
6 Viscoelastic �uid models

Polymer solutions and other �uids are called viscoelastic, because they exhibit two types
of behaviour. On the one hand, they are viscous and �ow like a �usual� Newtonian �uid.
On the other hand, they can store or release energy, like an elastic solid. This can e.g. be
seen very nicely in the die swell e�ect, cf. [18, pages 2 and 5]. This property is attributed
to the polymers, which can change their structure to store energy and to release it again
at a later time, when the �ow changes. In modelling, this can be interpreted as the
constitutive equations having to have some memory of the �ow. In particular, the stress
tensor at a given time t should not only depend on D(v(t)), but on earlier instances
D(v(s)), s < t also. Two ideas of how to implement memory are given in the next
section.
The approach to viscoelastic �uid models is somehow less rigorous than de�ning gen-

eralized Newtonian �uids. In the latter case, one could judge by a few general principles
and some experimental facts, that (3.2) is really a good generalization of the Newto-
nian relation (1.6), under the assumption that the stress should not depend on time or
space explicitly. Deriving and evaluating viscoelastic models is even much more involved,
because the few restrictions that apply a priori do not really seem to limit the possibil-
ities. Roughly speaking, the approach seems to be the following: Choose an integral or
a di�erential model for including memory (see the next section), then tamper, so that it
satis�es material frame indi�erence, see Section 6.2. Then, additional terms and material
parameters can be included, to �t the �uid at hand. Additional criteria on the models
are, which predictions does the model make for simple �ow, compared to experiments,
and whether the corresponding system of equations is well-posed or yields otherwise good
results.1

Again, I do not have a su�cient overview to present a coherent picture of the literature
on analysis of viscoelastic �uids. There is an overview in [18]. In Chapter 7, some results
are cited or discussed. The tools in analysis are in general very di�erent from the ones
used for generalized Newtonian �ow, but there is a subsection on the paper by Fernandez-
Cara, Guillen and Ortega [8], where maximal regularity estimates for the Stokes problem,
cf. Theorem 1 in Section 1.3.4, are used together with a Schauder �xed point argument.

6.1 Linear models: how to include memory

There are basically two main ideas of how to include memory, attributed to Boltzmann
[4] and Maxwell [13]. The following summary is based on [18, Chapter 2].

1This is a simplifying and sloppy explanation. There are very precise ways of deriving (aspects of) the
models. In [20, p. 25-34], some ideas like the concept of simple �uids and general principles in their
modelling and the modelling of memory or fading memory are explained, see also [15] and [22].
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6 Viscoelastic �uid models

Boltzmann's model is an integral equation for S, assuming that it depends linearly on
D(v), but not linearly on D(v(t, x)),

S(t, x) = 2
� t

−∞
G(t− s)D(v(t, x)) ds. (6.1)

Here, G is called the stress relaxation modulus and it should be positive and monotone.
Its derivative −G′ is called the memory function. The Newtonian model can be recovered
if G is a multiple of the delta function. The viscosity of a Boltzmann �uid is the integral

η =
� ∞

0
G(s) ds, (6.2)

see [18, p. 14].
On the other hand, Maxwell's model says that T is given by a di�erential equation

∂tS + λS = 2µD(v). (6.3)

This ODE can be integrated to give an equation of the form (6.1) for S, where the stress
relaxation modulus is G(s) = µ exp(−λs). In the linear case, Maxwell is thus a special
instance of Boltzmann and the relation of S to D(v) is also quasi-linear.

6.1.1 The Weissenberg number

The constant 1
λ , derived from λ in (6.3) is called the relaxation time, and it roughly

measures for how long a �uid will remember. It is important to see how this number
relates to the time scale of the �ow. This is encoded in the Weissenberg number

We =
λ

T
, (6.4)

where T = L
U is a characteristic time scale, given by an appropriate scale for length L

and for the velocity, U , cf. the scaling for the Reynolds number in Section 1.33. The
bigger the Weissenberg number, the more the �uid will behave like an elastic solid, the
smaller it gets, the more it will be like viscous Newtonian �ow.

6.2 Non-linear models, examples

In the following, we focus more on the Maxwell approach, because it is more prominent
in the mathematical literature. We have seen that it is a special case of Boltzmann. It
is also more di�cult to �nd �correct� integral models. For example, the K-BKZ model
is a widely used nonlinear generalization of (6.1), but it also does not �t experiments in
some respects, cf. [18, p. 17] and the references therein.
The problem with the linear models from the last section ist that they violate material

frame indi�erence, in particular, the operator ∂tS in the Maxwell model (6.3) is not ob-
jective, cf Chapter 3. To overcome this problem, it is replaced by an objective derivative,
e.g. the upper convected derivative

S∇ :=
DS

Dt
− (∇v)S − S(∇v)T ,
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6 Viscoelastic �uid models

the lower convected derivative

S∆ :=
DS

Dt
+ S(∇v) + (∇v)T S,

or the co-rotational derivative

S◦ :=
1
2
(S∇ + S∆),

cf. [20, p. 35], or a linear superposition of any of them. Note that DS
Dt denotes the

material derivative of S, cf. Section 1.2.2, given by DS
Dt = ∂tS + (u · ∇)S.

An example of this is the non-linear Johnson-Segalman model, which superposes S∇,
S∆ and a constant viscosity, Newtonian stress part 2η2D(v). We de�ne

S♦ζ := (1− ζ

2
)S∇ +

ζ

2
S∆.

The full stress is then given by the equation

S + λS♦ζ = 2(η1 + η2)(D(v) + λ
η2

η1 + η2
(D(v))♦ζ ), (6.5)

cf. [20, p. 35]. It really looks more complicated than it is! The four parameters 1
λ ,

for relaxation time, ζ, for favouring upper or lower convected derivative and η1, η2 for
�viscosities� and balancing Newtonian and viscoelastic contributions can now be chosen
to model a given �uid.
Special cases of the Johnson-Segalman model where η2 = 0 and ζ = 0 or ζ = 2 are the

lower convected Maxwell model

S + λS∆ = 2ηD(v)

and the upper convected Maxwell model

S + λS∇ = 2ηD(v). (6.6)

The reason for adding a Newtonian, constant viscosity stress part in (6.5) is that con-
vected Maxwell models overpredict stresses if the deformation D(v) is large. One more
special case of the Johnson-Segalman model (ζ = 2 ) which also includes this correction
is the Oldroyd-B model,

S + λS∇ = 2(η1 + η2)(D(v) + λ
η2

η1 + η2
(D(v))∇)

Instead of the superposition with 2η2D(v), the upper convected Maxwell model (6.6) can
also be corrected by adding objective non-linear terms like κT 2 for the Giesekus model,
or κ(trT )T for the Phan-Thien-Tanner (PTT) model, or the function

µ0(trS)D(v) + µ1(trSD(v))Id + µ2D
2(v) + µ3(tr2 (D(v)))Id

for the Oldroyd 8-constants model, where the µi are constants, cf. the paper by Oldroyd,
[17].
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6.2.1 About simple shear �ow and normal stress di�erences

For much more background on this short subsection, we refer to [18, Chapter 3] and [20,
Section 7].

In order to evaluate, understand or construct non-Newtonian �uid models, it is good
to look at simple �ows, where the velocity of the �uid is known, so that the stresses
predicted by the model can be calculated directly. Measurements mostly refer to simple
�ows.

For example, we consider simple shear �ow, where the velocity �points� in x-direction,
depends only on the y-component and is constant in time, v = (V (y), 0, 0). The velocity
gradient is

∇v =

 0 V ′(y) 0
0 0 0
0 0 0

 ,

where V ′(y) = γ̇ is also the shear rate, cf. Section 3.1. By isotropy, in simple shear �ow,
the stress tensor has to be of the form

S =

 S11(γ̇) S12(γ̇) 0
S12(γ̇) S22(γ̇) 0

0 0 S33(γ̇)

 ,

cf. [18, p. 23] for the derivation of this relation. Arbitrary constants can be subtracted
from the diagonal of S to go into the pressure term, so only the di�erences of the diagonal
entries characterize the �ow. There are thus only three functions to consider, the viscosity

η(γ̇) =
S12(γ̇)

γ̇
,

and the �rst and second normal stress di�erences

N1 = S11 − S22 and N2 = S22 − S33.

These functions are called viscometric functions and they determine the simple shear
�ow, or more generally, every simple viscometric �ow of �uids. In Newtonian �uids,
η is constant and N1 = N2 = 0. In generalized Newtonian �uids, it also holds that
N1 = N2 = 0 and for this reason it is assumed that the typical viscoelastic e�ects cannot
be explained by this model.

For the Johnson-Segalman model (6.5), it can be calculated that

η(γ̇) = γ̇(
η1

1 + 2ζλ2(1− ζ/2)γ̇2
+ η2),

N1(γ̇) =
2η1λγ̇2

1 + 2ζλ2(1− ζ/2)γ̇2
,

N2(γ̇) = − ζη1λγ̇2

1 + 2ζλ2(1− ζ/2)γ̇2
,
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6 Viscoelastic �uid models

see [20, p. 40]. At this reference, there is also a table for viscometric functions of di�erent
viscoelastic �uid models. For the calculations of these functions for several models, we
refer to [18].
There is an interesting point concerning the viscosity. Before, I wondered how shear-

thinning can be read o� the viscoelastic models, when it is so clear for the generalized
Newtonian models. Here, it can for example be seen that Johnson-Segalman is (strongly)
shear-thinning for ζ ∈ (0, 2), but not in a power-law type sense. For Oldroyd-B, ζ = 0,
so that the viscosity is constant. Also for the linear model, in (6.2) above, the viscosity
of a linear Maxwell �uid was de�ned as the constant

�∞
0 µ exp(−λs) ds = µ

λ .

Remark 1. In the Johnson-Segalman model (6.5), the Newtonian �correction� can be
replaced by a generalized Newtonian one, i.e. η2 = η2(|D(v)|22). This would not destroy
objectivity and introduce di�erent possibilities of shear-thinning and maybe -thickening.
There is also analysis literature on generalized Oldroyd �uids, cf. e.g. [2], [7], [1].
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7 Literature in analysis

7.1 The paper by Fernandez-Cara/Guillen/Ortega

In this section we look at a paper by Fernandez-Cara, Guillen and Ortega [8] where
local-in-time existence of Oldroyd-B type �uid �ow is shown. More generally, a Johnson-
Segalman model is considered: The model below including the constants a, λ1,λ2, η and
α = 1− λ1

λ2
is of the form (6.5) if we put ζ = 1− a, λ = λ1, η1 = ηα and η2 = λ1

λ2
η. Thus,

there is a Newtonian stress part τN := 2(1 − α)ηD(v) = 2η2 and a Maxwell-type stress
given by the transport equation

We(∂tτ + (v · ∇)τ +
1
2
(a + 1)τ∇ +

1
2
(1− a)τ∆) + τ = 2αD(v), (7.1)

where We = λ1
T is the corresponding Weissenberg number. In the following, we write

ga(∇v, τ) := (a + 1)τ∇ + 1
2(1 − a)τ∆. Together, τN and τ give the full stress tensor

S = τN + τ of the �uid. The equations governing the �uid �ow are
Re(∂v

∂t + (u · ∇)u)− (1− α)∆v +∇q = div τ + f, in R+ × Ω,

div v = 0, in R+ × Ω,

v|∂Ω = 0, on R+ × ∂Ω,

v|t=0 = v0, on Ω,

(7.2)

combined with (7.1) and an initial condition τ(0) = τ0.

The following is the main result in [8], on the existence of local-in-time strong solutions.

Theorem 2. Let Ω be a bounded domain in R3 with boundary of class C2,1. Let 1 <
p < ∞ and 3 < q < ∞ and T > 0. If v0 ∈ Zp,q (cf. Theorem 1 in 1.3.4), τ0 ∈ W 1,q(Ω),
f ∈ Lp(0, T ;Lq(Ω)), then there exists a maximal time T∗ ∈ (0, T ] and a unique strong
solution of (7.1),(7.2) satisfying

v ∈ XT∗
p,q(Ω),

q ∈ Lp(0, T ; Ŵ 1,q(Ω)),
τ ∈ W 1,p(0, T∗;Lq(Ω)) ∩ C(0, T∗;W 1,q(Ω)) =: V T∗

p,q (Ω).

The idea for the proof is to solve the coupled problem by a �xed point arguement. The
estimates on the Stokes problem from Theorem 1 in Section 1.3.4 are crucial, as they
give the solution of the linear part of (7.2) for �xed τ on the right hand side. In addition,
estimates on the transport equation (7.1) for �xed v are needed.
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7 Literature in analysis

Lemma 3. If Ω, p, q, T, τ0 are as in Theorem 2 and v ∈ Lp(0, T ;D(Aq)), where D(Aq) :=
W 2,q(Ω)∩W 1,q

0 (Ω)∩Lq
σ(Ω) is the domain of the Stokes operator, cf. Section 1.3.4, then

there exists a function τ ∈ V T
p,q(Ω) which solves (7.1) and satis�es the estimates

‖τ‖L∞(0,T ;W 1,q(Ω)) +
4α

CWe
≤ (‖τ0‖W 1,q(Ω) +

4α

CWe
) exp(C2‖v‖L1(0,T ;W 2,q(Ω))) =: Λ,

‖τ ′‖Lp(0,T ;Lq(Ω)) ≤ 21− 1
s CΛ(‖v‖Lp(0,T ;W 1,q(Ω)) +

T 1/s

CWe
).

Here, we do not prove the lemma, but ony look at some parts of the proof. In particular,
the following a priori estimate is used:

1
q

d

dt
(We‖τ‖q

W 1,p(Ω)
)+‖τ‖q

W 1,q(Ω)
≤ 4αC‖v‖W 2,q(Ω)‖τ‖

q
W 1,q(Ω)

+CWe‖u‖W 2,q(Ω)‖τ‖
q−1
W 1,q(Ω)

.

(7.3)
From this estimate, the estimates in the lemma roughly follow from a Gronwall argument.
The essential thing about this estimate is that it does not include the second space
derivatives of τ , even though ∂t(∇τ) is estimated. This follows from the fact that the
transport of τ is done by a vector v with zero boundary conditions. It can be seen from
the following calculations: We take the gradient of equation (7.1), multiply by |∇τ |q−2∇τ
and integrate by parts. This gives

1
q

d

dt
(We‖∇τ‖q

Lq(Ω)) + ‖∇τ‖q
Lq(Ω) = 2α(∇D(v), |τ |q−2τ)−We(∇ga(∇v, τ), |∇τ |q−2∇τ)

−We(∇((u · ∇)τ), |∇τ |q−2∇τ).

Except for the last term on the right hand side, this �ts into (7.3). We calculate this
term, using that ∂k|∇τ |q = q

∑
i,j,k(∂k∂lτij)(∂lτij)|∇τ |q−2,

∑
i,j,k,l

�
Ω

∂l(uk∂kτij)(∂lτij)|∇τ |q−2 =
∑
i,j,k,l

�
Ω
(∂luk)(∂kτij)(∂lτij)|∇τ |q−2

+
∑

k

1
q

�
Ω

uk(∂k|∇τ |q),

where
∑

k
1
q

�
Ω uk(∂k|∇τ |q) = −

�
Ω div u |∇τ |q +

�
∂Ω u · n |∇τ |q = 0, so also this part of

the equation can be estimated as in (7.3).

For the �xed point argument, a map Φ is constructed, taking (v̄, τ̄) ∈ XT
p,p × V T

p,q to a
solution v of (7.2) with right hand side div τ̄ and (v̄ · ∇)v̄ (so the left hand side becomes
a Stokes problem) and to a solution τ of (7.1) with transport coe�cient v̄, right hand
side D(v̄) and including ga(∇v̄, τ). By Theorem 1 in Section 1.3.4 and Lemma 3 it is
shown that there exist 0 < R and 0 < T∗ < T , such that Φ continuously maps a ball
BT∗

R ⊂ XT
p,q×V T

p,q into itself. By Schauder's �xed point theorem, Φ has at least one �xed
point, which is a solution of the Oldroyd problem. A di�erent arguement is used to show
uniqueness of the solution, cf. [8, page 10].
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7 Literature in analysis

7.2 A di�erent approach by Renardy

In the analysis literature, many more papers are concerned with the Oldroyd-B or
Segalman-Johnson model than with pure Maxwell-type models, which do not include
a Newtonian linear �correction� of the stress. It is because maybe these are the better
models, but also they could be easier to consider mathematically, because the Stokes
part is well-understood.
An interpretation of the �xed point argument in the last section would be that the

solution is just a perturbation of Newtonian �ow, as its maximal time of existence depends
on the parameter α, which expresses the strength of the Maxwellian part. I do not know
wheter this is true or how to make this point precise. Maybe we can discuss about this
in the seminar.
In a paper by Renardy [19], a local existence theorem for strong solutions for very

general Maxwell-type models is shown. In this case, the equations in the �uid velocity
really are hypberbolic. There is a very concise presentation of this paper in Renardy's
book, [18, p. 35-37]. Here, there is only a short sketch of his sketch, omitting details on
regularity and many arguments.
The equations are the following. For the �uid, there is the balance of momentum

equation,
ρ(∂tv + (v · ∇)v) = div S −∇q + f (7.4)

together with the incompressibility condition, an initial condition and a homogeneous
Dirichlet boundary condition. For S, the constitutive equation

(∂t + (v · ∇))Sij =
∑
k,l

Aijkl(S)(∂lvk) + gij(S) (7.5)

is assumed, in particular generalizing the Maxwell models and their linear superpositions.
The functions Aijkl and gij are assumed to be very regular (C4) and Aijkl should be of
the following form, due to the requirement of material frame indi�erence,

Aijkl(S) =
1
2
(δikSlj − δilSkj − Sikδlj + Silδkj) + Bijkl(S),

where Bijkl = Bklij = Blkij = Blkji is symmetric. In addition, there is a strong ellipticity
condition on A, in the form ∑

i,j,k,l

Cijkl(S)ζiζkηjηl ≥ κ(S) > 0

for all ζ, η ∈ R3, |ζ| = |η| = 1, where Cijkl = Aijkl − Tilδkj . It can be seen from the
calculations for (7.6) below, why C has to be considered, instead of A.
Under these conditions, the existence of a unique local in time solution is shown. The

proof is also based on a �xed point argument, but the iteration is di�erent from the one
in the last section, and it is only in the �uid velocity v. By applying

∂t + (v · ∇) + (∇v)T
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to (7.4) and using (7.5), the equation

ρ(∂t + (v · ∇))2vi = −∂ip +
∑
j,k,l

Cijkl(S)∂j∂lvk + hi(v,∇v, ∂tv, S,∇S, f,∇f, ∂tf) (7.6)

is obtained (for a modi�ed pressure p). For given v̄, the transport equation (7.5) is solved
for S̄. Plugging S̄ into (7.6) gives a new v, by a contractive map. The main di�culty is to
solve (7.6). By strong ellipticity of C, it is hyperbolic, except for the pressure term and
the incompressibility condition. Renardy explains that known techniques for semilinear
hyperbolic equations apply, but �overcoming this technical di�culty requires a rather
elaborate argument�, cf. [18, p. 37] (and cf. the Bothe/Prüss result, Section 4.1.1).

7.3 More literature

• In addition to the literature cited in the sections above, for well-posedness, exis-
tence of global solutions for small data and also of global weak solutions for large
data, there are �classical� works by Guillopé and Saut, [9] and [10], and Lions and
Masmoudi, [12] for global solutions. More recently, in [21], the problem is consid-
ered on unbounded domains, and there are more complete results in [6], [11] and
[5]. Regarding strong solutions, it is important that for the hyperbolic Maxwellian
models, development of shocks can be expected in �nite time, so there are blow-up
results if the Maxwellian part is large. The existence of global solutions for the
Oldroyd problems rests on the Newtonian contribution, cf. e.g. [18, p.37].

For results on the steady �ow problem, we refer e.g. to [16], [2] and [3].
In [14], it is shown that the Oldroyd �ow converges to Newtonian �ow for We → 0.
I'm sorry, as always, the list is by far not complete, but maybe the references in the

references will help!

7.4 Related question(s)

• Regarding the transport equation (7.1), I don't really understand how to solve it in
the classical setting, cf. [8, p. 26]. Maybe it is not a di�cult argument, or at least
standard theory, but it is of course crucial to understanding the overall result...
Please let me know if you would like to present this on the seminar day!

• Is the solution in [8] really a perturbation of Newtonian �ow? If yes, in what sense?
The argument is made by Renardy, in [18, p.37].
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