
8 Dilute polymer models

The model introduced in this part of the notes is not solely based on continuum me-
chanical principles. We look at a solution of �big� molecules in a Newtonian �uid. These
molecules have an elastic structure which interacts with the overall �ow. The �density�
of interactions of the single molecules with the surrounding �uid introduces an additional
stress into the Navier-Stokes equations for the solvent. In the following, we look at the
basic ideas and assumptions for modelling this extra stress. In the last section of this
chapter, we show that in some special cases, the stress from molecular theory reduces to
the non-linear Maxwellian stress model. The modelling and mathematics in this chapter
is taken mainly from [10, Section 2.4] and from the lecture and lecture notes �Kinetic
Models of Dilute Polymers: Analysis, Approximation and Computation� by Endre Süli.1

8.1 The dumbbell model

In the following, we assume that the �uid which contains the big molecules is a Newtonian
solvent and that it has velocity u. Every single macromolecule is modelled as an �elastic
dumbbell�, i.e. it consists of two beads or rigid balls, whose center of gravity is in their
geometric centers r1, r2 and which have the same radius, connected by a spring. In the
more complicated chain models, several beads are each connected by a spring, but we do
not consider this case here.
At least the following three basic assumptions are made.

• the polymer molecules do not interact, i.e. the polymer solution is �dilute�

• the solvent �uid is Newtonian

• the beads have no (relevant) mass

In the Newtonian solvent, the forces which act on the two beads are collected as follows,

Fi = F di +Bi + F si , i ∈ {1, 2}, (8.1)

where F di are drag forces exerted by the solvent on the beads, Bi is the force due to
Brownian Motion of solvent and polymer molecules and F si is the force exerted by the
spring. The dumbbell molecule interacts with the �ow through its stretching and through
its orientation. To �t this picture, in the following, we sometimes consider the coordinates
x = 1

2(r1 + r2), q = r2 − r1, i.e. the center of gravity of the complete dumbbell and its
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8 Dilute polymer models

con�guration vector, instead of r1, r2 . By Newton's second law, Fi = miai. Here, the
limit mi → 0 is taken to obtain Fi = 0.
The �rst question is which kind of spring force law to use. In general, it is given by

F s(q) = HU ′(
1
2
|q|2)q,

where U : R+ → R is a given potential and H > 0 the spring constant. The simplest
is the linear Hookean model, where U(s) = s, i.e. F s(q) = Hq. This model implies in
particular that the polymer may be in�nitely stretched. This is unrealistic, but it is also
a mathematical problem if the �uid �ow is considered on a domain with a boundary. In
Section 1.3 however, it is shown that this model reduces to the Oldroyd-B model under
additional assumptions.

A second model which is widely used is the FENE (Finitely Extensible Nonlinear

Elastic) model, where the spring force is given by

U(
1
2
|q|2) = − l

2

2
ln(1− |q|2

l2
), F s(q) =

Hq

1− |q|2
l2

,

so that U → ∞ as |q| → l and an in�nite force would have to be used to stretch the
polymer beyond the critical length l. In particular, the con�guration space

D := {q ∈ R3 : q = r2 − r1, r1 and r2 belong to one dumbbell}

of all admissable q is given by R3 in the Hookean case and by D = B(0, l) for FENE
dumbbells.

For the drag force F d, the Stokes drag

F di = −ζ(dri
dt

(t)− u(ri, t))

is assumed, where the constant ζ > 0 is called the drag coe�cient, given by 6πηa, where
η is the solvent's viscosity and a the radius of the bead. The formula only says that the
di�erence in velocity of bead and solvent is linearly related to some force, here, this is
the force resulting from Brownian motion and the spring.

The Brownian force B is assumed to be given by a Wiener processW (t), i.e. Bi(t) dt =
C dWi(t), where C =

√
2kBTζ is the constant or di�usion coe�cient for this Brownian

motion, kB the Boltzmann constant, T the absolute temperature.

8.2 The Fokker-Planck Navier-Stokes equations

Using the above assumptions on the forces involved, equation (8.1) can be rewritten as
a stochastic di�erential equation, in the form

dX(t) = b(X(t)) + Cζ−1(Id)dW (t), X(0) = X,
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where X(t) = (r1(t), r2(t))T ,

b(X(t)) :=
(
u(r1(t), t) + ζ−1F s(r2(t)− r1(t))
u(r2(t), t) + ζ−1F s(r1(t)− r2(t))

)
.

The forward Kolmogorov equation gives a partial di�erential equation, a Fokker-Planck

equation, for the evolution of the probability density function ψ of the stochastic process
t 7→ X(t), in the form

∂ψ

∂t
+∇r1 · [u(r1, t)ψ + ζ−1F s(r2 − r1)] +∇r2 · [u(r2, t)ψ + ζ−1F s(r1 − r2)ψ]

=
kBT

ζ
(∆r1 + ∆r2)ψ.

Rewriting the equation for ψ as a function of x and q and in dimensionless form gives

∂ψ

∂t
+∇x · (uψ) +∇q · [(∇xu)qψ −

1
2We

F (q)ψ] =
1

2We
∆qψ +

c

8We
∆xψ, (8.2)

where We is the Weissenberg number and c = (l0/L)2 is given by the quotient of the
characteristic length of a dumbbell l0 and of the �ow, L. In particular, a Taylor expansion
and linearization of u(r1) − u(r2) was used, which is appropriate for slow �ow, but
also otherwise, because the micro- and macro-length scales di�er in several orders of
magnitude. For given u, the solution ψ of equation (8.2) gives the probability density for
�nding at time t, a dumbbell with center of mass x and con�guration q. From given ψ,
an extra stress tensor τ which acts on the �uid through the orientation and stretching
of the polymer molecules it contains, can be derived. For a given number density np of
polymer molecules in the solvent, it is determined by the Kramers expression:

τ(t, x) = npkBT

�
D

(F s(q)⊗ q)ψ(t, x, q) dq. (8.3)

A motivation for this formula is roughly as follows. Each dumbbell of con�guration q
carries the force F s(q). Moreover, it can be shown that the number of dumbbells of
con�guration q intersecting a plane P with normal n at time t is proportional to

�
P
np(q · n)ψ(t, x, q) dx. (8.4)

In the momentum balance, the stress tensor τ models contact forces FC in the sense that
FC =

�
∂V τn d(∂V ) on every control volume with outer normal n. To get FC in this

case, we multiply (8.4) by F s(q) and integrate over q. This gives (8.3).

Putting the above equations together, the coupled Fokker-Planck Navier-Stokes equa-
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tions for dilute polymer �ow in non-dimensional form are given by

Re(∂v∂t + (u · ∇)u)− (1− α)∆v +∇q = α
Wediv τ + f, in R+ × Ω,

div v = 0, in R+ × Ω,
∂ψ
∂t + (u · ∇x)ψ +∇q · [(∇xu)qψ − 1

2WeF (q)ψ] = 1
2We∆qψ + c

8We∆xψ, in R+ × Ω×D,

τ = np
�
D F

s(q)⊗ qψ(q) dq, in R+ × Ω,
v|∂Ω = 0, on R+ × ∂Ω,
v|t=0 = v0, on Ω.

(8.5)

8.3 Reduction to UCM and Oldroyd-B models

A special property of the Hookean spring dumbbell model is that, in contrast to the
FENE model, it reduces to the closed form of the Upper Convected Maxwell model.
This is shown in [10] and also in [1]. To show this, an additional approximation has
to be made in (8.2). We set c = 0 to ignore the di�usion in x. For a discussion of this
approximation, cf. [2]. In particular, this approximation makes the analysis in the FENE
case more complicated, because the smoothing term ∆xψ vanishes.

If the spring is Hookean, i.e. F s(q) = Hq for some constant H > 0, the extra stress τ
from (8.3) is given by

τp = npH

�
R3

q ⊗ qψ(q) dq.

We use the notation 〈f〉 :=
�

R3 f(q)ψ(q) dq and C := 〈q⊗q〉. Equation (8.2) is multiplied
by q ⊗ q and integrated with respect to q. We use that by integration by parts,

�
R3

(∆qψ)(q ⊗ q) =
�

R3

ψ∆q(q ⊗ q) = 2Id,

[
�

R3

∇q · (−(∇xu · q)ψ)q ⊗ q]ij = [
∑
k,l

�
R3

(∂kul)qkψ(∂l(q ⊗ q))]ij

=
∑
k,l

�
R3

(∂kul)qkψ(δliqj + δljqi)

= [(∇u)C + C(∇u)T ]ij

and �
R3

∇q · (qψ)q ⊗ q = −
�

R3

ψq∇q(q ⊗ q) = −2C

to get the equation

∂tC + (u · ∇)C =
1

We
Id− H

We
C + (∇u)C + C(∇u)T .
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Multiplying by npH gives

∂tτp + (u · ∇)τp − (∇u)τp − τp(∇u)T =
1

We
Id− H

We
τp.

By substituting τp = 1
H Id + τ , we get the equation

∂tτ + (u · ∇)τ − (∇u)τ − τ(∇u)T +
H

We
τ =

2
H
D(u),

which is the Upper Convected Maxwell model, cf. Section 6.2, so that (8.5) is equivalent
to the Oldroyd-B model.
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9 Literature and results

In this chapter, there is a short review of related literature in analysis. The results
are very new. Again, the list of references is not complete, but compared to the other
subjects, not as many authors are involved. I tried to quote very new papers from
di�erent authors, so that the references in the cited paper can be used.

In the mathematical approaches to well-posedness of the generalized Newtonian models
and the Oldroyd-B/Maxwell-type models, we encountered an iteration scheme or �xed
point argument of some kind. For the viscoelastic models, it was always about moving
back and forth from Newtonian to non-Newtonian parts, so this works for the Hookean
dumbbell. If it is known how to solve the Fokker-Planck equation (8.2), cf. the paper by
Jourdain and Lelievre [6], a similar approach can be used. More precisely, one can solve
(8.2) for ψ(n) from given u(n), and then calculate τ(n) from the Kramers expression. From
div τ(n) as a right-hand side, a new u(n+1) is calculated as the solution of the Navier-
Stokes equation. This yields ψ(n+1) and τ(n+1). To get local-in-time existence, as for the
previous models, it has to be shown that the iteration is contractive or has a compact
image. Recently, well-posedness results were shown by a method of this kind by E, Li
and Zhang [5] and Zhang and Zhang [11]. I think that the proofs are di�cult. In 2000,
Renardy wrote that �the solution of the Fokker-Planck equation is a formidable task,�[10,
p. 20].

The fact that the Fokker-Planck equation is high-dimensional, i.e. �7D� for the three-
dimensional problem, makes the problem also numerically very challenging. This is an
even much stronger problem if instead of dumbbells, chains of beads are considered.
There are algorithms and results in Barrett and Süli [3], Knezevic and Süli [7] and the
references therein, as well as an earlier work on the two-dimensional problem by Lozinski
and Chauviere [9].

The global existence and regularity of weak solutions for the two-dimensional problem
is shown in [4] and [8]. In three dimensions, the existence of global weak solutions was
shown under additional regularizing assumptions on the extra-stress τ , cf. [1] and [2].

9.1 Related questions

• In general, boundary conditions for this model are somehow a di�cult subject, if
the molecules are allowed to touch the boundary or in general for the Fokker-Planck
equation. There is some discussion of this in the literature.

• In the context of the seminar, it is natural to ask whether using a non-Newtonian
solvent would give a good model?
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9 Literature and results

• The section on the Fokker-Planck equation above is really short. A full derivation
could be the topic of a seminar talk.

• What are the predictions of the FENE model for simple �ow? What would then
be the density ψ?
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