uid domain Ω is not moving. This condition is well-established for Newtonian
�uids in contact with solid walls, but it may be in dispute for non-Newtonian �uids, cf.
e.g. [5]. The mathematical literature quoted in the notes mainly adopts this condition,
for all types of non-Newtonian �uids considered.
Dirichlet boundary conditions are based on two assumptions: There is no out�ow or

�ow through the wall, i.e. v · n|∂Ω = 0, and secondly, there is a strong exchange of
momentum between �uid and wall, i.e. the �uid sticks to the wall and no slip occurs.

1.3.2 Navier-Stokes equations

Putting (1.2), (1.3), (1.4), (1.6) and (1.7) together yields the Navier-Stokes equations
ρ(∂v

∂t + (v · ∇)v)− η∆v +∇p = f, in R+ × Ω,

div v = 0, in R+ × Ω,

v|∂Ω = 0, on R+ × ∂Ω,

v|t=0 = a, on Ω,

(1.8)

for the �ow of a Newtonian �uid in a domain Ω, where a is a suitable initial value
for v. Note that we used div (ηD(v)) = η∆v, which follows from the incompressibility
condition.

1.3.3 Reynolds number and the Stokes equations

We scale the NSE to a characteristic length L and velocity U to get a formulation in
dimensionless form. The constants L,U can be chosen arbitrarily, but the idea is to use
numbers which �t the situation under consideration.
They yield a time scale T = L

U and new arguments τ = t
T and y = x

L . We set

u(τ, y) = v(τT,Ly)
U and q(τ, y) = ρU2p(τT, Ly). We plug the derivatives of v, p expressed

in terms of u, q into (1.8) and multiply the �rst line by L
ρU2 to get

∂u
∂t + (u · ∇)u− 1

Re∆u +∇q = f, in R+ × Ω,

div u = 0, in R+ × Ω,

u|∂Ω = 0, on R+ × ∂Ω,

u|t=0 = a, on Ω,

(1.9)

as the new form of the equations, where the constant

Re =
ρLU

η
> 0
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1 Basics from continuum mechanics and the Navier-Stokes equations

is called the Reynolds number. The characteristics of the �ow are thus reduced to this
one parameter. If Re is very small, 1

Re is very large so that the in�uence of the non-linear
term (u · ∇)u may be neglected with respect to 1

Re∆u. This yields the idealization of
(1.9) by the linear Stokes equations,

∂u
∂t −∆u +∇q = f, in R+ × Ω,

div u = 0, in R+ × Ω,

u|∂Ω = 0, on R+ × ∂Ω,

u|t=0 = a, on Ω.

(1.10)

1.3.4 Strong solutions for the Stokes equations

Very many things can be said about the analysis of the NSEs, but this would somehow
extend the seminar... A this point, we only cite one result on the existence of strong
solutions for the Stokes equations and the corresponding estimate, which gives us a
background for comparison in the later parts and which will be used again. The proof is
due to Solonnikov [9].

Theorem 1. Let Ω ⊂ Rn, n ≥ 2, be a domain of class C2 with compact boundary and

1 < p, q < ∞, 0 < T < T0, f ∈ Lp(0, T ;Lq
σ(Ω)) and a ∈ Zp,q := (Lq

σ(Ω), D(Aq))1− 1
p
,p.

Then there exists a unique solution

u ∈ Lp(0, T ;W 2,q(Ω) ∩W 1,p
0 (Ω) ∩ Lq

σ(Ω)) ∩W 1,p(0, T ;Lq
σ(Ω)) =: XT

p,q,σ,

p ∈ Lp(0, T ; Ŵ 1,q(Ω)) =: Y T
p,q,

to the inhomogeneous Stokes problem (1.10) in (0, T ) × Ω and there exists a constant

C > 0 independent of T, a and f , such that

‖u‖XT
p,q,σ

+ ‖p‖Y T
p,q
≤ C(‖f‖p,q + ‖a‖Zp,q

). (1.11)

The function spaces and notation we use is standard. In particular, p may be the

pressure or the integrability exponent. The space Lq
σ(Ω) := C∞

c,σ(Ω)
‖·‖q contains the

solenoidal vector �elds, where C∞
c,σ(Ω) denotes the space of divergence-free C∞-functions

with compact support. The notation Ŵm,q(Ω) is used for the homogeneous Sobolev
spaces of equivalence classes of functions in Dm,q := {f ∈ L1

loc(Ω) : ∂αf ∈ Lq(Ω), |α| =
m} with respect to the polynomials of degree m− 1. For 0 < θ < 1 and 1 ≤ p ≤ ∞ we
denote the real interpolation spaces of X, Y by (X, Y )θ,p if X, Y form an interpoation
couple.
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2 A short motivation for considering

non-Newtonian �uids

There are many di�culties in modelling non-Newtonian �ows - for example, measure-
ments may be elaborate and imprecise and there is a great diversity of non-Newtonian
�uid behaviour. There is de�nitely not one model to �t them all. For one �uid, di�erent
models may apply for di�erent scales or it may exhibit a threshold kind of behaviour, as
for example Bingham �uids, which behave more like solids and start �owing only after a
particular amount of stress is applied.

Mathematical results on the models are very new, maybe mostly less than 30 years old,
and there are not yet very many. In his book published in 2000, Renardy moreover wrote
that they can be considered as results obtained only in the cases of small perturbations

in some sense, cf. [7, p. 33].

In the notes, we will see some of the di�culties like the non-linear character of the
equations or the problem of coupled parabolic and hyperbolic parts (cf. in particular the
third part of the notes). The models are mainly concerned with polymer solutions, which
show elastic behaviour due to the spring-like (cf. the fourth part of the notes) character
of the polymers as well as viscous �ow. These �uids are also called viscoelastic.

There are many tools for evaluating models. Basic assumptions can be disputed or
ignored, as for example the principle of material frame indi�erence. Experiments and
measurements help especially for special types of �ow like simple �ow in a pipe. In these
cases, one can often �nd a solution to the model by simple calculations. Computational
Rheology and testing models via simulations is also a very important �eld of research.
But also, mathematical results on the well-posedness of the corresponding initial-value
problems or on existence and stability of steady �ows evaluate the models.

2.1 Examples

Even though it is di�cult, in applications, it is important to understand non-Newtonian
�uids as for example oils, plastics, paints, ... which appear in many industrial processes.
Other materials like glaciers, foams, sand, etc. also exhibit a non-Newtonian �ow.

Many examples of non-Newtonian �uids and their good or bad properties are known
from household applications, like toothpaste, which becomes less viscous (η decreases)
as more stress is applied (D(v) increases) or ketchup, which does not �ow (stays in the
bottle) until it has been su�ciently squeezed and stressed (then, it will be much less
viscous than expected and �ood the plate). These are very standard examples. Nice
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2 A short motivation for considering non-Newtonian �uids

descriptions and explanations can be found on the internet1.
Examples of Newtonian �uids are water and, in some cases, air. In contrast to their

behaviour, typical non-Newtonian e�ects of viscoelastic, polymer �uids are for example
rod-climbing, die swell and stable jets, cf. e.g. [7, Section 1.2] and the references therein
or [1, Section 2.3]. They arise from normal stresses in the �uid, in particular, stresses
which do not satisfy (1.5). When the �uid �ows, the polymer molecules tend to align
with the �ow direction. This generates a tension force in this direction. If these e�ects
can be predicted, �uids can be tampered with by adding polymer molecules to control
their �ow and improve their properties.
Another typical example of a non-Newtonian �uid is blood. The modelling and analysis

of blood �ow in the body is also a very active �eld of research. It includes not only
a complicated �uid, but also �ows in unusual domains and �uid-structure interaction
problems. There will probably be not more on blood in the notes, but there are references
in the literature, especially for Oldroyd-B type �uids. For example, the new volume [3]
surveys related mathematical problems and results.

2.2 Related Questions

• It would be great if typical non-Newtonian e�ects (see 2.1 above) could be shown
(pictures or actual experiments!) on the seminar day. Maybe somebody wants to
do this as part of the presentation...? In any case, I strongly recommend looking
at the pictures in the literature!

• I think it is interesting to see what kind of predictions a model makes for simple
�ow in a pipe (for example: Eulerian �ow vs. Stokes �ow). I only know some
results for the �uid models we consider and I am not sure whether the question can
make sense for the dilute polymer bead-spring models, but we could discuss this if
somebody is interested. There is more literature available.

• If anything regarding the notes is unclear, if there are mistakes or if there are
questions, please contact me!

1I hope it's OK to say this: I tried wikipedia and google+video+non-Newtonian �uid to get nice results
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