Prof.Dr. W.Koepf		U N I K A S S E L
Dr. E. Nana Chiadjeu	Exercise to the Lecture	V E R S I T 'A' T
Exercise sheet 03	COMPUTERALGEBRA I	16.05.2013

Exercise 1: (Chebyshev polynomials)

The Chebyshev polynomials $T_n(x)$ $(n \in \mathbb{N}_0)$ have a series of properties. Two general formulas are given by

$$T_n(x) = \cos(n \arccos(x)) \tag{1}$$

or

$$T_n(x) = \frac{1}{2} \left(\left(x + \sqrt{x^2 - 1} \right)^n + \left(x - \sqrt{x^2 - 1} \right)^n \right).$$
⁽²⁾

The $T_n(x)$ are polynomials with integer coefficients which satisfy the recurrence equation

$$T_0(x) = 1, \quad T_1(x) = x, \quad T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x),$$
(3)

from which one can see that only integer coefficients appear. Another identity of those polynomials is the equation

$$2T_n(x)T_m(x) = T_{n+m}(x) + T_{n-m}(x)$$
(4)

für $n, m \in \mathbb{N}_0$ und $n \ge m$.

- (a) Program a function T1, which calculates T_n via (1). (Hint: Use TrigExpand).
- (b) Program a function T2, which calculates T_n via (2). Which simplifications are necessary to get a representation as polynomial with integer coefficients?
- (c) Program a function T3, which calculates T_n via (3) without remember effect.
- (d) Program a function T4, which calculates T_n via (3) with remember effect.
- (e) Program a function T5, which calculates T_n via (3) iteratively with a loop.
- (f) Program a function T6, which calculates T_n via (3) using the function Nest.
- (g) Program a function T7, which calculates T_n using (4) and the Divide-and-Conquer strategy (don't use Expand!).
- (h) Generate with each of those functions and the internal function ChebyshevT the list $\{T_1(x), \ldots, T_{100}(x)\}$. What is interesting about the calculation times?
- (i) With which procedure T1–T7 is it possible, to calculate the polynomial $T_{1000000}$ (without showing the output) and to evaluate it at x = 1? Can you explain? (12 points)

Deadline: at the latest Thursday, 23.05.2013, 08.15 h to nana@mathematik.uni-kassel.de. More informations under http://www.mathematik.uni-kassel.de/~koepf/ca-SS2013.html