
ON ADAPTIVE APPROXIMATION

AND

D-FINITE FUNCTIONS

Dissertation

zur
Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Ingenieurwissenschaften
der Universität Rostock

vorgelegt von

Olaf Becken, geb. am 6. 5. 1966 in Greifswald

aus Flörsheim am Main

Flörsheim am Main, den 22. Februar 1999

Betreuer und erster Gutachter:
Prof. Dr. rer. nat. habil. K. Hantzschmann

Gutachter:
Prof. Dr. V.P. Gerdt (Nukleares Forschungsinstitut Dubna)
Prof. Dr. rer. nat. W. Koepf (HTWK Leipzig)

Die Dissertation wurde am 9. 3. 2000 verteidigt.

Unter allen Wissenschaften bauet keine ihre Priester
so sehr gegen andere Wissenschaften ein als die sich
selbst genügsame Meßkunst, indes die meisten an-
dern die Meßrute selber als eine blühende Aaronsrute
entlehnen, die ihnen bei den Priesterwahlen raten
helfen soll. Ich kann mir Mathematiker gedenken,
die gar nicht gehöret haben, daß ich in der Welt bin,
und die also nie diese Zeile zu Gesicht bekommen.
– Jean Paul

Diese Abhandlung ist Swetlana, Anna und Michael gewidmet. Ihre Ermutigung und
Rücksichtnahme gaben mir die notwendige Kraft und Zeit für meine Arbeit. Beson-
derer Dank gilt Prof. Karl Hantzschmann für seine Geduld, behutsame Führung und
Unterstützung. Ich danke ihm, Prof. Vladimir Petrovich Gerdt, Prof. Wolfram Koepf
und Dipl.-Inf. Andreas Jung für ihre wertvollen Korrekturhinweise und Anregungen.

Ich versichere: Ich habe die eingereichte Dissertation selbständig und ohne fremde Hilfe
verfaßt, andere als die von ihm angebenen Quellen und Hilfsmittel nicht benutzt und die
den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich
gemacht.

Contents

List of Notations 5

1 Introduction 7

1.1 Algorithms of computer algebra for solving ODEs with rational coefficients 8
1.2 Computer analysis . 11
1.3 Philosophy of the adaptive approximation method 12
1.4 Motivation and schedule . 13

2 Preliminaries 15

2.1 ODEs with polynomial coefficients . 15
2.2 D-finite functions and recurrence equations 17
2.3 Complex Euclidean space . 19

2.3.1 The space C2[x0, x1] . 19
2.3.2 The space l2 . 20

2.4 Principal solutions and Green functions . 20
2.4.1 Principal solutions . 20
2.4.2 Green functions . 22

3 Choosing the class of adaptive differential operators 26

3.1 The ramification index is greater than 1 . 27

4 Adaption step - restricting the coefficient space 29

4.1 Finite Laurent series solutions . 29
4.2 Polynomial solutions . 32
4.3 Rational solutions . 32
4.4 Beke’s algorithm . 33

4.4.1 Bounding the degree of the polynomial part 35
4.4.2 Determining the denominators of the irregular singular parts 35
4.4.3 Determining the singular parts . 37
4.4.4 Determining t and the coefficients in p and c 40
4.4.5 The application of Beke’s method to approximate solutions 44

4.5 An abridged version of Beke’s method . 44
4.6 The factorization algorithm of van Hoeij/Singer 44

5 Adaption step - getting candidates 46

5.1 Least square method . 47
5.1.1 Least square method with integral norms 47
5.1.2 Least square method for sequences 49
5.1.3 Least square method applied to collocation 50

3

5.2 Collocation . 50
5.3 Smooth adaption . 51

6 Approximation step 52

6.1 Ill-conditioned problems . 53
6.1.1 Ill-conditioned sequences of functions and boundary value problems 55
6.1.2 Ill-conditioned sequences of functions and initial value problems . . . 56

7 Error estimation 59

7.1 Error estimation for boundary value problems 59
7.2 Error estimation for initial value problems 61
7.3 Example and annotations . 63

8 Implementation 66

8.1 An example with user interaction . 67
8.2 List of examples . 69

Thesen 73

Curriculum vitae 75

Bibliography 76

Index 82

4

List of Notations

a, b, c sequence of elements a, b, c
{a, b, c} set of elements a, b, c
x← y term substitution of x by y
∀j = a(b)c the index j takes values between a and c (including a and c)

with step size b
[x0, x1] closed interval on the real line between x0 and x1

(x0, x1) open interval on the real line between x0 and x1

Ĉ(ν)[x0, x1] space of all functions defined on [x0, x1] with continuous
derivatives up to the order ν − 1 and a piecewise continuous ν-th
derivative

C2[x0, x1] Euclidean space of complex functions, defined on [x0, x1], see
section 2.3.1

C field of complex numbers
condn(A) condition number of the matrix A, see section 6.1
erf Gaussian error function, Poisson function
deg(p, x) degree of the polynomial p by the variable x
det(A) determinant of the square matrix A
GCRD(L,M) greatest common right divisor of two homogeneous linear

differential operators L and M , see definition 8
K constant field with characteristic 0
K̄ algebraic closure of K

K[x] ring of polynomials in the variable x with coefficients in K

K[[x]] ring of Taylor series in the variable x with coefficients in K

K(x) field of rational functions in the variable x with coefficients in K

LCLM(L,M) least common left multiple of two homogeneous linear differential
operators L and M , see definition 8

l2 Euclidean space of complex sequences, see section 2.3.2
N set of natural numbers 0, 1, 2, . . .
νp(q) order of the polynomial q at the polynomial p, see section 4.4.2
order(L) order of the ordinary differential operator L
pp(p, x) primitive part of the polynomial p by the variable x, see section 4.1
rem remainder in the commutative ring
res(p, q, x) resultant of the polynomials p and q taken w.r.t. the variable x
RRem right remainder in the non-commutative ring, see definition 6
trace(A) trace of the square matrix A
V (L) set of all solutions of the linear differential operator L
VY (x) modified matrix to the sequence of functions Y and

differentiation by x, see (2.13)
WY (x) Wronskian matrix to the sequence of functions Y and

differentiation by x
Z ring of integers

5

Chapter 1

Introduction

Let K be some constant field with characteristic 0 and K̄ its algebraic closure. We consider
homogeneous linear ordinary differential equations (DEs) of any order (singular or regular)
with polynomial coefficients, i.e. differential equations of the form

L y(x) =
ord
∑

i=0

qi D
i y(x) = 0, (1.1)

Dy(x) =
∂

∂x
y(x), ∀i : qi ∈ K[x],

ord ≥ 1, qord 6≡ 0, gcd(q0, q1, . . . , qord) = 1

and K is some constant field with characteristic 0. We denote the set of all solutions of a
linear differential operator L as V (L). A function y : C → C is called differentiably finite
(or D-finite, for short), if there exists some L (1.1) with y ∈ V (L). In this thesis we give
definitions of D-finiteness only for the special case of univariate functions.

Similarly, a sequence A = . . . , an−1, an, an+1, . . ., n ∈ Z, is called polynomially recur-
sive (or P-recursive) when it satisfies a homogeneous linear recurrence equation (RE) with
polynomial cofficients

R an =
rank
∑

j=0

pj F
j an = 0, (1.2)

F an = an−1, ∀j : pj ∈ K[n],

p0 6≡ 0, prank 6≡ 0.

It can be shown, that the generating function y(x) =
∑

n∈Z
an x

n of a P-recursive sequence
is D-finite and that reciprocally the sequence of Taylor coefficients of a D-finite function is
P-recursive [65].

The class of D-finite functions deserves our interest for at least two reasons. First, it
contains the commonly used analytic functions: the algebraic, Bessel, cosine, Gaussian er-
ror, exponential, hypergeometric, logarithm, power, rational, sine and many more functions
are D-finite. D-finite functions form an algebra which is closed under sum and product,
substitution of algebraic functions, differentiation and integration [65, 41].

Second, D-finite functions can be represented by a finite amount of information. Each
D-finite function can be uniquely defined by a DE (1.1) and ord linearly independent linear
boundary constraints

Ux0
Y (x0) + Ux1

Y (x1) = γ, (1.3)

7

x0, x1 ∈ R ∩ K, x0 < x1, Y = (y y′ . . . y(ord−1))T , Ux0
, Ux1

∈ (C ∩K)ord×ord, γ =
(γ0 γ1 . . . γord−1)

T , γi ∈ C ∩ K, or by a RE (1.2) with similar constraints. There are
practicable algorithms, which transform D-finite functions, given in terms of “standard”
functions, into this canonical representation (1.1,1.3) [55, 41].

The inverse problem is much more difficult: Let be given a DE (1.1) or a RE (1.2)
with the corresponding constraints, find the D-finite function in terms of “elementary” (in
some heuristical sense) functions. Algorithms of computer algebra which search for exact
solutions to that problem can be found in the next section.

However, there are D-finite functions which are not elementary in the sense of differential
algebra.

Definition 1 Let K, k be differential fields with derivation D, k ⊂ K.

K is called an elementary extension of k
def⇐⇒

∃ tower of fields k = k0 ⊂ k1 ⊂ . . . ⊂ kr = K ∀j = 1(1)r : kj = kj−1(θj) ∧
[

(θj is algebraic

over kj−1) ∨ (∃ν ∈ kj−1 : D θj = ν θj) ∨ (∃ν ∈ kj−1 : ν D θj = Dν)

]

Definition 2 The function f is called elementary over k
def⇐⇒ f belongs to an elementary

extension of k.

The following picture gives some examples of elementary and D-finite functions:

'

&

$

%

D-finite functions

erf(x)

J0(x)

1/x+ 1 + x
√

1 +
√

1 + x

exp(x)

ln(x)

'

&

$

%

tan(x)

sec(x)

1/ ln(x)

elementary functions

In this thesis we show how to find simple approximate solutions ỹ for linear ODEs with
polynomial coefficients. Beyond their simplicity the solution functions are elementary in
the above defined sense. The accuracy of the approximate solutions is controlled by error
bounds. Together with the algorithms from [55, 41], this result can be applied for finding
elementary approximations to (non-elementary or too complicated) D-finite functions. Be-
cause transforming DEs (1.1) into RE’s (1.2) and vice versa is trivial (see lemma 2.3), the
techniques can also be used for finding approximate REs (1.2) and approximate P-recursive
sequences.

1.1 Algorithms of computer algebra for solving ODEs with
rational coefficients

We are working on the broad field of ordinary differential equations, whose history goes
back at least to Euler and Newton and from this time has a great practical importance and,

8

therefore, has a strong research interest. Many scientific schools have results in this area,
but we decided to mention only the algorithms, which have really influenced us. We are
aware that this choice will neglect the most well-known part - (pure) numerical algorithms.

Computer algebra (or french calcul formel) is a mathematical branch which came up in
the 60’s with the development of the first computer algebra systems (CAS). A CAS has a
built-in mathematical knowledge and allows the user to implement algorithms in a language
with mathematical structures.

In the last 30 years numerous algorithms for computer algebra were published [29]. Here
we only mention the algorithms for differential algebra which have influenced us. Please note
that most of the modern algorithms have their roots in the last century. Many algorithms
of the past were not practicable, they can not be performed by hand because of tremendous
calculations. Only the fast development of hardware and software technology gives us the
possibility to implement (and improve) them. A good overview over the history and the
current research give the comprehensive articles [59, 14, 57].

The algorithm of Singer [58, 60, 61] finds all Liouvillian solutions of linear DEs with
Liouvillian coefficients.

Definition 3 Let K, k be differential fields with derivation ′, k ⊂ K.

K is called a Liouvillian extension of k
def⇐⇒

∃ tower of fields k = k0 ⊂ k1 ⊂ . . . ⊂ kr = K ∀j = 1(1)r : kj = kj−1(θj) ∧
[

(θj is algebraic

over kj−1) ∨ (θj
′/θj ∈ kj−1) ∨ (θj

′ ∈ kj−1)

]

Definition 4 The function f is called Liouvillian over k
def⇐⇒ f belongs to a Liouvillian

extension of k.

Example. erf(x) = 2√
π

∫

exp(−x2) dx is - because of π ∈ C - Liouvillian over C(x), the

Bessel functions Ji(x),Yi(x) are not. By definition, elementary functions are Liouvillian.
Differential operators (1.1) are a special case of homogeneous linear ordinary differential

operators

L =
ord
∑

i=0

qi(x)D
i, ord ≥ 1, ∀i : qi ∈ Ĉ(0)[x0, x1], qord 6≡ 0 (1.4)

and DEs (1.1) are a special case of homogeneous linear ODEs

L y(x) = 0. (1.5)

(In general, Ĉ(ν)[x0, x1] stands for the space of all functions which are defined on [x0, x1]
and which have continuous derivatives up to the order ν − 1 and a piecewise continuous
ν-th derivative).

Let the coefficients of a homogeneous linear ordinary differential operator (1.4) be ele-
ments of the differential field k. Singer showed that, if L y(x) = 0 has a Liouvillian solution
over k, then it has a solution of the form y(x) = exp(

∫

u(x) dx), where u(x) is algebraic
over k. Singer proposes a procedure, which produces an algebraic equation for u(x). The
degree of this equation can be bounded by a function I(ord), which depends only on the
order of the given differential operator. It is I(2) = 12, I(3) = 36, but I(4) ≤ 25920. Singer
himself calls his algorithm extremly inefficient and there is no implementation at all.

The algorithm of Kovacic [43, 69] can be treated as a special case of Singer’s algorithm
and finds all Liouvillian solutions for DEs (1.1) of second order. At this moment, there
doesn’t exist a complete implementation of Kovacic’s algorithm.

9

Example. Let be given the DE 144x2(x − 1)2D2 y(x) + (32x2 − 27x + 27) y(x) = 0.
Then, the algorithm of Kovacic (and the algorithm of Singer, too) computes a solution
y(x) = exp(

∫

u(x) dx) with 0 = 20736x4(x−1)4 u4−6912x3(x−1)3(7x−3)u3+864x2(x−
1)2(48x2 − 41x+ 9)u2 − 48x(x− 1)(320x3 − 409x2 + 180x− 27)u+ 2048x4 − 3484x3 +
2313x2 − 702x+ 81
Further work with such form of solution is quite complicated.

Let L be a linear homogeneous ordinary differential operator with coefficients in K(x).
Then the associated equations method [11, 56, 76, 17] returns the right factor L1 of lowest
order over all possible decompositions L = LkLk−1 . . . L1 into other linear homogeneous
ordinary differential operators with coefficients in K(x). If there is a solution for L y = 0
of the form y = e

∫

u where u ∈ K(x) then this one can be determined. The algorithm was
partially implemented in MACSYMA [56] and Axiom [17], but it suffers for complexity
reasons.

In chapter 4 we will describe more in detail other algorithms (finite Laurent series
solutions, polynomial solutions, rational solutions, Beke’s method, van Hoeij/Singer factor-
ization), for which stable complete implementations exist.

All these methods are pure algebraic methods, which are searching for exact solutions.
This is their strength, but also their weakness: exact solutions are rare and often difficult
to handle. Let us explain by an example, what this means.

One can compare factoring differential operators with factoring polynomials. If a poly-
nomial equation, e.g.

x7 − 12x6 − 30x5 + 1150x4 − 7449x3 + 21990x2 − 30294x+ 14796 = 0

is to solve, it is easier to apply numerical methods after a symbolic factorization into

(x− 3)(x3 + 6x2 − 42x+ 36)(x3 − 15x2 + 75x− 137) = 0.

The same is true for differential operators. We took the example from the thesis of Mark
van Hoeij. The problem is, if we change the given problem by changing only one digit, say
14796 to 14797, there is no hope to find a symbolic factorization. An accidentally found
symbolic factorization is often very complex. And the same is true for differential operators.

Therefore, in contrast to the above mentioned methods, other authors are interested in
series solutions using Frobenius method [26, 23, 24, 68, 21] and Newton polygon techniques.
Here especially the solvers DESIR and ISOLDE [4, 52] should be mentioned. Let L be a
homogeneous linear differential operator (1.4) and let K̄ be the algebraic closure of K.
If L is regular or regular singular at the point x0 (see section 2.1 for the definition in the
case of differential operators (1.1)), then the Frobenius algorithm computes the complete
fundamental system with functions of the form

y(x) = (x− x0)
λ
(

t0 + t1 ln(x− x0) + . . .+ tord−1 ln(x− x0)
ord−1

)

,

λ ∈ K̄,

where ∀i = 0, . . . , ord−1 the ti ∈ K̄[[x−x0]] are Taylor series at the point x0. The coefficients
of the Taylor series may successively be evaluated by using recurrence equations.

Definition 5 The Newton polygon N(piDj) of a monomial piDj is defined as the set
of two-dimensional points

{

(a, b) ∈ Z2 | (0 ≤ a ≤ j) ∧ (i ≤ b)
}

. The Newton polygon of a
differential operator L (1.1) is defined as the convex hull of the Newton polygons of the
monomials that appear in L. A rational number s is called a slope of L, if s is the slope of
one of the edges of the Newton polygon.

10

Example. The Newton polygon of (x− 1)iDj for

L = 4 (x− 1)3D3 + 18 (x− 1)2D2 + (12 (x− 1)− 1) D

is

0

1

2

3

4

b

-1 0 1 2 3 4a

To become more familiar with Newton polygon techniques the reader is referred to
[30, 25, 68, 3, 52, 72]. Most results in chapter 4 can be obtained by Newton polygon
techniques.

1.2 Computer analysis

On the other hand, we will follow the main ideas of computer analysis [46, 45, 33]. The
conception of computer analysis was first formulated by N.J. Lehmann and his school at
Dresden University.

Computer analysis concentrates on finding analytical approximate solutions which
should reflect inherent properties of the given problem and the possible influence of pa-
rameters. All formula expressions should be simple and transparent, while maintaining
an appropriate level of precision. The accuracy of approximate solutions is controlled by
error bounds, which are computed entirely by the computer program, the same way as
approximations are determined without requiring user interaction.

Prevalent algorithms combine the tried methods of numerical computing with symbolic
procedures. We use CAS and define fields of “elementary” functions which can be handled
by CAS in an effective manner. The author feels the strong need for hybrid systems, which
combine fast numerical routines (using floating point hardware) and symbolic capabilities
of a CAS.

Since 1980 the following investigations were done (at Dresden, later at Rostock Univer-
sity):

• iteration methods for systems of ODEs [53],

• approximate solutions for boundary value problems and systems of ODEs using pro-
jection methods [31] and corresponding error estimation [32],

• a generalized collocation method for ODEs using higher derivatives and perturbation
methods for ODEs with parameters [46],

• a Lipschitz-calculus, used for error estimates in the case of non-linear ODEs [46, 45],

11

• approximate solutions for singular initial value problems for ODEs by adaptive ap-
proximation [66, 35],

• a uniform conception of adaptive approximation using projection methods [34].

1.3 Philosophy of the adaptive approximation method

In this section we describe the adaptive approximation method [66, 47] in the general case
of a non-linear differential equation. This method is a component of computer analysis.

Let be given a (linear or non-linear) ODE of n-th order

G(x, y, y′, . . . , y(n)) = 0 (1.6)

with m linearly independent boundary constraints

U y =

U1(y(x0), y
′(x0), . . . , y

(n−1)(x0), y(x1), y
′(x1), . . . , y

(n−1)(x1))

U2(y(x0), y
′(x0), . . . , y

(n−1)(x0), y(x1), y
′(x1), . . . , y

(n−1)(x1))
...

Um(y(x0), y
′(x0), . . . , y

(n−1)(x0), y(x1), y
′(x1), . . . , y

(n−1)(x1))

=

0
0
...
0

.

(1.7)
We are looking for an approximate solution ỹ for (1.6) and (1.7) in [x0, x1].

First, we choose the function space for the approximate solution function ỹ. In our case
of D-finite functions we prefer the definition of the solution space by a class of differential
operators, because from the algorithmic point of view, dealing with DEs (1.1) is easier
then dealing with its solutions (e.g., the solution of an Eulerian DE may contain algebraic
numbers while the Eulerian DE does not). We denote this class of differential operators by
S. Thus, S must have at least two properties:

• For all approximate solutions ỹ there exists a differential operator L̃ ∈ S such that
L̃ ỹ = 0.

• There is a practicable algorithm to compute the fundamental system for each differ-
ential operator in S, respectively.

We select S not blindly, but pay attention to the physical nature of the problem. Fur-
thermore, the choice of the solution space influences on the complexity of the subsequent
computation steps.

Second, we choose adaption criterions for determining an element L̃ ∈ S. We determine
q linearly independent functions Φ = φ1, φ2, . . . , φq with

L̃ φi = 0.

We demand q ≥ n. We call this step adaption.
Third, we make a linear ansatz

ỹ =

q
∑

i=1

ciφi.

We use the constraints and approximation criterions for determining the coefficients ci.
We call this step approximation. Adaption and approximation criterions should match the
origin of the problem.

12

The fourth step is an error estimation.
Dividing the computation of approximate solutions into four parts (modules) has sev-

eral advantages. One can search in parallel for approximate solutions in distinct function
spaces (with different complexities). Once found adaptive solutions can be reused with new
approximation criterions. For a given class of problems one can heuristically find out the
best combination of available adaption and approximation criterions. Last but not least,
the modularity of the method eases software reengineering.

1.4 Motivation and schedule

The main concept of this thesis is the adaptive approximation method applied to linear
ODEs with polynomial coefficients. We find simple approximate solutions ỹ for (1.1) and
(1.3) in form of D-finite functions which are elementary over K(x) and analytical in [x0, x1]
(in special cases: analytical only in (x0, x1]).

Our methodology is inspired by computer algebra and analysis. Our aim is to show
that both research areas can benefit from each other and that their synthesis leads to new
results. We also hope that this thesis helps to close the gap between pure and applied
mathematics.

In chapter 3 we choose the class of adaptive differential operators and define in this
way the function space for the approximate solution function ỹ. We introduce our class
ELF - the class of first order decomposable differential operators with fundamental systems
consisting of elementary functions. We show that ELF is useful to describe the singularities
of linear ODEs with polynomial coefficients.

When we wrote chapter 4 our primary intention was to show how to filter out all
“simple” exact solutions of a given DE (1.1) without much effort before starting any other
method. This key-note remains, but additionally the structure theorems in this chapter
make it possible to determine candidates for approximate solutions in subspaces of ELF .

In the adaption step we obtain the adaptive differential operator L̃ ∈ ELF . We de-
termine approximate solutions by applying adaption criterions to rest terms. How these
rest terms arise and which adaption criterions can be applied will be offered in chapter
5. The advantageous adaption algorithm contained in this chapter is different from those
of [66, 47, 34]. We decouple adaption from approximation and simplify the reuse of once
found adaptive solutions Φ with new approximation criterions.

In the approximation step at chapter 6 we combine the “best” functions from Φ (in the
sense of approximation criterions) to get our approximate fundamental system. We also
take care of ill-conditioned solutions. Up to this point we never made use of the constraints,
i.e. our approximate fundamental system is reusable for variant constraints (but in the same
segment or initial point). Only in the end of the approximation step we use the constraints
to build the approximate solution ỹ.

The chapters 3, 4, 5 and 6 build up a coordinated adaptive approximation algorithm
and the subsequent chapters use results from the previous ones.

The chapter 7 about error estimation was formed in cooperation with Andreas Jung
[10]. It is a standalone part of the thesis, though it completes the adaptive approximation
algorithm. We propose a method to calculate error estimates for closed-form approximate
solutions to boundary and initial value problems in the case of linear differential equations,
which covers the case of DEs (1.1).

A lot of examples are embodied in this thesis. Most of these examples originate from
the results of CA programs written by the author. A thesis on DEs which claims for

13

practical importance must include a chapter about implementation. Chapter 8 reports on
the author’s Maple package DETools and how it compares to programs of other authors.

At the end we summarize the essence of this work in short sentences (Thesen). By
German law this theses should be written in German.

14

Chapter 2

Preliminaries

This chapter has been added to clarify definitions, notations and prove some basic facts.
The literate reader might use it just for reference purposes.

2.1 ODEs with polynomial coefficients

The differential operator L (1.1) is an element of the non-commutative ring K(x)[D], which
is an example of an Ore ring [49, 50, 51, 18, 19].

Definition 6 Let k be a differential field and L, l ∈ k[D]. The right remainder RRem(L, l)
is the (unique) differential operator r ∈ k[D], for which holds L = q l + r, order(r) <
order(l), q ∈ k[D].

Definition 7 Let k be a differential field. A homogeneous linear differential operator L ∈
k[D] is said to be reducible over k

def⇐⇒ ∃l ∈ k[D]\k : RRem(L, l) = 0. If L is not reducible
over k, we say it is irreducible over k.

Definition 8 Let be given a non-empty set of homogeneous linear differential operators
{L1, . . ., Lk}. Then, the least common left multiple LCLM(L1, . . . , Lk) is defined as the
monic homogeneous linear differential operator with minimal order such that

V (LCLM(L1, . . . , Lk)) = V (L1) ∪ V (L2) ∪ . . . ∪ V (Lk)

and the greatest common right divisor GCRD(L1, . . . , Lk) is defined as the monic homoge-
neous linear differential operator with maximal order such that

V (GCRD(L1, . . . , Lk)) = V (L1) ∩ V (L2) ∩ . . . ∩ V (Lk).

Each DE (1.1) at any point x0 ∈ K̄ can be written in a normalized standard form

0 = L y(x) =
ord
∑

i=0

ψi (x− x0)
i y(i)(x), (2.1)

ψi =
rank
∑

j=0

ci,j (x− x0)
j ,

gcd(ψ0, ψ1, . . . , ψord) = 1, x0, ci,j ∈ K̄, ∃i : ci,rank 6= 0, ord ≥ 1.

We use this standard form for classifying the singular points:

15

Definition 9 The DE (1.1) and the corresponding differential operator L are said to be

regular at the point x0
def⇐⇒ qord(x0) 6= 0.

The DE (1.1) and the corresponding differential operator L are said to be singular at the

point x0
def⇐⇒ qord(x0) = 0.

The DE (1.1) and the corresponding differential operator L are said to be regular singular

at the point x0
def⇐⇒ the DE is singular and ψord(x0) 6= 0.

The DE (1.1) and the corresponding differential operator L are said to be irregular singular

at the point x0
def⇐⇒ the DE is singular and ψord(x0) = 0.

A DE (1.1) belongs to the Fuchsian class if it has no irregular singularities.

Theorem 2.1 If the DE (1.1) is regular or regular singular at the point x0, then there exist
ord linearly independent solutions of the form

y(x) = (x− x0)
λ
(

t0 + t1 ln(x− x0) + . . .+ tord−1 ln(x− x0)
ord−1

)

, (2.2)

λ ∈ K̄,

where ∀i = 0, . . . , ord− 1 the ti ∈ K̄[[x− x0]] are formal Taylor series at the point x0.
If the DE (1.1) is irregular singular at the point x0, then there exist ord linearly inde-

pendent solutions of the form

y(x) = (x− x0)
λ
(

t0 + t1 ln(x− x0) + . . .+ tord−1 ln(x− x0)
ord−1

)

exp(q), (2.3)

λ ∈ K̄, ri ∈ N \ {0}, w : C→ C, w(x)ri = x− x0, q ∈ K̄[1/w(x)],

where ∀i = 0, . . . , ord− 1 the ti ∈ K̄[[w(x)]] are formal Puiseux series

ti(x) =

∞
∑

n=0

anw(x)n,

an ∈ K̄

at the point x0.

Proof. The regular or regular singular case goes back to [27, 28, 67, 26]. As an example
of later publications, see [20, 21]. For the more complicated irregular case, see [22, chapter
4]. Note, w is an algebraic function, defined by w(x)ri = x− x0.

The minimal ri such that one solution y of (1.1) can be written in the form (2.3),
is called the ramification index for y (in point x0). If we have a sequence of functions
Y = y1, y2, . . . , yk and each of them can be written in form (2.3) then the ramification
index for Y is the gcd of the ramification indices of the yi.

Lemma 2.2 For each DE of the form (1.1) at any regular or regular singular point x0 ∈ K̄

there exists at least one extended formal Laurent series (FLS) solution of the form

y(x) = (x− x0)
λ

∞
∑

n=−∞
an (x− x0)

n, (2.4)

an, λ ∈ K̄.

Proof. The proposition follows directly from theorem 2.1.

16

2.2 D-finite functions and recurrence equations

We use recurrence (difference) equations (REs) as a tool for solving differential equations.
The reader is referred to [20, 21, 39, 40] for a detailed consideration of the behaviour of
such REs.

Lemma 2.3 In each regular or regular singular point a DE of the form (2.1) corresponds
to a RE at the point x0 of the form

0 = Rx0
an =

rank
∑

j=0

pj F
j an =

rank
∑

j=0

[

ord
∑

i=0

ci,j i!

(

r − j
i

)

]

an−j , (2.5)

F an = an−1, n ∈ Z, an, λ ∈ K̄, r = n+ λ, ∀j : pj ∈ K[r], p0 6≡ 0, prank 6≡ 0.

Proof. In each regular or regular singular point exists at least one solution (2.4). By
substituting (2.4) into (2.1) we get

0 =
ord
∑

i=0

rank
∑

j=0

ci,j (x− x0)
j

 (x− x0)
i y(i)(x),

=
rank
∑

j=0

ord
∑

i=0

ci,j (x− x0)
j+i

[∞
∑

n=−∞
an (x− x0)

n+λ

](i)

{differentiate in the radius of convergence}

=

rank
∑

j=0

ord
∑

i=0

ci,j (x− x0)
j+i

[∞
∑

n=−∞
an i!

(

n+ λ

i

)

(x− x0)
n+λ−i

]

=
rank
∑

j=0

ord
∑

i=0

ci,j (x− x0)
j an i!

(

n+ λ

i

)

(x− x0)
n+λ

{substitute n← n− j}

=
rank
∑

j=0

ord
∑

i=0

ci,j an−j i!

(

r − j
i

)

(x− x0)
λ

Dividing the last equation by (x − x0)
λ, we get (2.5). prank 6≡ 0, because prank ≡ 0 ↔

∀j : crank,j = 0 and this is a contradiction to (2.1). A similar argument holds for p0 6≡ 0
(gcd(ψ0, ψ1, . . . , ψord) = 1).

Comparing (1.2) with (2.5) we recognize that REs (1.2) are special cases of REs (2.5)
for λ = 0, or rephrased, REs (2.5) are constructed by an extension of formal Laurent
series (strictly speaking, by the multiplication with (x− x0)

λ), whereas REs (1.2) may be
constructed using formal Laurent series. If a D-finite function has a series expansion
(2.4), then a RE (2.5) may be used to compute its coefficients. In regular and regular
singular points the existence of at least one such D-finite function is guaranteed by lemma
2.2. Unfortunately, there are D-finite functions (e.g., exp (1/

√
x)), which don’t have series

expansions (2.4) in the irregular singular points of the corresponding DEs.
The natural number rank in (2.5) is called the rank of recursion. Let h be the greatest

common divisor of all j in (2.5) for which holds pj(r) 6≡ 0. Then, h is called the symmetry
number of the RE. E.g., the symmetry number of an Eulerian DE is 1. If h = rank then the
given DE is a (generalized) hypergeometric DE in x0, and formal hypergeometric solutions
can be immediately found.

17

Example. Let me illustrate the relations between linear ODEs with polynomial coef-
ficients, D-finite functions, RE’s (1.2) and P-recursive sequences. Using lemma 2.3, we
want to determine the generating function y(x) = 1 + x + 2x2 + 3x3 + 5x4 + 8x5 + . . .
of the Fibonacci sequence . . ., a−2 = 0, a−1 = 0, a0 = 1, a1 = 1, a2 = 2, This se-
quence is completely determined by the RE nan−nan−1−nan−2 = 0 with the constraints
a−2 = 0, a−1 = 0, a0 = 1. By lemma 2.3 we construct in point x0 = 0 the correspond-
ing DE (x2 + x − 1) y′ + (2x + 1) y = 0. We solve the DE with the constraint and get

y(x) = −1
x2 + x− 1

.

The polynomial p0 is known as the indicial polynomial, the roots of the indicial poly-
nomial are called indices. We know that the indices in regular points are always 0, 1, . . .,
ord− 1, as the following lemma shows:

Lemma 2.4 The indicial polynomial of a DE (1.1) of order ord in a regular point is

p0(r) = cord,0 r (r − 1) (r − 2) . . . (r − ord+ 1).

Proof. By lemma 2.3

p0 =
ord
∑

i=0

ci,0 i!

(

r

i

)

and if the DE is regular in x0, then ∀i = 0, . . . , ord− 1 : ci,0 = 0.

Note that rank and symmetry number are in fact functions of the chosen evaluation
point x0. Nevertheless, the following property of prank holds:

Lemma 2.5 prank(x0)(r+rank(x0)) doesn’t depend on the chosen regular or regular singular
evaluation point x0.

Proof. By lemma 2.3 for all evaluation points x0 holds

prank(x0)(r + rank(x0)) =
ord
∑

i=0

ci,rank(x0) i!

(

r

i

)

and the coefficients ci,rank(x0) of the highest power of x are invariant to linear substitutions
x← x+ x0 in (2.1), even if the rank changes in some new evaluation point.

If we substitute x = x̃+ x0 into a DO L of the form (1.1), where x̃ is the new indeter-
minate and x0 is a free parameter, we also get a differential operator L̃ of the form (1.1).
We construct the corresponding RE R̃0 an = 0 for L̃ in point 0. x̃ = 0 ↔ x = x0 implies
that R̃0 an = 0 for L̃ and Rx0

an = 0 for L are equivalent. Finally, with

0 = R̃0 an mod(A(x0)), A(x0) ∈ K[x0], (2.6)

we are able to compute the corresponding RE for (1.1) at {x0 | A(x0) = 0}. (If now
L̃ is irregular singular at {x0 | A(x0) = 0}, then (2.6) describes only the Laurent series
coefficients of solutions (2.4).) This procedure is advantageous, since we stay in the given
coefficient field but nevertheless are able to predict the behaviour of the series solutions in
algebraic evaluation points.
Example. Consider the DO

L = x (x2 + 1)2D2 − (x2 + 1)2D + x3,

18

taken from [62]. We are interested in the RE at {x0 | x0
2 + 1 = 0}. First, we substitute

x = x̃+ x0 into L and get a DO

L̃ = (x̃+ x0) ((x̃+ x0)
2 + 1)2D2 − ((x̃+ x0)

2 + 1)2D + (x̃+ x0)
3

In practice, it is advisable to compute as early as possible modulo A(x0) to keep the
expressions small. Thus, we compute L̃ modulo x0

2 +1 and write the result in the standard
form (2.1) in point 0:

L̃ = x̃2(x̃3 + 5x0 x̃
2 − 8 x̃− 4x0)D

2 + x̃(−x̃3 − 4x0 x̃
2 + 4 x̃)D + x̃3 + 3x0 x̃

2 − 3 x̃− x0

Now, we might compute the whole RE to L at {x0 | x0
2 +1 = 0} by constructing the RE to

L̃ in point 0 and using lemma 2.3. We illustrate the computation of the index polynomial

p0. By formula (2.5) we know p0 =
ord
∑

i=0
ci,0 i!

(

r
i

)

. Substituting c0,0 = −x0, c1,0 = 0 and

c2,0 = −4x0, we get p0 = −x0 − 4x0r(r − 1) = −x0(2 r − 1)2. The indices are 1
2 and 1

2 .
In section 4.1 it will be shown that the indices define the lowest powers of Laurent series
solutions of DEs (1.1). Indeed, one exact solution of L y(x) = 0 is y(x) =

√
x2 + 1.

2.3 Complex Euclidean space

Definition 10 Let be given a complex linear space E. A function f : E ×E → C is called

scalar product
def⇐⇒ it fulfils the following properties:

• ∀a, b, c ∈ E : f(a+ b, c) = f(a, c) + f(b, c)

• ∀λ ∈ C ∀a, b ∈ E : f(λa, b) = λf(a, b)

• ∀a, b ∈ E : f(a, b) = f(b, a)

• ∀a ∈ E : f(a, a) ≥ 0

• (f(a, a) = 0)→ a is the zero element of E

The scalar product f(a, b) is usually noted by 〈a, b〉.

A linear space with a fixed scalar product is called Euclidean space. The norm in Euclidean
space is canonically defined by

‖f‖ :=
√

〈f, f〉. (2.7)

Note that in our notation, the scalar product and the norm are taken with respect to the first
variable. If this is not the case, a dot denotes the appropriate position as in 〈G(x, ·), f(·)〉
and ‖Γ(x, ·)‖.

2.3.1 The space C2[x0, x1]

We deal with the space C2[x0, x1] [42] of functions f : [x0, x1]→ C, for which holds
∫ x1

x0

|f(x)|2 dx <∞.

These form a complex Euclidean space with the scalar product

〈f(x), g(x)〉 :=
∫ x1

x0

f(x)g(x) dx. (2.8)

19

The norm in this special case is

‖f(x)‖ =

√

∫ x1

x0

|f(x)|2Dx.

If the integration interval is different from [x0, x1], the integration limits are specified as in

〈f(·), g(·)〉x1

x and ‖f(x)‖ξx0
.

2.3.2 The space l2

l2 is the space of complex sequences A = a0, a1, . . . , an−1, an, an+1, . . ., n ∈ N, for which
holds

∑∞
n=0 |an|2 < ∞ [42, 34]. These form a complex Euclidean space with the scalar

product

〈an, bn〉 :=
∞
∑

n=0

anbn. (2.9)

2.4 Principal solutions and Green functions

This section shall give the reader a short overview over the basic facts we need for the error
estimation. For more details the reader is referred to [37, 38] or [48, 12].

We consider boundary value problems consisting of a linear ordinary differential equation

L y(x) = f(x) (2.10)

and the boundary conditions (1.3). Here L is a homogeneous linear differential operator
(1.4). The right hand side of (2.10) may be piecewise continuous, what we denote by
f ∈ Ĉ(0)[x0, x1].

We will restrict our view on those boundary value problems (2.10,1.3) for which the
corresponding homogeneous problem consisting of the homogeneous linear DE (1.5) and
homogeneous linear boundary constraints

0 = Ux0
Y (x0) + Ux1

Y (x1) (2.11)

x0, x1 ∈ R ∩K, x0 < x1, Y = (y y′ . . . y(ord−1))T , Ux0
, Ux1

∈ (C ∩K)ord×ord

has only the trivial solution y(x) ≡ 0.
By f (ν)(u, s), we denote the ν-th partial derivative of f(x, s) with respect to its first

argument, taken at x = u, i.e. Dν f(x, s)|x=u.

2.4.1 Principal solutions

Definition 11 A function γ(x, ξ) which is defined for x0 ≤ x, ξ ≤ x1 is called a principal
solution (French: solution principale, German: Grundlösung) of (1.4) in [x0, x1], iff

1. γ(x, ξ) has partial derivatives in the square x0 ≤ x, ξ ≤ x1 with respect to x up to
the order ord− 2 which are continuous in x and ξ (this part is of no significance for
ord = 1),

2. γ(x, ξ) has partial derivatives in both triangles x0 ≤ x < ξ ≤ x1 and x0 ≤ ξ < x ≤ x1

with respect to x up to the order ord which are continuous in x and ξ,

3. γ(x, ξ) is, in both triangles, a solution to the homogeneous DE (1.5),

20

4. for x0 < ξ < x1,

lim
ε→0

ε>0

γ(ord−1)(ξ + ε, ξ)− lim
ε→0

ε>0

γ(ord−1)(ξ − ε, ξ) =
1

qord(ξ)
(2.12)

holds.

Definition 12 Let be given Y = y1(x), y2(x), . . . , yk(x), a non-empty sequence of functions.
Then, we define

WY (x) =

y1(x) y2(x) · · · yk(x)
y′1(x) y′2(x) · · · y′k(x)
y′′1 (x) y′′2 (x) · · · y′′k(x)

...
...

...
...

y
(k−1)
1 (x) y

(k−1)
2 (x) · · · y

(k−1)
k (x)

.

WY (x) is called the Wronskian matrix and det(WY (x)) the Wronskian determinant for Y .

We define

VY (x, ξ) =

y1(ξ) y2(ξ) · · · yk(ξ)
y′1(ξ) y′2(ξ) · · · y′k(ξ)
y′′1 (ξ) y′′2 (ξ) · · · y′′k(ξ)

...
...

...
...

y
(k−2)
1 (ξ) y

(k−2)
2 (ξ) · · · y

(k−2)
k (ξ)

y1(x) y2(x) · · · yk(x)

(2.13)

If the homogeneous linear differential operator (1.4) is regular in [x0, x1], then it always
has principal solutions. One of these is

γ0(x, ξ) :=

− det(VY (x, ξ))

2 qord(ξ) det(WY (ξ))
: x < ξ

0 : x = ξ
det(VY (x, ξ))

2 qord(ξ) det(WY (ξ))
: x > ξ,

(2.14)

where Y is a solution basis Y = y1(x), . . . , yord(x) of (1.5). γ0(x, ξ) doesn’t depend on the
choice of basis functions y1(x), . . . , yn(x), as long as they span the solution space of (1.5).
The set of all principal solutions of (1.4) can be obtained by

γ(x, ξ) = γ0(x, ξ) +

n
∑

ν=1

hν(ξ) yν(x) (2.15)

with arbitrary continuous functions h1(ξ), . . . , hn(ξ). Principal solutions depend only on
the differential operator, they do not depend on the choice of a fundamental system.

Principal solutions have a specific property which makes them very useful for the analysis
of linear differential equations:

Theorem 2.6 Let γ(x, ξ) be a principal solution of (1.4) and f ∈ Ĉ(0)[x0, x1]. Then

y(x) =

∫ x1

x0

γ(x, ξ)f(ξ) dξ (2.16)

is a solution to the non-homogeneous differential equation (2.10).

The proof is given, for example, in [37] for continuous functions f(x), but it can easily
be extended to the case where f(x) is only piecewise continuous.

21

2.4.2 Green functions

Definition 13 A function Γ(x, ξ) is called a Green function of (1.4,2.11), iff it is a prin-
cipal solution of the homogeneous linear ODE (1.4), and for each fixed ξ with x0 < ξ < x1,
it fulfils the homogeneous linear boundary conditions (2.11) as a function in the variable x.

Throughout this section, we generally assume (1.5,2.11) to have only the trivial solution
y(x) ≡ 0. The following theorem gives the motivation for this assumption.

Theorem 2.7 If the homogeneous linear differential operator (1.4) is regular in [x0, x1]
and (1.5,2.11) only has the trivial solution y(0) ≡ 0, then (1.5,2.11) has exactly one Green
function Γ(x, ξ).

Proof. See [37, pp 248–249].
Since the Green function of (1.4, 2.11) is a special principal solution, it has the form

(2.15). So it can be computed by substituting y(x) = γ0(x, ξ)+
∑n

ν=1 hν(ξ) yν(x) (the right
hand side of (2.15)) into (2.11), assuming x0 < ξ < x1, and by solving this linear equation
system for the unknown functions h1(ξ), . . . , hn(ξ). Theorem 2.7 assures that this system
is uniquely solvable.

Example. Consider the differential operator L = (x − 1)D2 − xD + 1, together with
the boundary conditions y(0) = 0, y′(0) + y′(1) = 0. The solution space is spanned by
y1(x) = x, y2(x) = exp(x), so with (2.14) we get

γ0(x, ξ) =

−ξ exp(x)− exp(ξ)x
2(ξ − 1)2 exp(ξ)

: x < ξ

0 : x = ξ
ξ exp(x)− exp(ξ)x
2(ξ − 1)2 exp(ξ)

: x > ξ.

Assuming x0 < ξ < x1, we substitute y(x) by γ0(x, ξ) + h1(ξ)x + h2(ξ) exp(x) in the
boundary conditions, obtaining the equations

− ξ

2(ξ − 1)2 exp(ξ)
+ h2(ξ) = 0

ξ(exp(1)− 1)

2(ξ − 1)2 exp(ξ)
+ 2h1(ξ) + (1 + exp(1))h2(ξ) = 0

which is uniquely solved by h1(ξ) = −ξ exp(1− ξ)
2(ξ − 1)2

, h2(ξ) =
ξ

2(ξ − 1)2 exp(ξ)
, thus

Γ(x, ξ) = −x ξ exp(1− ξ)
2(ξ − 1)2

+
ξ exp(x− ξ)
2(ξ − 1)2

+ γ0(x, ξ).

Corollary 2.8 Let Γ(x, ξ) be the Green function of some homogeneous linear differential
operator L (1.4) and some homogeneous linear boundary constraints (2.11). Then, the

Green function of a(x)L and the same boundary constraints is
Γ(x, ξ)
a(ξ)

.

The notion of principal solutions and Green functions was originally introduced for the
analysis of non-homogeneous boundary value problems. The next theorem is an application
of theorem 2.6 to those problems.

22

Theorem 2.9 Let Γ(x, ξ) be the Green function of (1.4,2.11), and let f ∈ Ĉ(0)[x0, x1].
Then

y(x) =

∫ x1

x0

Γ(x, ξ)f(ξ)dξ (2.17)

is the unique solution to the non-homogeneous linear ODE (2.10) with homogeneous linear
boundary constraints (2.11).

For a proof, the reader is referred to [37] or [48, pp 311–313], for example.

Corollary 2.10 Let Γ(x, ξ) be the Green function of (1.4,2.11), and let f ∈ Ĉ(ord)[x0, x1]
fulfil the same homogeneous linear boundary constraints (2.11). Then

f(x) =

∫ x1

x0

Γ(x, ξ)L(ξ)f(ξ) dξ (2.18)

=

∫ x

x0

Γ(x, ξ)L(ξ)f(ξ) dξ +

∫ x1

x
Γ(x, ξ)L(ξ)f(ξ) dξ.

holds for x0 ≤ x ≤ x1.

Proof. Because of Lf ∈ Ĉ(0)[x0, x1] and theorem 2.9, the integral on the right hand
side of (2.18) is a solution to Ly(x) = Lf(x) which fulfils (2.11), as well as f(x) itself.
Since (1.5,2.11) is uniquely solvable, (2.18) holds.

One remark about notation. In the literature one finds the equation (2.18), although
for the proof the integral is decomposed. We always keep in mind that for x ∈ [x0, x1]

∫ x1

x0

−h(ξ) : x < ξ
0 : x = ξ

h(ξ) : x > ξ

dξ =

∫ x

x0

h(ξ) dξ +

∫ x1

x
−h(ξ) dξ

= 2H(x)−H(x0)−H(x1), H ′ = h.

Now let’s have a closer look on (2.14). It can be regarded as the sum of two separate
functions. This motivates the following definition:

Definition 14 We define

Γl(x, ξ) =

− det(VY (x, ξ))

qord(ξ) det(WY (ξ))
: x < ξ

0 : x ≥ ξ
(2.19)

as the left Green function of (1.4) and

Γr(x, ξ) =

0 : x ≤ ξ
det(VY (x, ξ))

qord(ξ) det(WY (ξ))
: x > ξ

(2.20)

as the right Green function of (1.4).

Note that
Γl(x, ξ) + Γr(x, ξ) = 2γ0(x, ξ). (2.21)

The name “left and right Green function” is indeed justified, as the following theorem
states:

23

Theorem 2.11 Let (1.4) be regular in [x0, x1]. Then (2.19) is the unique Green function
of (1.4) and the boundary conditions

y(x1) = y′(x1) = · · · = y(n−1)(x1) = 0, (2.22)

whilst (2.20) is the unique Green function of (1.4) and the boundary conditions

y(x0) = y′(x0) = · · · = y(n−1)(x0) = 0. (2.23)

Proof. By comparing (2.19) and (2.20) with (2.14) and by observing that Dν det(VY (x,
ξ))|x=ξ = 0 for ν = 0, . . . , n − 2 and Dn−1 det(VY (x, ξ))|x=ξ = det(WY (ξ)), we state that
they fulfil the properties of definition 11. Obviously, for each fixed ξ with x0 < ξ < x1,
(2.19) and (2.20) fulfil (2.22) and (2.23), respectively. Since (1.5,2.22) and (1.5, 2.23) are
indeed uniquely solvable initial value problems, the theorem holds by definition 13 and
theorem 2.7.

Theorem 2.12 Let (1.4) be regular in (x0, x1], (2.19) its left Green function and f ∈
Ĉ(ord)(x0, x1] fulfil (2.22). Then for x0 < x ≤ x1,

f(x) =

∫ x1

x
Γl(x, ξ)L(ξ)f(ξ)dξ (2.24)

holds.

Proof. Let x0 < x ≤ x1. Then there exists a c with x0 < c ≤ x ≤ x1, and with Theorem
2.11, (2.19) is the Green function of (1.4, 2.22) on the interval [c, x1]. With corollary 2.10
and the unique solvability of (1.5,2.22), we get

f(x) =

∫ b

c
Γl(x, ξ)L(ξ)f(ξ)dξ =

∫ x1

x
Γl(x, ξ)L(ξ)f(ξ)dξ,

where the second equal sign holds because of Γl(x, ξ) = 0 for x > ξ, see (2.19).
The next corollary shows how to combine the fundamental systems of the factors of a

linear differential operator.

Corollary 2.13 d’Alembert reduction, [38, section 17.2]
Let the homogeneous linear differential operator L be regular in (x0, x1]. Let L = MN be

a given factorization of L into homogeneous linear differential operators M and N of order
ord − n and n, respectively. Let f1(x), . . . , ford−n(x) be a fundamental system of M and
g1(x), . . . , gn(x) be a fundamental system of N . Let Γl be the left Green function of N and
homogeneous initial value conditions (2.22). Assign

∀j = 1(1)n : yj(x) := gj(x)

and

∀j = 1(1)ord− n : yn+j(x) :=

∫ x1

x
Γl(x, ξ)fj(ξ) dξ.

Then, ∀x ∈ (x0, x1] y1(x), . . . , yord(x) is a fundamental system of L.

Proof. First, we observe ∀j = 1(1)n : L yj(x) = MN yj(x) = M 0 = 0. The left
Green function Γl is a special principal solution. Thus, by theorem 2.6 ∀j = 1(1)ord− n :
yn+j(x) =

∫ x1

x0
Γl(x, ξ)fj(ξ) dξ is a solution to the non-homogeneous differential equation

24

N y(x) = fj(x) (∀x ∈ (x0, x1]). Therefore, ∀j = 1(1)ord− n : L yn+j(x) = MN yn+j(x) =
M fj(x) = 0, i.e. all functions in y1(x), . . . , yord(x) are solutions of L y = 0.

They are linearly independent, too. We assumed y1(x), . . . , yn(x) to be linearly inde-
pendent. If yn+j(x) =

∑n
i=1 ai gj(x) for at least one nonzero constant ai, then L yn+j(x) =

L
∑n

i=1 ai gj(x) = 0, but L yn+j(x) = fj(x), which leads to a contradiction. If yn+j(x) =
ord−n
∑

i=1

i6=j

ai yn+i(x) for at least one nonzero constant ai, then

fj(x) = L yn+j(x) =

ord−n
∑

i=1

i6=j

ai L yn+i(x) =

ord−n
∑

i=1

i6=j

ai fi(x),

which contradicts the linear independence of the fundamental system of M .

25

Chapter 3

Choosing the class of adaptive
differential operators

In this chapter we have to choose the function space for the approximate solution ỹ to a DE
(1.1) and ord linearly independent linear boundary constraints. We prefer the definition of
the solution space by a class S of adaptive differential operators, because the exact solution
in form of a D-finite function can also be described by a DO with constraints. Our concept
of the thesis defines the properties of S:

• There should be a practicable algorithm to compute the fundamental system for each
differential operator in S respectively.

• The fundamental system of each differential operator in S should consist of functions
which are elementary over K(x). From our point of view, non-elementary Liouvillian
solutions are not practicable enough. Additionally, we would have more computa-
tional problems in chapter 7.

• S should be a subset of the set of DEs (1.1).

• In the case of boundary value problems in [x0, x1], ỹ should be analytical in [x0, x1].

In the past, the following classes (which own the above properties) were used [66, 47, 34]:

• POL =
{

L |V (L) ⊂ K̄[x]
}

• RAT =
{

L |V (L) ⊂ K̄(x)
}

• CON =

{

L | ∃c1, . . . cord ∈ K̄ : L =
ord
∑

i=0
ciD

i

}

• EUL =

{

L | ∃c1, . . . cord, x0 ∈ K̄ : L =
ord
∑

i=0
ci (x− x0)

iDi

}

We note an important special case: the given DE (1.1) is singular in x0 and a initial
value problem is given in point x1. We are interested in the behaviour of the solution
function near x0. Then, S must also be able to describe all kinds of singularities given as
from theorem 2.1. None of the classes POL, RAT , CON and EUL has the capability to
do this. First steps in this direction were made by Thinh [66], who used special cases of
extended Taylor series (2.2), which were able to describe singularities of Fuchsian type.

26

Each Eulerian differential operator E ∈ EUL at the point x0 factors into

E = ((x− x0)D + eord) · · · ((x− x0)D + e2) ((x− x0)D + e1) ,

and each differential operator C ∈ CON with constant coefficients factors into

C = (D + eord) · · · (D + e2) (D + e1)

where the ei ∈ K̄. There exist similar factorizations into first order differential operators
for the differential operators in POL and in RAT . We generalize this idea and derive

Definition 15 (cf. definition 7)
Let K be a constant field. A differential operator L (1.1) is said to be first order decompos-

able over K̄
def⇐⇒ L can be written as L = Lord . . . L2 L1 where Li are linear homogeneous

differential operators of first order with coefficients in K̄(x).

We denote by ELF the class of differential operators (1.1), which

• have only elementary solutions over K(x) and

• are first order decomposable over K̄(x).

The question, whether a given first order decomposable differential operator has only ele-
mentary solutions over K(x), can algorithmically be decided by Risch integration [54, 29].
ELF is our biggest class of adaptive differential operators. POL, RAT , CON and EUL

are proper subclasses of ELF . If we compare ELF with the solution structure in theorem
2.1, we see that series expansions of solutions for DEs ∈ ELF have the required form, with
only one (rare) exception: We are only able to produce solutions with ramification index
1. This will suffice for

• boundary value problems with DEs (1.1) or

• initial value problems with Fuchsian DEs (1.1).

Solutions with ramification index greater than 1 may only appear when we consider the
behaviour of the solution of some initial value problem near some irregular singularity
point. With the method shown in the next section, we are able to express asymptotically
the singularities of DEs (1.1) in all cases.

3.1 The ramification index is greater than 1

We want to transform a DE (1.1) with a ramification index greater than 1 in point x0 ∈ K̄

into a DE (1.1) with the ramification index 1 in point x0.
Suppose, we have already computed the ramification index of the original DE. Then,

by a substitution
x← (x− x0)

ri + x0 (3.1)

we transform the set of solutions (2.3) into a set of functions with ramification index 1 (in
point x0). Therefore, the substitution also transforms (1.1) into another DE (1.1), but with
ramification index 1.

Thus, a solution to the problem for DEs (1.1) is to try out substitutions x← (x−x0)
2+

x0, x← (x− x0)
3 + x0, . . . as long as the number of linearly independent solutions in form

of extended Puiseux series (2.3) is less than the order of the DE.

27

Suppose the DEs we got by the substitutions are L2, L3, Then solutions to L2,
L3, . . . of the form (4.13) can be computed by a DESIR-like algorithm [68, 4, 52], which
combines Frobenius with Beke’s method. If yj is a solution of Lj y(x) = 0 and yk is a
solution of Lk y(x) = 0, then yj and yk can only be linearly dependent in the case, if the
result of the substitution x ← (x − x0)

k/j + x0 into yj(x) is yk(x). Finally, we get the
solutions (2.3) of the original DE by inverse substitutions.

28

Chapter 4

Adaption step - restricting the
coefficient space

In this chapter we describe, how to find

• exact solutions,

• candidates for approximate solutions

of DEs (1.1). After defining the class of adaptive differential operators ELF in the previous
chapter, the structure theorems in this chapter make it possible to determine candidates
for approximate solutions in subclasses of ELF . We demonstrate the search for solutions in
those subclasses of ELF which are small enough to guarantee practicable algorithms even
in the case of exact solutions.

4.1 Finite Laurent series solutions

Lemma 4.1 [6, lemma 2] If there exists a solution of the form

y(x) = (x− x0)
λ

ω
∑

n=α

an (x− x0)
n, (4.1)

α, ω ∈ Z, x0, an, λ ∈ K̄, aα 6= 0, aω 6= 0,

for a DE of the form (1.1), then the following condition holds for the corresponding RE
(2.5) at the point x0:

p0(λ+ α) = 0 and prank(λ+ ω + rank) = 0. (4.2)

Proof. With (4.1), (2.5) and n = α we conclude that

0 = p0(λ+ α) aα + ph(λ+ α) aα−h · · ·+ prank(λ+ α) aα−rank
= p0(λ+ α) aα + ph(λ+ α) 0 + · · ·+ prank(λ+ α) 0

= p0(λ+ α) aα,

where h is the symmetry number of (2.5). aα 6= 0 implies that λ+α is a root of the indicial
polynomial p0. With n = ω + rank we conclude analogously that

0 = p0(λ+ ω + rank) aω+rank + · · ·+ prank(λ+ ω + rank) aω

= p0(λ+ ω + rank) 0 + · · ·+ prank(λ+ ω + rank) aω

= prank(λ+ ω + rank) aω

29

aω 6= 0 implies that λ+ ω + rank is a root of prank.

In [56, bound 1], [2, page 267], [1, theorem 1] the reader will find similar observations,
sometimes extended to the inhomogeneous case, but always restricted to the case y ∈ K[x].

Definition 16 We introduce the notation pp for the primitive part of a nonzero polynomial
p. If p = a0 + a1 r + · · ·+ am r

m ∈ K[r] \ {0}, then pp(p, r) = p/ gcd(a0, a1, . . . , am).

We use lemma 4.1 to determine all finite Laurent series solutions at any given point
x0 for any given DE (1.1). Each such solution must satisfy (4.2). Besides, the step size
between the powers of two distinct nonzero terms of the series (4.1) must be a multiple of the
symmetry number of the corresponding RE (2.5). Let h be the symmetry number of (2.5)
and let β = λ + α. Then, we solve {pp(p0(β), β) = 0, pp(prank(β + nh + rank), β) = 0}
for {β, n} with the condition n ∈ N. Considering the fact that deg(p0, r) ≤ ord and
deg(prank, r) ≤ ord, we conclude that the number of possible candidates is at most ord2.

Our implementation always uses existing Gröbner basis solvers for solving systems of
polynomial equations. In this way we compute the smallest univariate polynomial over n.
We should not factorize p0 and prank over K̄ (which could be troublesome for DEs with
higher order), but only have to find whether they have roots that differ by an integer. This
can also be done in another way. Let P,Q ∈ K[x]. We introduce the notation res(P,Q, x)
for the resultant of P and Q (taken w.r.t. x) [29]. Then, the natural-number roots for n
are in the roots of res(pp(p0(β), β), pp(prank(β + nh+ rank), β), β).

By substituting the candidate pairs into the given DE, we get linear equation systems
for the coefficients. Our implementation solves them, using existing linear solvers, because
we prefer the reduction to this well-known problem. One could also compute the coefficients
in a forward procedure, using the recurrence as done in [1, section 3.1]. This means that
for each given candidate pair (λ+ α, λ+ ω) we set aλ+α := 1 and use the equation

an = −
rank
∑

j=1

pj(r) an−j/p0(r)

by substituting one after another n = α+ h, n = α+ 2h, . . ., n = ω. But then one has to
struggle with the difficulties arising from the fact that the numerator or the denominator
of the right hand side of the equation can be 0.

Algorithm 1 Finite Laurent Series Solutions(L,x0)
(The algorithm computes all solutions of the form (4.1) at the point x0 for the differential
operator L (1.1).)

1. Compute the symmetry number h, the indicial polynomial p0, the rank and prank at
the point x0.

2. Define β = λ + α. Solve the system of two polynomial equations {pp(p0(β), β) = 0,
pp(prank(β+ nh+ rank), β) = 0} for {β, n} with the condition n ∈ N. Construct the
set of all solution pairs P = {(βi, βi + ni h)}.

3. {yk} := ∅
for each (β, γ) ∈ P

(a) Substitute y(x) = aβ (x− x0)
β + aβ+h (x− x0)

β+h + · · ·+ aγ (x− x0)
γ with free

coefficients aβ, aβ+h, . . ., aγ into L y(x) = 0. Solve the linear equation system
for the coefficients. Let {āk} be a set of nontrivial linearly independent solution
vectors.

30

(b) for each āk = (âβ, âβ+h, . . . , âγ)
T

{yk} := {yk} ∪ {âβ (x− x0)
β + âβ+h (x− x0)

β+h + · · ·+ âγ (x− x0)
γ}

4. return {yk}.

Example. Consider the DO

L = x (x2 + 1)2D2 − (x2 + 1)2D + x3,

taken from [62]. In section 2.2 we have already showed, how to compute the indicial
polynomial at {x0 | x0

2 + 1 = 0}. Using lemma 2.3 we now compute the whole RE at
{x0 | x0

2 + 1 = 0}:

−x0(2 r − 1)2 an + (−8 r2 + 28 r − 23) an−1 + x0(5 r
2 − 29 r + 41) an−2 + (r − 4)2 an−3 = 0

The RE has symmetry number 1 and rank 3. We solve {(2β−1)2 = 0, (β+n+3−4)2 = 0}.
There is no solution with a natural number n. Therefore, the DO has no solutions of the
form (4.1) at {x0 | x0

2 + 1 = 0}.
Example. Consider the DE

3x2D2 y(x) + 2x (x2 + 5)Dy(x) + (2x+ 2) y(x) = 0

taken from [66]. The corresponding RE at point 0 is

(r + 2) (3 r + 1) an + 2 an−1 + (2 r − 4) an−2 = 0.

The RE has symmetry number 1 and rank 2. We solve {(β + 2) (3β + 1) = 0, (2 (β + n+
2)−4) = 0}. There is only one solution with a natural n: β = −2 and n = 2. We substitute
y(x) = a−2 x

−2 + a−1 x
−1 + a0 into the DE. The linear system for the coefficients has one

nonzero solution vector and one solution of the DE is

y(x) =
x2 + x+ 1

x2
.

Example. 0 = L y(x) = 3 (x−1)2x4(6−12x−x2 +8x3−7x4)D2 y(x)+2x (−18+72x−
45x2 − 180x3 + 332x4 − 134x5 − 81x6 + 100x7 − 28x8)Dy(x) + 2 (x − 1)(−6 − 18x +
37x2 + 87x3 − 16x4 − 28x5 + 9x6 + 7x7) y(x)
The corresponding RE at any point x0 ∈ K̄ is

0 = 3 r (r − 1)x0
4 (x0 − 1)2 (7x0

4 − 8x0
3 + x0

2 + 12x0 − 6) an +

...

7 (3 r2 − 55 r + 248)an−10.

Reducing this RE mod(A(x0)), where A(x0) = 7x0
4− 8x0

3 + x0
2 + 12x0− 6, we construct

the RE at {x0 | A(x0) = 0}:
36 r (r− 2) (83744x0

3 − 139415x0
2 + 73002x0 − 11742) an + · · ·+ 33614 (r2 (105x0 − 33)−

r (1533x0 + 461) + 5488x0 − 1578) an−8 + 117649 (3 r − 28)(r − 7) an−9 = 0.
The RE has symmetry number 1 and rank 9. We solve {β (β − 2) = 0, (3 (β + n + 9) −
28) (β + n+ 9− 7) = 0}. There is no solution with a natural number n. Therefore, the DE
has no solutions of the form (4.1) at {x0 | A(x0) = 0}.

31

4.2 Polynomial solutions

The search for polynomial solutions ∈ K[x] is a special case of the search for finite Laurent
series solutions with λ = 0 and α ∈ N. The reader is referred to lemma 4.1. Polynomial
solutions are needed in many applications and, therefore, are the subject of current research
[1]. The best solution at this moment is an algorithm of Barkatou [5], which especially shows
his advantages for polynomial solutions of high degree, although with some programming
effort.

For our purposes the following algorithm is efficient enough (and is much faster than
the standard procedures in Maple, see chapter 8):

Algorithm 2 Polynomial Solutions(L)
(The algorithm computes all polynomial solutions for the differential operator L (1.1).)

1. Compute the symmetry number h, the indicial polynomial p0, the rank and prank at
the point x0.

2. Solve the system of two polynomial equations {pp(p0(α), r) = 0, pp(prank(α + nh +
rank), r) = 0} for {β, n} with the conditions α, n ∈ N. Construct the set of all
solution pairs P = {(αi, αi + ni h)}.

3. {yk} := ∅
for each (α, ω) ∈ P

(a) Substitute y(x) = aα x
α+aα+h x

α+h+ · · ·+aω x
ω with free coefficients aα, aα+h,

. . ., aω into L y(x) = 0. Solve the linear equation system for the coefficients. Let
{āk} be a set of nontrivial linearly independent solution vectors.

(b) for each āk = (âα, âα+h, . . . , âω)T

{yk} := {yk} ∪ {âα xα + âα+h x
α+h + · · ·+ âω x

ω}

4. return {yk}.

4.3 Rational solutions

In this section we search for rational solutions y(x) ∈ K(x) of DEs (1.1). Remembering
lemma 4.1 we conclude that, if x0 is a root of the denominator of a rational solution with
multiplicity k, then −k is a root of the indicial polynomial in point x0. From lemma 2.4 we
know that the indicial polynomial has only natural roots, if x0 is a regular point. Therefore,
if x0 is a root of the denominator of a rational solution, then x0 is a singular point of (1.1).

We can restrict our search for negative indices to irreducible over K factors of qord, as if
we have such factor s and decompose it into linear factors s = (x− x1)(x−x2) . . . (x−xk),
the multiplicity of each root xi, i = 1 . . . k in the denominator is the same. Let us remark
that we even might use only balanced factorization (definition 18) as done in [2].

Thus, the idea of the algorithm is: We factor qord over K. If we have an irreducible factor
s(x), we construct the indicial polynomial at {x0 | s(x0) = 0}. From the smallest negative
integer index we construct the denominator of a candidate for rational solutions. Then, we
transport the problem of finding rational solutions to the problem of finding polynomial
solutions.

32

Algorithm 3 Rational Solutions(L)
(The algorithm computes all rational solutions for the differential operator L (1.1).)

1. Make qord squarefree and factor the result over the coefficient field K. Let S be the
set of factors.

2. d := 1
for each s ∈ S

(a) Compute the indicial polynomial p0 at {x0 | s(x0) = 0}.
(b) Find the smallest negative integer root of p0(r).

if such root r exists then
d := d sr

3. Substitute y(x) = y1(x) d in L. Let M be the resulting DO with M y1(x) = 0.

4. {fk} := Polynomial Solutions(M);

5. {yk} := ∅
for each fk ∈ {fk}

{yk} := {yk} ∪ {fk d}

6. return {yk}.

Practical experience shows, the algorithm of Barkatou [5] is more efficient then the above
algorithm or [2]. Especially in the cases, when the step size between two nonzero terms

of the Laurent series solution is large (as, e.g., in 1−x13+x145

x), the algorithm of Barkatou
shows its advantages, because it needs to compute only the coefficients of the nonzero terms.
Arguments in favor for Rational Solutions are its simplicity, robustness and satisfactory
efficiency. Finding rational solutions has its own worth, but rational solutions are also
useful for bigger classes of solutions.

Definition 17 [62, page 59], [63] Let be given a homogeneous linear differential operator
L (1.4). Then, for any positive integer m, the m-th symmetric power of L, denoted L©s m

is defined to be the monic homogeneous linear differential operator of the type (1.4) with
minimal order whose solution space is spanned by ym, where y is an arbitrary solution
of L:

∀y : (L y = 0)→ (L©s m ym = 0).

The rational solutions of L©s m provide explicitely the Liouvillian solutions of second order
equations [69], and are needed as a first step in computing the Liouvillian solutions of
higher-order DEs [64].

4.4 Beke’s algorithm

The algorithm of Beke [11] finds all exact solutions y of the form

(ln(y))′ = y′/y = u ∈ K̄(x) (4.3)

i.e.

y = exp

(∫

u dx

)

(4.4)

33

for any given DE (1.1). We call functions of this form functions with logarithmic derivative
in K̄(x) or exponential functions over K̄. If the algorithm finds an exponential solution,
then

L = Q (D − u) ,
where Q ∈ K̄(x)[D], i.e. L is reducible over K̄(x).

Exponential solutions are needed for the algorithms of Kovacic and Singer. The special
case of finding solutions y whose logarithmic derivatives y′/y are in K(x) is one of the
essential parts of the associated equations method [11, 56, 76, 17].

Let y(x) = exp(
∫

u dx), u ∈ K̄(x), be an exponential solution of (1.1). Let Kb(x) ⊂
K̄(x) be a differential field with the minimal number of algebraic extensions θ1, θ2, · · · , θs ∈
K̄, such that u ∈ Kb(x). Using Hermite reduction and the Rothstein/Trager method [29]
we can conclude

y(x) = s exp
(

p+
c

d

)

∏

i

ri
ci ,

p, c, d ∈ Kb[x], ci ∈ K̄, s, ri ∈ Kb(ci)[x].

The quantity p is called the polynomial part. The partial fractions of c
d are said to be the

irregular singular parts because each root of d is an irregular singular point of (1.1). We
define

t = s
∏

i : ci ∈ N

ri
ci (4.5)

and obtain

y(x) = t exp
(

p+
c

d

)

∏

i

ri
ci , (4.6)

p, c, d ∈ Kb[x], ci ∈ K̄ \ N, t, ri ∈ Kb(ci)[x].

The ri
ci are said to be the singular parts because each root of any ri is a singular point of

(1.1). In order to minimize the number of singular parts we excluded the case ci ∈ N.
Singer presented a procedure which decides if a given DE (1.1) has exponential solutions

(4.4) and if so, finds such a solution [58, proposition 3.5]. Other authors had similar ideas
[43, section 3], [56, section 3]. Bronstein proposed an algorithm, which introduces algebraic
extensions of K only if they appear in the potential solutions, and not in the singularities
of the DE as was previously required. Instead of complete factorization of qord or factor-
ization over K he used balanced factorization [2]. As van Hoeij mentioned in his thesis
[70, section 3.4], the differences between these algorithms are small enough to call it Beke’s
method.

Our algorithm is based on the original algorithm [11], too. We include results from
Abramov, Bronstein, Schwarz and Singer. The algorithm has the following basic strategy:

Step 1 Bound the degree of the polynomial part.

Step 2 Determine the denominators of the irregular singular parts.

Step 3 Determine the singular parts. We need the singular parts in order to be able to
bound the degree of t.

Step 4 For all members of the set of possible combinations of singular parts determine the
corresponding t and the coefficients in p and c simultaneously.

34

Our algorithm differs from those of other authors in the following points:
We mainly handle corresponding recurrence equations (REs) for the given DEs. This

was done, because our main interest in Beke’s algorithm came from finding approximate
exponential solutions and instead of the search of an exact polynomial t in step 4 we now
can apply, e.g., Frobenius method, which needs the recurrence equation.

In contrast to [16, 15], we don’t evaluate candidates for the polynomial part in step
1. We made this decision because it is not always possible to get the coefficients in t as
radicals (consider, e.g., y(5)(x) + 2 y(x) = 0). In general one has to describe the coefficients
in t, p, c (and the ci) as algebraic extensions of K. Any implementation of an algorithm,
which computes (exact or approximate) exponential solutions of DEs (1.1), should be able
to calculate in algebraic number fields. If Kb = Q, our algorithm should do it only in the
last step 4.

We excluded the case ci ∈ N. If we did not, then in step 4 we would find any possible
exponential solution (4.4) at least twice: once in the case when indeed the corresponding
ri
ci is a part of a candidate in the set of possible combinations of singular parts and once

when it is not and hides in t. This would double the computation.

4.4.1 Bounding the degree of the polynomial part

Lemma 4.2 [56, bound 3], [15, definition 3, theorem 1] Let (4.4) be a solution of (1.1)
and

S :=

{

sj,k =
deg(qj , x)− deg(qk, x)

k − j

∣

∣

∣

∣

j, k ∈ N ∧ 0 ≤ j < k ≤ ord ∧ ∀l ∈ N,

0 ≤ l ≤ ord : deg(ql, x)− deg(qk, x) ≤ (k − l) sj,k
}

⋂

N.

If S = ∅ then p = 0 else deg(p, x) ≤ max(S) + 1.

Continued example. L = 3 (x− 1)2x4(6− 12x− x2 + 8x3− 7x4)D2 + 2x (−18 + 72x−
45x2 − 180x3 + 332x4 − 134x5 − 81x6 + 100x7 − 28x8)D + 2 (x− 1)(−6− 18x+ 37x2 +
87x3 − 16x4 − 28x5 + 9x6 + 7x7)
We get S = ∅ and p = 0.

We could also get this bound using Newton polygon techniques. Then, it comes out,
that S is the set of natural-number slopes of the Newton polygon of the differential operator
at the point infinity.

4.4.2 Determining the denominators of the irregular singular parts

In this section we benefit from the results of Abramov and Bronstein [2, 16, 15].
Let P,Q ∈ K[x], deg(P, x) > 0. The order of Q at P , denoted by νP (Q), is the natural

number m for which Pm | Q and Pm+1 |6 Q.

Definition 18 Let A,B ∈ K[x].

A is balanced w.r.t. B
def⇐⇒ νP (B) = νQ(B) for any two irreducible factors P,Q ∈ K[x] of

A.

Definition 19 Let A ∈ K[x] and Q ⊆ K[x].

A = Al11 · · ·A
lm
m is a balanced factorization w.r.t. Q def⇐⇒ each Ai is squarefree and balanced

w.r.t. B for any B ∈ Q and ∀i 6= j : gcd(Ai, Aj) = 1.

35

An algorithm for balanced factorization was given in [13]. It only requires gcd com-
putations in K[x] and is at most as expensive as computing a square-free-gcd-basis for
{A} ∪ Q.

Theorem 4.3 [15, theorem 1] Let qord be monic and qord = Al11 · · ·A
lm
m be a balanced

factorization with respect to Q = {q0, . . . , qord}. Let (4.4) be a solution of (1.1). Then (4.3)
can be written as

u =
B1

A
δ(SA1

)
1

+ · · ·+ Bm

A
δ(SAm)
m

+
t′

t
+ p′,

where the conditions from lemma 4.2 holds for p, B1, . . . , Bm, t ∈ K̄[x], ∀i : deg(Bi, x) <
δ(SAi) deg(Ai, x) and

SAi
:=

{

νAi(qk)− νAi(qj)
k − j

∣

∣

∣

∣

∀(j, k) : 0 ≤ j < k ≤ ord
}

⋂

(N \ {0}) .

If SAi
= ∅ then δ(SAi

) = 1 else δ(SAi
) = max(SAi

).

Balanced factorization not only reduces the cost of factoring qord, but also reduces the
number of singular parts to be checked.

We could also get this bound using Newton polygon techniques. Then, it comes out,
that the δ(SAi

) are the maximal positive natural-number slopes in p-adic Newton polygons
(i.e. modulo Ai).

Theorem 4.3 points out that each exponential solution (4.4) can be written as

y = exp

∫

B1

A
δ(SA1

)
1

+ · · ·+ Bm

A
δ(SAm)
m

+
t′

t
+ p′.

We apply Hermite reduction and get

y = t exp

p+
C1

A
δ(SA1

)−1

1

+ · · ·+ Cm

A
δ(SAm)−1
m

+

∫

D1

A1
+ · · ·+

∫

Dm

Am

 , (4.7)

t, p, C1, . . . , Cm, D1, . . . , Dm ∈ K̄[x], deg(p, x) ≤ max(S) + 1,

∀i : deg(Di, x) < deg(Ai, x), ∀i : deg(Ci, x) < (δ(SAi
)− 1) deg(Ai, x).

Continued example. The balanced factorization of qord is

1

21
q2 = A1A2

2A3
4,

A1 = −6

7
+

12

7
x+

1

7
x2 − 8

7
x3 + x4,

A2 = x− 1,

A3 = x.

We compute

i νAi(q0) νAi(q1) νAi(q2) SAi δ(SAi)
1 0 0 1 {1} 1
2 1 0 2 {2} 2
3 0 1 4 {1, 3} 3

36

Thus, after formal Hermite reduction, each exponential solution can be written as

y(x) = t exp

(

ζ1
x− 1

+
ζ2x+ ζ3
x2

+

∫

ζ4
x− 1

+

∫

ζ5
x

+

∫

B1

6− 12x− x2 + 8x3 − 7x4

)

,

ζi ∈ K̄, t, B1 ∈ K̄[x].

4.4.3 Determining the singular parts

In this section we determine all singular parts and rules for the irregular singular parts. We
know from theorem 4.3 that the singular parts of an exponential solution for L (1.1) originate
from the exp

(∫

Dj/Aj
)

where the Aj are factors from the balanced factorization of qord,
j = 1(1)m, m is the number of balanced factors and Dj ∈ K̄[x], deg(Dj, x) < deg(Aj , x).
We can distinguish two cases:

• All roots of Aj are regular singularities of (1.1).

• All roots of Aj are irregular singularities of (1.1).

First, let us consider the regular singular case. Then, at {x0 | Aj(x0) = 0} each
exponential solution can be written in the form of a Laurent series

y(x) = (x− x0)
λ

∞
∑

n=α

an (x− x0)
n, (4.8)

α, ω ∈ Z, x0, an, λ ∈ K̄, aα 6= 0, aω 6= 0.

By lemma 4.1 we can build up the singular parts from the indices of L at {x0 | Aj(x0) = 0}.
Now let us consider the more complicated irregular case. We choose an index j for

which L is irregular at {x0 | Aj(x0) = 0} and denote Cj = ζ0 + ζ1 x + · · · + ζm x
m. We

transform (4.7) into

y(x) = ϕ(x) exp

Cj

A
δ(SAj)− 1
j

. (4.9)

If we compare (4.7) with (4.9), we note that ϕ(x) can be written at {x0 | Aj(x0) = 0} in
the form of a Laurent series (4.8). We substitute (4.9) into the original DE (1.1). We get
a DE

L̃ ϕ(x) = 0. (4.10)

Note that L̃ contains parameters ζ0, ζ1, . . . , ζm. If we knew the values of the parameters, by
lemma 4.1 we could build up the singular parts from the indices of L̃ at {x0 | Aj(x0) = 0}.

Thus, the goal of our algorithm Singular Parts it to produce all sets of rules for the
ζ0, ζ1, . . . , ζm, for which the indicial polynomial p0 of L̃ has roots (for which deg(p0, r) > 0).
If we find one solution for the rules, we construct the singular part from the corresponding
indicial polynomial.

For the present we have decided to implement the algorithm given in [15, section 4.3],
but with some modifications. We observed that occasionally the Singer/Bronstein proce-
dure computes too many useless candidates and if deg(Aj(x), x) > 3 then the procedure
sometimes produces a system of polynomial equations, which existing solvers cannot solve
in reasonable time. As far as possible we do not apply the Singer/Bronstein procedure and
substitute it by “simpler” methods.

Let P,Q ∈ K[x]. We introduce the notation rem(P,Q) for the remainder of P modulo
Q.

37

Algorithm 4 Singular Parts(L̃,Aj,rules)
(The algorithm computes recursively all possible pairs of singular parts and rules for the
coefficients ζ0, ζ1, . . . , ζm of the irregular singular parts for any DE of the form (1.1) at
{x0 | Aj(x0) = 0}. L̂ is derived from the substitution of (4.9) into (1.1) and may contain
parameters ζ0, ζ1, . . . , ζm. Start the recursion with rules = ∅.)

1. Mj := ∅; g := deg(Aj(x), x); Let L̃ =
ord
∑

i=0
q̃i y

(i)(x). Construct the indicial polynomial

p0 = a0 + a1 r + · · ·+ aord r
ord of L̃ at {x0 | Aj(x0) = 0}.

2. if p0(r) has at least one root in K̄ \ N then

(a) if ∀(ci, cj) : p0(ci) = p0(cj) = 0 ∧ ci − cj ∈ Z then

Compute the index c with the minimal real part.
Mj :=Mj ∪

({

Aj(x)
c} , rules

)

(b) else if g = 1 or deg(pp(p0, r), x0) = 0 and the set of indices contains only one
element then

for each index c ∈ K̄ \ N : p0(c) = 0

Mj :=Mj ∪
({

Aj(x)
c} , rules

)

(c) else (This is the special case δ = 1 of the procedure in [15].) Compute

n1 := max
0 ≤ k ≤ ord,

q̃j 6= 0

k − νAj
(q̃k);

Dj :=
∑g−1

k=0 ξk x
k where the ξk are free coefficients,

H1 :=
ord
∑

k=0

rem

q̃k

A
νAj

(q̃k)

j

, Aj

k−1
∏

l=0

Dj − l Aj ′

It follows that H1 ∈ K(ξ0, . . . , ξg−1)[x]. Compute the coefficients of H1 mod(Aj).
Equating the coefficients to 0, we get a system of polynomial equations for the
ξ0, . . . , ξg−1. Solve this system. Let L be the set of solutions.
for each (ξ̃0, . . . , ξ̃g−1) ∈ L

D̃j :=
∑g−1

k=0 ξ̃k x
k;

if all roots of p0(r) are in K̄\N or res(D̃j(x)−z Aj ′(x), Aj(x), x) ∈ K(ξ̃0, . . . ,

ξ̃g−1)[z] has at least one root in K̄ \ N then

Mj :=Mj ∪
({

exp
∫ D̃j

Aj
dx
}

, rules
)

3. rules := rules ∪ {a0 = 0, a1 = 0, . . . , aord = 0};
if rules is solvable for ζ0, ζ1, . . . , ζm then

Apply rules to L̃ and recompute it.
Mj :=Mj ∪ Singular Parts(L̃, Aj , rules)

4. return Mj .

38

In the case of irregular singularities, the recursion is started with L̃ from (4.10) and rules =
∅. Singular Parts can be applied to regular singular parts Aj too. In this case, start the
recursion with Singular Parts(L,Aj , ∅). Then, L has no parameters and the recursion
stops after one step. Let us now discuss the algorithm.

In step 1 we compute the indicial polynomial. We only search for those singular parts

exp

(∫

Dj/Aj

)

=
∏

i

ri
ci ,

for which at least one index ci is not a natural number. Any DE (1.1) of order ord has
at any regular point the indices 0, 1, . . . , ord− 1. Only if p0 has roots in K̄ \ N it is worth
searching for singular parts. This way the test in the beginning of step 2 lessens the number
of calls to the Singer/Bronstein procedure and, consequently, lessens the number of singular
parts.

If all roots of the indicial polynomial p0 at {x0 | Aj(x0) = 0} differ by integers (an
important subcase is: if all roots are integers), then we take in step 2a only that singular
part Aj

c, for which c is the index with the minimal real part. This can be done because
each other singular part exp

(∫

Dj/Aj
)

is the product of a polynomial and Aj
c.

Roughly speaking, the singular parts are built by combining the roots of the indicial
polynomial with the roots of Aj in all possible ways. If deg(Aj(x), x) = 1 or deg(pp(p0, r),
x0) = 0 and the set of indices contains only one element then the way to combine them in
step 2b is predetermined.

In the steps 2a and 2b we also don’t really solve p0(r) = 0 in terms of radicals, but
add the indicial polynomial to the rules if it has roots in K̄ \K. This way we avoid heavy
computation at a moment, where we don’t know whether the candidate for the singular
part is in fact needed in the solution, or not.

If the reader is familar with [15, section 4.3] then he will notice that in step 2c we only
use the Singer/Bronstein procedure in the special case δ = 1. Proofs of the correctness of
the Singer/Bronstein procedure are given in [60, proposition 2.3], [16, theorem 8.4].

We added a test in step 2c, where we check, if our singular part really produces non-
natural indices. If p0 has roots in K̄ \ N and roots in N too, the singular parts given by
the Singer/Bronstein procedure sometimes have the property that all the ci are natural
numbers. These cases are excluded by a test, taken from the Rothstein/Trager method
[29]. This test lessens again the number of singular parts.

Unfortunately, it is not always possible to solve the system of polynomial equations
for the coefficients ξ0, . . . , ξg−1 in terms of radicals. In general one has to describe the
ξ0, . . . , ξg−1 as algebraic extensions of K. If such a case appears, we leave the coefficients
undetermined and add the system of polynomial equations, which describes the coefficients,
to the rules. This is another part of our “lazy evaluation” strategy.

In step 3 we add the coefficients of the indicial polynomial to the rules for the parameters
ζ0, ζ1, . . . , ζm. Our Maple implementation stores the rules in form of pure lexicographic
Gröbner bases, but other forms are possible. We don’t “solve” rules explicitly, but we
have to decide whether rules is algebraically consistent, i.e. has at least one solution. If
this is the case, then the parameters ζ0, ζ1, . . . , ζm take values such that all ai are 0, the
“old” indicial polynomial vanishes and hence the “new” indicial polynomial needs to be
recomputed. Before we call Singular Parts again, we apply rules to L̃. In terms of our
Maple implementation, we compute the reduced form of the coefficients of L̃ with respect
to the ideal basis rules and pure lexicographic term order.

The algorithm Singular Parts is called recursively while rules is solvable.

39

We apply to each Aj from the balanced factorization of qord. Then we combine theMj

in all possible ways. This is done in algorithm Exponential Solutions, step 3. We denote
the set of all possible combinations by M.
Continued example. We have already noted that the DE is regular singular at {x0 |
6 − 12x0 − x0

2 + 8x0
3 − 7x0

4 = 0} with pp(p0, r) = r (r − 2). The indices are natural
numbers that one can ignore. This is one reason why our algorithm is sometimes more
efficient than the algorithm proposed in [15], which does not check whether the special case
δ = 1 of the procedure in [15] applies or not. If we omit the check then we get a system of
polynomial equations, which is hard to solve and gives a lot of unnecessary singular parts
with algebraic extensions of degree up to 6. (This also seems to be the reason why the
Maple V Release 4 procedure ‘dsolve/diffeq/expsols‘ fails on this example.)

The DE is irregular singular at {x0 | 1− x0 = 0}. After substitution of

y(x) = ϕ(x) exp

(

ζ1
x− 1

)

we get the DE L̃ ϕ(x) = 0. The corresponding RE at {x0 | x0 − 1 = 0} is

0 = 18 ζ1(ζ1 + 2) an + · · ·+ 7 (3 r − 31)(r − 8) an−10.

If ζ1(ζ1 + 2) 6= 0 then deg(p0, r) = 0. If ζ1(ζ1 + 2) = 0, we get

0 = −36 (ζ1 + 1) r an + · · ·+ 7 (3 r − 28)(r − 7) an−9.

The root of pp(p0, r) is a natural number. The ruleset for the next recursion

rules := {ζ1(ζ1 + 2) = 0} ∪ {ζ1 + 1 = 0}

is not solvable and the recursion is finished. Consequently, each exponential solution of the
DE can be written as

y(x) = t exp

(

ζ1
x− 1

+
ζ2x+ ζ3
x2

+

∫

ζ5
x

)

,

ζi ∈ K̄, t ∈ K̄[x].

4.4.4 Determining t and the coefficients in p and c

In the previous section we defined byM the set of all pairs (combination of singular parts,
rules for the irregular singular part) to a given DE (1.1). We were able to compute M.
Now, we choose a point x0 ∈ K and note that each exponential solution y(x) (4.6) of an
ODE with polynomial coefficients (1.1) can be written as

y(x) = ς(x) f exp(p+ c/d), (4.11)

where there exists a combination of singular parts f inM such that ς(x) can be expanded
into the form (4.1) at the point x0. In other words, if we compare (4.6) with (4.11), we get

t
∏

i

ri
ci = ς(x) f,

i.e. ς(x) is one singular part, which corresponds to the chosen point x0, multiplied by the
polynomial t. We substitute (4.11) into (1.1) and obtain a DE

L̂ ς(x) = 0. (4.12)

40

L̂ can be transformed again to the form (1.1), because f exp(p+ c/d) is an exponential
function and substitutions in (1.1) of the dependent variable y by a new dependent variable
multiplied with an exponential function give again linear ODEs with rational coefficients.

Thus, we have reduced the question of finding exponential solutions to the less complex
question of finding finite Laurent series solutions ς(x) at the point x0. But L̂ contains
coefficients ζl which come from the polynomials p and c. Therefore, we have to modify
algorithm Finite Laurent Series Solutions.

If deg(p0, r) = 0 or deg(prank, r) = 0 then solutions ς(x) for (4.12) cannot exist. We use
this property to determine the ζl. If p0 contains free ζl then we determine rules for the ζl,
for which p0 vanishes. Then we reduce the old RE modulo the rules and get a new RE. We
do the same for pord. We get a tree with nodes of pairs (RE, rules). The rank of the new
RE is less than the rank of the old RE. This guarantees that the recursion always stops.

Algorithm 5 Tree(L̂,rules,p+ c/d,x0)
(The algorithm computes the set of functions ς(x) exp(p+ c/d) for any DE of the form
(1.1) at the point x0 ∈ K. L̂ is derived from the substitution of (4.11) into (1.1) and may
contain parameters ζ1, . . . , ζj. Start the recursion with known rules for the parameters.)

1. {yk} := ∅. Apply rules. Compute the RE at the point x0. Denote the symmetry
number by h and the rank by rank. Suppose p0 = a0 + a1 r + · · · + aord r

ord and
prank = b0 + b1 r + · · ·+ bord r

ord.

2. Define β = λ+α. Solve {pp(p0(β), r) = 0, pp(prank(β+nh+rank), r) = 0}∪rules for
{β, n} with the condition n ∈ N. Construct the set of all solutionsM = {βi, βi+ni h)}.

3. for each (β, γ) ∈M

(a) Substitute y(x) = aβ (x− x0)
β + aβ+h (x− x0)

β+h + · · ·+ aγ (x− x0)
γ with free

coefficients aβ, aβ+h, . . ., aγ into L y(x) = 0. Solve the system of polynomial
equations for the coefficients ζ1, . . . , ζj , aβ, aβ+h, . . . , aγ. Let L be a set of non-
trivial solutions.

(b) for each (ζ̂1, . . . , ζ̂j, âβ , âβ+h, . . . , âγ) ∈ L
i. ϕ := âβ (x− x0)

β + · · ·+ âγ (x− x0)
γ

ii. Denote by z the result of the substitutions ζ1 ← ζ̂1, . . ., ζj ← ζ̂j in exp(p+
c/d)).

iii. {yk} := {yk} ∪ {ϕz}

4. r := rules ∪ {a0 = 0, a1 = 0, . . . , aord = 0};
if r is solvable then {yk} := {yk}∪Tree(L̂, r, p+ c/d, x0)

5. r := rules ∪ {b0 = 0, b1 = 0, . . . , bord = 0};
if r is solvable then {yk} := {yk}∪Tree(L̂, r, p+ c/d, x0)

6. return {yk}.

We have already mentioned that we always use Gröbner basis solvers for solving systems
of polynomial equations. In fact, we don’t really need to “solve” L, whatever this means,
but we have to decide whether L is algebraically consistent, i.e. has at least one solution.
If L is algebraically consistent then (4.11) with parameters in ς, p and c satisfying L, is a
solution of (1.1).

41

One can show that step 5 gives the rules for the coefficients in the candidates for the
polynomial part.

We put a summary of the information obtained into the main algorithm:

Algorithm 6 Exponential Solutions(L)
(The algorithm determines all exponential solutions of any given differential operator L
(1.1).)

1. Compute max(S). p :=
∑max(S)+1

j=0 ζj x
j, where the ζj are free coefficients.

2. Compute the balanced factorization Al11 · · ·A
lm
m of qord w.r.t. {q0, . . . , qord}.

A := {A1, . . . , Am}.
for each Aj ∈ A

Compute δ(SAj).

c/d := C1

A1
δ(SA1

)− 1
+ · · ·+ Cm

Am
δ(SAm)− 1

with

C1, . . . , Cm ∈ K̄[x], ∀i : deg(Ci, x) < (δ(SAi)− 1) deg(Ai, x) and the Ci contain free
coefficients ζj.

3. Choose a point x0 ∈ K.
M := {1}; A := A \ {x− x0};
for each Aj ∈ A

(a) if L is irregular singular at {x | Aj(x) = 0} then

i. Derive L̃ with L̃ ϕ(x) = 0 by substitution of

y(x) = ϕ(x) exp

Cj(x)

Aj(x)
δ(SAj)− 1

into L.

ii. Mj :=Singular Parts(L̃, Aj , ∅)
else Mj :=Singular Parts(L,Aj , ∅)

(b) F :=M;
for each ((f, rulesf), (g, rulesg)) ∈ F ×Mj

if rulesf ∪ rulesg is solvable then

if Mj = {Ajc}, c ∈ Z \ N then M :=
{

(f Aj
c, rulesf ∪ rulesg)

}

else M :=M∪ {(f g, rulesf ∪ rulesg)}

4. {yk} := ∅;
for each (f, rules) ∈M

(a) Derive L̂ with L̂ ς(x) = 0 by substitution of y(x) = ς(x) f exp(p+ c/d) into L.

(b) {zk} :=Tree(L̂, rules, p+ c/d, x0)

(c) for each zk ∈ {zk}
{yk} := {yk} ∪ {zk f}

5. return {yk}.

42

In step 3 we have to choose a point x0 ∈ K. A good choice for x0 would be a singular
point for which the number of elements in the set of singular parts |M| becomes minimal.
Unfortunately, we are not able to predict the best choice without testing all singular points,
which would be too expensive. At present in our implementation we fix x0 = 0. This choice
is based on the simple observation that many authors like to have a singularity at 0.
Continued example. If we choose the point x0 = 0, step 3a in algorithm Exponen-

tial Solutions givesM = {1}. We continue and call Tree(L̂, ∅, p+c/d, 0) with substitution
of

y(x) = ς(x) exp(p+ c/d)

= ς(x) exp

(

ζ1
x− 1

+
ζ2x+ ζ3
x2

)

into L and L̂ ς(x) = 0. We try now to find a finite Laurent series solution ς(x) at the point
0. At x0 = 0 we construct the corresponding RE for L̂, which is

0 = −72 ζ3 (ζ3 + 1) an + · · ·+ 7 (3 r − 37)(r − 10) an−12.

In the next step with rules = {ζ3 (ζ3 + 1) = 0} we get

0 = −36 ζ2 (2 ζ3 + 1) an + · · ·+ 7 (3 r − 34)(r − 9) an−11

and in the last step with rules = {ζ3 (ζ3 + 1) = 0, ζ2 (2 ζ3 + 1) = 0} the RE becomes

0 = 6 (12 r ζ3 + 6 r − 3 ζ2
2 + 10 ζ3 − 2) an +

...

2 (−54 r2 + (−21 r + 182)(ζ1 + ζ2) +

870 r − 3444) an−9 +

7 (3 r − 31) (r − 8) an−10.

The symmetry number is 1 and the rank is 10. We solve {12β ζ3 + 6β− 3 ζ2
2 + 10 ζ3− 2 =

0, (3 (β + n + 10) − 31) (β + n + 10 − 8) = 0} ∪ rules. The solutions with n ∈ N are
L = {{ζ3 = 0, ζ2 = 0, β = 1/3, n = 0}, {ζ2 = 0, ζ3 = −1, β = −2, n = 0}}.

We take the first solution and substitute ς(x) = a1/3 x
1/3 into L̂ ς(x) = 0. We solve the

system of polynomial equations and find ζ1 = −2. Therefore,

y1(x) = ς(x) exp

(

ζ1
x− 1

+
ζ2 x+ ζ3

x2

)

= a1/3 x
1/3 exp

(−2

x− 1

)

is a solution of the DE.
We take the second solution, substitute ς(x) = a−2 x

−2 into L̂ ς(x) = 0 and find ζ1 = 0.
Therefore,

y2(x) = a−2 x
−2 exp

(−1

x2

)

is a solution of the DE too. We have now determined the complete fundamental system of
the given DE.

43

4.4.5 The application of Beke’s method to approximate solutions

We have mainly handled REs for the given DEs. This allows us to extend the algorithm in
a natural way to find formal exact solutions of the form

y(x) =
(

t0 + t1 ln(x− x0) + . . . tord−1 ln(x− x0)
ord−1

)

exp
(

p+
c

d

)

∏

i

ri
ci , (4.13)

ci ∈ K̄, p, c, d, ri ∈ K̄[x],

where the ti are formal Laurent series (2.4). To do this, the subroutine in Exponential So-

lutions which searches for finite Laurent series solutions could be replaced by the Frobenius
method [26, 21]. We obtain DESIR-like solutions [4, 52] around regular and regular singular
points. Together with the simple test in section 3.1, we are also able to find all series
solutions (2.3) around irregular singular points. The solutions are exact in the sense that the
REs describe exactly the coefficients of the series. The solutions are only formal solutions
because ad hoc nothing is known about convergence. If we truncate the Laurent series ti,
we have good candidates for approximate solutions in closed form.

Finally, Beke’s method can also be used for finding approximate exponential solutions
(4.6) with free parameters. Those solutions are needed in the Adaption algorithm of the
adaptive approximation method, see next chapter. As done in [16, 15], we determine the set
N of candidates for polynomial parts p and the setM of candidates for the singular parts
rcii with their corresponding irregular singular parts. Then, for each function f ∈ N×M we
multiply f with a monic polynomial t with free coefficients. Our candidates for approximate
exponential solutions (4.6) with free parameters are the functions f t.

Of course, the number of free coefficients in t is important for the accuracy of the
approximate solution. By our practical experience we know: in most cases, the adaptive
approximation algorithm in this thesis needs only deg(t, x) = 2 or deg(t, x) = 3. With
higher degrees, our solutions will be even too complicated.

Then, we apply adaption criterions to the parameters in t. But this is an anticipation
of the next chapter and will be explained there.

4.5 An abridged version of Beke’s method

While our search for exponential solutions can be expensive when it uses algebraic exten-
sions, we have good experience with an abridged version of Beke’s algorithm, which omits
the program code of the special case δ = 1 of the Singer/Bronstein procedure in Singu-

lar Parts. Under the assumption that computations in the given field K are fast, e.g., if
K = Q, it quickly filters out at least all exact solutions of the form

y(x) = t exp
(

p+
c

d

)

∏

i

ri
ci ,

p ∈ K̄[x], c, d ∈ K[x], −ci ∈ N, t, ri ∈ K[x]

and it even covers the search for rational solutions. Nevertheless, we don’t use this idea for
finding approximate solutions, because if we did, then we would not be able to find good
approximations to functions with non-integer indices ci.

4.6 The factorization algorithm of van Hoeij/Singer

Recently a new efficient algorithm has been found [61, section 6.1],[70, 71, 72].

44

Theorem 4.4 Let K be a field of constants with characteristic 0. Let L, r ∈ K(x)[D]
be homogeneous linear differential operators. Let L be monic. Let r be a solution of
RRem(Lr, L) = 0 with 1 ≤ order(r) < order(L). Let x0 ∈ K be a regular point of L and let
b1, . . . , border(L) ∈ K[[x − x0]] be a basis of formal Taylor series solutions of L in point x0.
Let z ∈ K̄ be an eigenvalue of the matrix of the linear map r : K[[x− x0]]→ K[[x− x0]] in
the basis b1, . . . , border(L).

Then, GCRD(L, r − z) is a right hand factor of L, i.e.

RRem(L,GCRD(L, r − z)) = 0.

Proof. We have that Lr is divisible on the right by L, i.e. there exist a l that Lr+ l L = 0.
Therefore, if ŷ is a solution of L y = 0, then r ŷ is again a solution of L y = 0. This implies
that ŷ → r ŷ is a linear map of the solution space of L y = 0 into itself. Computing a basis
of formal Taylor series in a regular point, we get an easy way to compute the matrix of this
map. If z is an eigenvalue of the matrix, then (r − z) y = 0 and L y = 0 have a common
solution (the eigenvector of r corresponding to z). Since 1 ≤ order(r − z) < order(L),
GCRD(L, r − z) will be a nontrivial factor of L.

In this way, the problem of finding a right hand factor of L is reduced to the problem
of finding a differential operator r with the above mentioned properties.

Let R, c ∈ K(x)[D], R be monic and let the order of c be less than the order of L. r is a
solution of RRem(Rr,L) = c if and only if there exist a l ∈ K(x)[D] which is a solution of
the mixed equation (called gemischte Gleichung in [50]) Rr + l L = c. In our application,
c = 0. It was also shown by van Hoeij how to solve the mixed equation.

Note that the only algebraic extension over K that is used to factor L is the eigenvalue
z. This is the main reason, why the factorization algorithm of van Hoeij/Singer is more
effective than Beke’s method and why it should be preferred for finding exact solutions.
On the other hand, the algorithm of van Hoeij/Singer seems to be purely algebraic and the
author has no idea how to use the algorithm for finding approximate solutions.

Up to now there is only one implementation of this algorithm - a Maple-Package diffop
from Mark van Hoeij. At present it cannot solve DEs involving parameters.

45

Chapter 5

Adaption step - getting candidates

In this chapter we determine the adaptive differential operator L̃ ∈ ELF to a given DO L
(1.1). In the previous chapter we have shown, how structure theorems of computer algebra
can be used to find candidates for approximate exponential solutions ỹ (4.4) for differential
operators of the form (1.1). One important property of exponential solutions is that they
are solutions of DOs l̃ (1.1) of first order. Now we use this property of the candidates
in a recursive procedure to split up approximate right first-order factors of L. We choose
adaption criterions and apply them for minimizing rest terms which appear in the right
remainders RRem(L, l̃).

Algorithm 7 Adaption(L,R)
(Let L,R be DOs (1.1). The algorithm computes linearly independent approximate solutions
Φ = φ1, φ2, . . . , φq for LR. The fundamental system of R is known.)

1. Use structure theorems of computer algebra (e.g., those of chapter 4) for determining
candidates ỹj for possible approximate exponential solutions of L. Each ỹj contains
free coefficients. Assign Φ the empty sequence.

2. for each ỹj ∈ {ỹj}

(a) Compute a DO l̃ (1.1) of first order with free parameters c1, . . . , cm and l̃ ỹj = 0.

(b) Compute the right quotient Q of the form (1.1) and the right remainder r such
that pL = Q l̃ + r and p, r ∈ K̄[c1, . . . , cm][x].

(c) Determine the coefficients c1, . . . , cm in l̃ and ỹj by applying adaption criterions
(least square method, smooth adaption, collocation, . . .) to r.

(d) Determine a fundamental system of l̃ R by d’Alembert reduction 2.13. Denote
by φ the function, which is in the fundamental system of l̃ R but not in the
fundamental system of R.

(e) if φ is elementary and det(WΦ,φ) 6= 0 then Φ := Φ, φ

(f) Ψ := {Adaption(Q,l̃ R)}
(g) for each ψ ∈ Ψ

if det(WΦ,ψ) 6= 0 then Φ := Φ, ψ

3. return Φ.

46

The algorithm should be started with Adaption(L,1), where 1 is the identity DO.
The result of the whole adaption step is a fundamental system of L̃ in form of a sequence

of q linearly independent functions Φ = φ1, φ2, . . . , φq. Our concept doesn’t need the
adaptive differential operator L̃ in an explicit form. Nevertheless, L̃ can easily be computed
by

L̃ y =
det(Wφ1,φ2,...,φq ,y)

det(Wφ1,φ2,...,φq
)
. (5.1)

Note, (5.1) is monic.
The fundamental system of L̃ was computed using d’Alembert reduction. The integra-

tion routine (hopefully an implementation of the entire Risch algorithm [54, 29]) decides
whether the integrals are elementary functions or not.

The search for possible approximate exponential solutions in step 1 can be restricted to
subclasses of exponential functions as polynomials, finite Laurent series solutions or rational
functions. This makes the computation less complex, but we lose the ability of describing
all kinds of singularities.

In step 2c a question arises: Why minimize the right remainder r and not the defect
function L ỹ (as usually done)? The answer is: From pL ỹ = Q l̃ ỹ + rỹ = rỹ we know
that the defect function is the remainder r multiplied by ỹ/p. Thus, minimizing the defect
means minimizing ỹ, too. This is not our goal. Additionally, this adaption algorithm has
the great advantage that the adaption criterions should be applied to polynomials - one
of the most simple algebraic structures. Our adaption algorithm is different to those of
[66, 47, 34] for this reason and for another reason, too.

Unlike them, in the adaption step we don’t use boundary conditions nor start solutions.
(Only the question, whether we have a BVP or an IVP becomes important for choosing the
criterions.) Thereby we decouple completely adaption from approximation and simplify the
reuse of once found adaptive solutions with new approximation criterions.

We have to determine the coefficients c1, . . . , cm in r in such a manner that r becomes
minimal in the sense of the adaption criterions. E.g., if a boundary value problem is given,
then we are interested in a good approximation (and a minimal r) in the whole segment;
if an initial value problem is given, then we are mostly interested in a good approximation
near the initial point. We now indicate possible adaption criterions, cf. [34].

5.1 Least square method

5.1.1 Least square method with integral norms

The least square method is suitable for boundary value problems in [x0, x1]. In the adaption
step, the right remainder r ∈ K̄[c1, . . . , cm][x] is contained in C2[x0, x1]. Therefore, we can
apply the scalar product (2.8). We have to minimize ‖r(x)‖, which is the same as minimizing

F (c1, . . . , cm) = ‖r(x)‖2 =

∫ x1

x0

|r(x)|2 dx.

One necessary condition for the minimum is

Fc1(c1, . . . , cm) = 0 (5.2)

Fc2(c1, . . . , cm) = 0

...

Fcm(c1, . . . , cm) = 0

47

We get a system of m non-linear polynomial equations in m unkowns, which we can solve

• symbolically, if m is small (in practice: less than 4),

• numerically.

The mimimal r can be computed by the coefficients of the minimal F (ĉ1, . . . , ĉm), where ĉ1,
. . ., ĉm is one solution of the system (5.2). Although in general we get a system of non-linear
equations, the algorithms in chapter 4 for finding solution candidates in subclasses of ELF
produce candidates which cause linear systems (5.2). This is one argument in favor for the
whole concept of the thesis.

The scalar product (2.8) is suitable for those boundary value problems, where our
interest in accuracy is the same at each point in [x0, x1]. If our interest varies on the
segment, we adapt the method.

The space of complex polynomials r is a subspace of the space of functions f : [x0, x1]→
C, for which holds

∫ x1

x0
|f(x)|2 dx <∞. The space of complex polynomials r forms a complex

Euclidean space with the scalar product

〈f(x), g(x)〉 :=

∫ x1

x0

f(x)g(x)w(x) dx, (5.3)

w ∈ Ĉ(0)[x0, x1], 0 ≤ w(x) ≤ 1, w(x) 6≡ 0,

i.e., the scalar product (2.8) is generalized by using some weight function w, which expresses
our interest in accuracy: w(ξ) = 0 means that we have no interest at point ξ, w(ξ) = 1
means that we have maximal interest at point ξ. The weight function of (2.8) is w = 1,
other practicable weight functions are, e.g.,

w(x) =

(x− x0)b+ (a− x)d
a− x0

: x0 ≤ x ≤ a
(x1 − x)b+ (x− a)c

x1 − a : a < x ≤ x1

1

d

c

b

0
x1ax0

or polynomials w ∈ K[x].
Example. Consider the DE

L y(x) = 3x2D2 y(x) + 2x (x2 + 5)Dy(x) + (2x+ 2) y(x) = 0

taken from [66]. We try to find an approximate solution in [1, 2] in form of a truncated
Taylor series ỹ = 1+c1x+c2x

2. We construct l̃ = (1+c1x+c2x
2)D−(c1+2c2x) and define

p = 1 + c1x+ c2x
2. Then, the right quotient Q and the right remainder r for pL = Q l̃+ r

are

Q = 3x2D + 2x (x2 + 5),

r = 4 c2x
4 + (2 c1 + 2 c2)x

3 + (2 c1 + 28 c2)x
2 + (12 c1 + 2)x+ 2.

48

The figure shows the absolute value of the minimal r for three different weight functions.

w(x) = 2-xw(x) = x-1

w(x) = 1

0

0.1

0.2

0.3

0.4

0.5

1 1.2 1.4 1.6 1.8 2x

5.1.2 Least square method for sequences

This adaption criterion is suitable for initial value problems at some point ξ, but can also
be used for boundary value problems if one of the boundaries is “near” to some singular
point of the considered DE. Each right remainder r ∈ K̄[c1, . . . , cm][x] can be represented
as a Taylor series r =

∑∞
n=0 an (x− ξ)n at the point ξ. Therefore, we can apply the scalar

product (2.9) to the sequence of series coefficients a0, a1, . . . , an−1, an, an+1, We have
to minimize

F (c1, . . . , cm) = ‖an‖2 =

deg(r,x)
∑

n=0

|an|2.

As in the previous section, we use the necessary condition for the minimum und get the
system (5.2). Again, the algorithms in chapter 4 for finding solution candidates in subclasses
of ELF produce candidates which cause linear systems (5.2).

The scalar product (2.9) can also be generalized using some sequence W ∈ l2,

〈an, bn〉 :=
∞
∑

n=0

anbnwn, (5.4)

wn ∈ [0, 1], wn 6≡ 0,

The weight wn expresses the kind of interest in accuracy. An increasing weight wn < wn+1

makes the higher coefficients more important, a decreasing weight has the opposite effect.
Continued example. Consider the DE 3x2D2 y(x)+2x (x2+5)Dy(x)+(2x+2) y(x) = 0.
We find an approximate solution in form of a truncated Laurent series ỹ = x−1/3(1+ c1x+
c2x

2) in point 0.

49

The figure shows the absolute value of the difference between the exact solution (with
the same index −1/3) and ỹ for three different weights wn.

1/(n+1)^2

1/(n+1)

1

0

0.001

0.002

0.003

0.004

-1 -0.5 0.5 1 1.5 2x

5.1.3 Least square method applied to collocation

Let be given a sequence of points Ξ = ξ1, ξ2, . . . , ξm with ∀j = 1(1)m : (x0 ≤ ξj)∧(ξj ≤ x1)
where m is the number of coefficients in r(x). Let i(j) be a natural-valued function of the
indices j = 1(1)m with the property ∀ξj , ξk ∈ Ξ : (ξj = ξk) → (i(j) 6= i(k)). For each
point ξj ∈ Ξ we demand that the derivative Di(j) r(x) should be near 0 at the point ξj.
We use the scalar product (5.4) and change the sense of the sequence whose norm has to
be minimized: If ξ ∈ Ξ and

r(x) =
∞
∑

n=0

tn(x− ξ)n (5.5)

and we want to minimize Di r(x) at the point ξ, then we append i! ti to the sequence an
(with the weight wn). In our case of coefficients ĉ1, . . . , ĉm coming from candidates in ELF
we get a linear system with m equations for m unknowns.
Continued example. We find an approximate solution in form of a truncated Laurent
series ỹ = x−1/3(1 + c1x+ c2x

2), which fulfils r(0) ≈ r(1) ≈ 0. The right remander r is

5x3c2 + (3c2 + 2c1)x
2 + (33c2 + 3c1 − 1)x+ 3 + 12c1.

We define a1 = 3 + 12c1 as the coefficient at power 0 of the Taylor series in point 0,
a2 = 41c2 + 17c1 + 2 as the coefficient at power 0 of the Taylor series in point 1. If wn = 1,
then ‖an‖2 = a1

2 + a2
2. We get a linear system for the minimum which gives the same

solution as in the next section.

5.2 Collocation

This is the usual kind of collocation, where we demand that r(x) = 0 at a sequence of
points ξn, n = 1(1)m, x0 ≤ ξ1 < ξ2 < · · · < ξm ≤ x1. We call it pure, because the criterion

50

doesn’t deal with the derivatives of r. Like in the previous section, we can expand this
method and use derivatives of r.
Continued example. We find an approximate solution in form of a truncated Laurent
series ỹ = x−1/3(1 + c1x+ c2x

2), which fulfils r(0) = r(1) = 0.

5.3 Smooth adaption

Smooth or (complete) Taylor adaption is suitable for initial value problems at some (regular)
point ξ. We demand (Dj r)(ξ) = 0 for j = 1(1)m, m is the number of coefficients ĉ1, . . . , ĉm
in r. Again, the algorithms in chapter 4 for finding solution candidates in subclasses of
ELF cause linear systems. From (5.5) we get at system of m equations t1 = 0, t2 = 0, . . .,
tm = 0 in m unknowns ĉ1, . . . , ĉm.

This usual smooth adaption method can be generalized and used for problems where
one of the boundaries is “near” to some singular point ξ of the considered DE, because r is
a polynomial even in a singular point (by choosing an appropriate p in algorithm 7).
Continued example. We find an approximate solution in form of a truncated Laurent
series ỹ = x−1/3(1 + c1x + c2x

2), which fulfils r(0) = (D r)(0) = 0. The figure shows the
absolute value of the difference between the exact solution and the approximate solutions
from collocation and smooth adaption, respectively.

smooth adaption

collocation

-0.002

-0.001

0

0.001

0.002

0.003

0.004

-0.5 0.5 1 1.5 2x

Summarizing, each adaption criterion has its own advantages.

51

Chapter 6

Approximation step

When the approximation step starts, we have already determined q linearly independent
functions Φ = φ1, φ2, . . . , φq with L̃ φi = 0, where L̃ is an adaptive differential operator in
ELF . We know that q ≥ ord, because if L̃ ∈ ELF , then we are able to approximate all ord
formal solutions of the fundamental system of the given DO L in theorem 2.1. We have
now to combine the “best” functions from Φ (in the sense of approximation criterions) to
get our approximate solution ỹ.

The usually proposed procedure [35, 34] for the approximation consists of two steps:
First, we make a linear ansatz ỹ =

∑q
i=1 ciφi and substitute ỹ into the constraints. From

the constraints we find ord of the q coefficients. Then, the other q − ord coefficients are
determined by applying approximation criterions to the whole ỹ. In most cases, none of the
coefficients will be 0. This method works fine as long as q is not much greater than ord and
each function in Φ has an utmost simple structure. But, our algorithm may give a large
number of functions in Φ, and most of them will be quite complex. A linear combination of
all functions in Φ with a lot of nonzero coefficients ci will result in an even more complex
expression. Because it would contradict our goal of finding simple and lucid approximate
solutions, we will not follow this way.

Each function in Φ we got from our adaption step is the result of some optimization
process (they minimize norms of rest terms) and, therefore, is an optimal approximation (in
the sense of adaption criterions) to some function of the fundamental system of the given
differential operator L. Now, we sort the functions in Φ by applying an approximation
criterion to each of them. Note, the approximation criterions are similar to the adaption
criterions listed in section 5.1. It is even possible, that the same criterions are used in the
adaption and the approximation step.

Algorithm 8 Approximation(L,U ,Φ)
(Let L be a monic homogeneous linear differential operator (1.4) with coefficients qi ∈

K(x) and let U be linear boundary constraints (1.3). Let ord be the order of L. Let Φ =
φ1, φ2, . . . , φq be a sequence of linearly independent functions with q ≥ ord. The algorithm
computes a function ỹ which is an approximate solution for L and an exact solution of the
boundary constraints.)

1. for each φ ∈ Φ

(a) Compute l̃, the linear monic DO of first order and l̃ φ = 0.

(b) Compute the right remainder r such that L = Q l̃ + r, r ∈ K̄[ln(x)](x).

(c) Apply approximation criterions (least square methods) to r and compute its
norm.

52

2. Sort Φ by increasing norms of the corresponding r.

3. i := 2; Ψ := φ1;
while i ≤ q and the lenght of Ψ is less than ord do

(a) if Ψ, φi is not ill-conditioned then Ψ := Ψ, φi;

(b) i := i+ 1

if the lenght of Ψ is less than ord then return FAIL else Φ := Ψ

4. Make a linear ansatz ỹ =
∑ord

i=1 ci φi and substitute it into the constraints U . Deter-
mine the coefficients from the linear system.

5. return ỹ.

The set of possible approximation criterions is described in section 5.1. As shown there,
for computing the norms of r we use the scalar products (5.3) and (5.4). Now we compute
the norms not for minimizing them, but for comparing one with another. Because r may
be more complicated (r ∈ K̄[ln(x)](x)) as in the adaption step and because we don’t need
the norms in high precision, it is advisable to compute the norms numerically.

Up to step 4 we never made use of the boundary value conditions, i.e. our approximate
fundamental system is reusable for variant boundary value conditions.

Step 3 has been added for practical reasons. By our adaption algorithm, the functions
in Φ are linearly independent. Still it may happen that they are numerically very close to
be linear dependent. In this case, the coefficients ci in the linear ansatz at step 4 would
behave very unstable, that is, a small change in the boundary conditions may lead to a
large change for the ci. To prevent this shortcoming, we included a condition check for Φ.
The next section describes, how this can be done.

6.1 Ill-conditioned problems

Formally, the condition number condn(M) of a matrix M is defined as the absolute value
of the ratio of the largest of the eigenvalues to the smallest of the eigenvalues. If a matrix is
singular then its condition number is defined to be infinite, and a matrix is ill-conditioned if
its condition number is “too large”, e.g., if its reciprocal approaches the machine’s floating-
point precision. We define a sequence Y of functions to be ill-conditioned, if the Wronskian
WY is ill-conditioned.

If Y is a sequence of functions depending on x, then the eigenvalues of the Wronskian
WY and its condition number are functions of x. In the following sections we are able to
compute them as defined, but, as the dimension of the Wronskian grows, this approach is
too expensive.

Therefore, our program uses another procedure. Let Y = y1(x), y2(x), . . . , yk(x) and let

z1(x), . . . , zk(x) be its eigenvalues. We know det(WY) =
k
∏

i=1
zi(x). Let z1(x) and zk(x) be

the eigenvalues with respectively the smallest and the largest absolute value. Then,

condn(WY) =

∣

∣

∣

∣

zk(x)

z1(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

zk(x)

det(WY)

k
∏

i=2

zi(x)

∣

∣

∣

∣

∣

≤ | zk(x) |k
| det(WY) | ,

or, in other words, if the determinant is not too small and the biggest absolute value of the
eigenvalues is not too big, then the matrix is not ill-conditioned.

53

The determinant of the Wronskian can much easier be computed than its smallest
eigenvalue. If we store the determinant of the Wronskian, it can also be reused in chapter
7, where we need it for the Green function (in form of (2.14)) of the adaptive differential
operator. Regarding (5.1), we mention that the singularities of the differential operator
are given by the roots of det(WY). Thus, controlling det(WY) > 0 has also the welcome
side-effect of proving non-singularity of the corresponding adaptive differential operator.

A complete linear space with a norm is called Banach space. From the theory of linear
operators [42, theorem 7, §5, chapter 4] we know that the absolute value of the eigenvalues
of the bounded linear operator M in some Banach space is bounded by the operator norm.
In the general case, WY cannot be bounded (e.g., if Y = 1/x2, then limx→0 zk(x) = ∞).
But, for each regular point ξ of the adaptive differential operator constructed from WY

by formula (5.1), the functions in Y are analytical functions and the linear operator b =

WY (ξ) a for a, b ∈ Ck is bounded. Additionally, Ck with the norms ‖a‖ =
√

∑

i=1(1)k |ai|2,
‖a‖ =

∑

i=1(1)k |ai| or ‖a‖ = maxi=1(1)k |ai| are Banach spaces. Therefore, we can apply
the theorem.

The operator norm of WY (ξ) can be computed by ‖WY (ξ)‖ = sup‖a‖≤1 ‖WY (ξ) a‖, cf.
[42, theorem 1, §5, chapter 4]. We know

WY (ξ) a =

∑

j=1(1)kWY (ξ)1,j aj
∑

j=1(1)kWY (ξ)2,j aj
...
∑

j=1(1)kWY (ξ)k,j aj

. (6.1)

By applying the norm ‖a‖ =
√

∑

i=1(1)k |ai|2 to (6.1) we get

| zk(ξ) | ≤ sup
‖a‖≤1

‖WY (ξ) a‖ = sup
‖a‖≤1

√

√

√

√

√

∑

i=1(1)k

∣

∣

∣

∣

∣

∣

∑

j=1(1)k

WY (ξ)i,j aj

∣

∣

∣

∣

∣

∣

2

By applying the inequality of Schwarz we further obtain

| zk(ξ) | ≤ sup
‖a‖≤1

√

√

√

√

√

∑

i=1(1)k

∑

j=1(1)k

|WY (ξ)i,j |2

∑

j=1(1)k

|aj |2

Thus, in the regular case the biggest absolute value can be bounded by

| zk(ξ) | ≤
√

∑

i=1(1)k

∑

j=1(1)k

|WY (ξ)i,j |2.

By applying the norm ‖a‖ =
√

∑

i=1(1)k |ai| to (6.1) we get also the bound

| zk(ξ) | ≤
∑

i=1(1)k

√

∑

j=1(1)k

|WY (ξ)i,j |2,

using the norm ‖a‖ = maxi=1(1)k |ai| we get the bound

| zk(ξ) | ≤ max
i=1(1)k

∑

j=1(1)k

|WY (ξ)i,j | .

54

All these bounds are well suited for symbolic calculations.
The biggest absolute value of the eigenvalues can also be approximated by numerical

standard methods. We only mention the simple iteration method with

| zk | = lim
n→∞

‖WY
n‖1/n.

Here we use pointwise computation for avoiding difficult powers of symbolic matrices.

6.1.1 Ill-conditioned sequences of functions and boundary value problems

If we have a boundary problem on [x0, x1] and Y is the sequence of candidates for the ap-
proximate fundamental system, we should be sure that the condition number condn(WY)(ξ)
is “small” for all ξ ∈ [x0, x1].
Example. Consider a BVP in [12 , 1] and

L y(x) = 3x2D2 y(x) + 2x (x2 + 5)Dy(x) + (2x+ 2) y(x) = 0.

We search for approximate exponential solutions. As described in chapter 4 we compute the
polynomial parts {exp(−1/3x2)}, singular parts {x−1/3, x−2} and irregular singular parts ∅.
In the adaption step we apply the collocation method and demand r(0) = r(1/2) = r(1) = 0.
With the candidates

φ1 = (1− 1/4x+ 1171/20516x2 − 25/20516x3)x−1/3

φ2 = (1 + x+ x2)x−2

φ3 = (1− 1/4x+ 3/11x2 + 1/11x3)x−1/3 exp(−1/3x2)

φ4 = (1 + x− 127/121x2 + 161/121x3)x−2 exp(−1/3x2)

we go into the approximation step. Now, we choose the integral norm (2.7) in [12 , 1] for the

approximation criterion. As an example, the linear monic DO of first order and l̃ φ1 = 0 is

l̃ = D +
−10258x+ 5855x2 − 200x3 − 20516

3x(−20516 + 5129x− 1171x2 + 25x3)
,

the right remainder is

r1 = 40/9
10x3 − 289x2 + 416x− 137

−20516 + 5129x− 1171x2 + 25x3

and ‖r1‖ = 0.002207. In the same way, we compute ‖r2‖ = 0, ‖r3‖ = 0.06354 and ‖r4‖ =
0.1252. The best candidates in the sense of the approximation criterion are φ1, φ2. We
verify whether they are ill-conditioned.

55

The figure shows the condition number of the Wronskian Wφ1,φ2
:

10

15

20

25

0.5 0.6 0.7 0.8 0.9 1x

The ratio of the eigenvalues is bounded by a relatively small number. Thus, our approximate
fundamental system for all boundary value problems in [12 , 1] is φ1, φ2. For comparison,
this

0

200

400

600

800

1000

0.5 0.6 0.7 0.8 0.9 1x

is the condition number of the Wronskian Wφ1,φ3
which has a pole in the segment.

6.1.2 Ill-conditioned sequences of functions and initial value problems

If we have an initial value problem in x1 and Y is the sequence of candidates for the approx-
imate fundamental system, we should be sure that the condition number condn(WY)(ξ) is
“small” for all ξ in the “neighbourhood” of x1. On the other hand, we should expect an
unlimited growth of the condition number “near” the next singular point of the given DO
on the real line, as the functions in Y typically will have singular parts.
Example. Let be given the initial value problem

Ly(x) = x2D3 y(x)+x(−3x+1)D2 y(x)+2 (x2−x− 2)D y(x)+ (−2x2 +x+4) y(x) = 0

and y(1) = 1, y′(1) = 0, y′′(1) = 3
2 . The exact solution

y(x) =

(

1 +

∫ x

1

[

4Y1(1)− Y0(1)

Y1(1)J0(1)− Y0(1)J1(1)

J1(u)

u
+

Y0(1)− 4Y1(1)

2Y1(1)J0(1)− 2Y0(1)J1(1)
J0(u) +

56

J0(1)− 4J1(1)

Y1(1)J0(1)− Y0(1)J1(1)

Y1(u)

u
+

4J1(1)− J0(1)

2Y1(1)J0(1)− 2Y0(1)J1(1)
Y0(u)

]

du

)

ex−1

is even after a numerical evaluation of the constants

y(x) ≈ ex−1
(

1 + 5.0471386

∫ x

1

J1(u)

u
du− 2.5235693

∫ x

1
J0(u)du+

1.5629496

∫ x

1

Y1(u)

u
du− 0.78147483

∫ x

1
Y0(u)du

)

quite complicated. The numerical evaluation of the integrals by quadratures makes prob-
lems, too. Of course, one can always construct an approximate solution in form of a
truncated Taylor series

yseries(x) = 1 +
3

4
(x− 1)2 +

9

16
(x− 1)4 − 73

240
(x− 1)5 +

17

45
(x− 1)6 −

3679

10080
(x− 1)7 +

4919

13440
(x− 1)8 − 33211

90720
(x− 1)9,

but the figure

0

2

4

6

8

0.5 1 1.5 2x

shows, the series solution is bad near the singular point 0. Therefore, we apply the adaptive
approximation method. First, we search for an adaptive differential operator L̃ ∈ ELF and
start up the Adaption algorithm 7. We compute the polynomial parts {exp(x)}, singular
parts {x−1} and irregular singular parts ∅ of L. Our adaption criterion is smooth adaption
in point 0. The adaption algorithm computes the candidates recursively and among the
candidates in the highest level of the tree are

φ1 =
1 + 3/4x− 5/24x3

x
φ2 = 1 + x+ 1/2x2 + 4/27x3 + 5/216x4

φ3 = (1 + x+ 9/20x2 + 7/60x3 + 239/13440x4)x3

φ4 =
1− 1/4x2

x
exp(x)

φ5 = exp(x)

φ6 = (1/896x4 − 1/20x2 + 1)x3 exp(x).

With the candidates of the highest level we recursively compute other candidates, e.g.,
exp(x) allows a factorization of L = [x2D2 + (x− 2x2)D + 2x2 − x− 4][D − 1]. From this

57

factorization we get another candidate

φ7 =

(

1

1800
x5 − 1

4
x+ x−1 +

(

1

43008
x7 − 1

960
x5 +

1

48
x3

)

ln(x)

)

exp(x).

Other candidates are non-elementary, too complicated or to bad in the sense of the ap-
proximation criterion, for which we choose the integral norm (2.7) in [12 , 1]. The best
three candidates are φ5, φ6 and φ7. The condition number of Wφ5,φ6,φ7

(1) is less than 15,
so our fundamental system is stable near 1. On the other hand, as should be expected,
limx→0+ condn(Wφ5, φ6, φ7)(x) =∞, e.g., condn(Wφ5,φ6,φ7

)(0.1) ≈ 39000. For comparison,
the condition number for Wφ3,φ6

(1) is about 22000.
We now substitute our fundamental system in the initial conditions and get our approx-

imate solution

ỹ = − 1

37460980963350

(

x4
(

−866560275x8 + 38821900320x6 − 776438006400
)

ln(x)

+43456525x10 − 3352360500x8 + 129480736896x6 − 3003715008000x4

+9317256076800x2 − 6631669557871x− 37269024307200
)

/x exp(x− 1)

The next figure shows the ratio of the exact solution and ỹ.

0.999

0.9992

0.9994

0.9996

0.9998

1

1.0002

0.5 1 1.5x

Even near the singularity the ratio is less than 1.0002, i.e., ỹ mimics perfectly the
behaviour of the exact solution.

58

Chapter 7

Error estimation

Approximate solutions are of no practical use without proper error estimates. These are
often obtained by estimating rest terms in series (which is sometimes impossible, especially
when the convergence radius is unknown).

Lehmann [44] describes methods using Green functions. Thinh [66] adapts these meth-
ods to singular initial value problems. We enriched their concept by some details to make
it implementable in a computer algebra system.

After the construction of an approximate solution ỹ we estimate the error function

error = |y − ỹ| =
√

(y − ỹ)(y − ỹ) =

√

<(y − ỹ)2 + =(y − ỹ)2.

We work in the complex Euclidean space, because even for the simple case K = Q we get
complex solution functions (with coefficients ∈ Q̄).

7.1 Error estimation for boundary value problems

This section contains results in analogy to [44, page 270].
Let ỹ ∈ Ĉ(ord)[x0, x1] be an approximate solution of the some linear ODE (2.10) and an

exact solution of linear boundary constraints (1.3). We are interested in the behaviour of
the error function |y(x)− ỹ(x)| in [x0, x1], where y(x) is the exact solution of (2.10,1.3).

Theorem 7.1 Let L̃ be a homogeneous linear differential operator such that ∆ := L − L̃
is of an order less than L. Let L and L̃ be regular in [x0, x1] and let Γ̃(x, ξ) be the Green
function of L̃ and (2.11). If

h =

√

∫ x1

x0

∫ x1

x0

|∆ Γ̃(x, ξ)|2 dx dξ < 1, (7.1)

(i.e. we demand the approximation should be reasonably good), then

∀x ∈ [a, b] : |y(x)− ỹ(x)| ≤ ‖Γ̃(x, ·)‖
1− h ‖L ỹ(x)− f(x)‖. (7.2)

Proof. On the one hand, L [y(x)− ỹ(x)] = f(x) − L ỹ(x). Since we demanded L to be
regular in [x0, x1], y − ỹ ∈ Ĉ(ord)[x0, x1]. Since both y(x) and ỹ(x) fulfil (1.3), y(x)− ỹ(x)
fulfils (2.11). With corollary 2.10 we get

y(x)− ỹ(x) =

∫ x1

x0

Γ(x, ξ)
(

f(ξ)− L(ξ) ỹ(ξ)
)

dξ.

59

Applying the inequality of Schwarz we get

|y(x)− ỹ(x)| ≤ ‖Γ(x, ·)‖ ‖L ỹ(x)− f(x)‖. (7.3)

On the other hand, let g ∈ Ĉ(0)[x0, x1] be an arbitrary function. Because of theorem
2.9,

u(x) :=

∫ x1

x0

Γ̃(x, ξ)g(ξ) dξ (7.4)

is the unique solution of L̃ u = g and (2.11). Because of Lu(x) = ∆u(x) + g(x) and
corollary 2.10 we conclude

u(x) =

∫ x1

x0

Γ(x, t)
[

∆(t) u(t) + g(t)
]

dt

(7.4)
=

∫ x1

x0

Γ(x, t)

[

∆(t)

∫ x1

x0

Γ̃(t, ξ)g(ξ) dξ + g(t)

]

dt

=

∫ x1

x0

Γ(x, t) ∆(t)

∫ x1

x0

Γ̃(t, ξ)g(ξ) dξ dt+

∫ x1

x0

Γ(x, ξ)g(ξ) dξ

Here we can interchange n− 1 times differentiation of ∆ with the integral sign and obtain

u(x) =

∫ x1

x0

[∫ x1

x0

Γ(x, t) ∆(t)Γ̃(t, ξ) dt

]

g(ξ) dξ +

∫ x1

x0

Γ(x, ξ)g(ξ) dξ (7.5)

Since g(x) was arbitrarily chosen and regarding (7.4,7.5) we conclude

Γ(x, ξ)− Γ̃(x, ξ) = −
∫ x1

x0

Γ(x, t) ∆(t)Γ̃(t, ξ) dt. (7.6)

Therefore,

‖Γ(x, ·)‖2 = 〈Γ(x, ·),Γ(x, ·)〉
= 〈Γ(x, ·)− Γ̃(x, ·),Γ(x, ·)〉+ 〈Γ̃(x, ·),Γ(x, ·)〉
≤ |〈Γ(x, ·)− Γ̃(x, ·),Γ(x, ·)〉|+ |〈Γ̃(x, ·),Γ(x, ·)〉|

(7.6)
=

∣

∣

∣

∣

〈∫ x1

x0

Γ(x, t) ∆(t)Γ̃(t, ·)dt,Γ(x, ·)
〉∣

∣

∣

∣

+ |〈Γ̃(x, ·),Γ(x, ·)〉|

Applying the inequality of Schwarz twice we further obtain

‖Γ(x, ·)‖2 ≤
∥

∥

∥

∥

∫ x1

x0

Γ(x, t) ∆(t)Γ̃(t, ·) dt
∥

∥

∥

∥

‖Γ(x, ·)‖+ ‖Γ̃(x, ·)‖ ‖Γ(x, ·)‖

≤ h ‖Γ(x, ·)‖2 + ‖Γ̃(x, ·)‖ ‖Γ(x, ·)‖,

where h is defined as in (7.1). If 1− h > 0, then we may deduce

‖Γ(x, ·)‖ ≤ ‖Γ̃(x, ·)‖
1− h .

Together with (7.3), this completes the proof.

Note that L̃ and Γ̃ do not depend on ỹ. Nevertheless, from the computational point of
view the condition L̃ ỹ = f is advantageous for at least three reasons.

60

First, in this case we are able to build up Γ̃ using the information about ỹ. We have
already computed the determinant of the Wronskian for the Green function in the approx-
imation step. This result can now be reused.

Second, in section 6.1 we proved by construction L̃ to be regular in [x0, x1]. (By our
algorithm, the determinant of the Wronskian of the fundamental system of L̃ should be
nonzero for all ξ ∈ [x0, x1].) The regularity of L̃, a necessary condition for the error
estimation, is not a matter of course. Consider the example in section 2.4.2. Although
the solution space of (x − 1)D2 − xD + 1 is spanned by “harmless” functions y1(x) = x,
y2(x) = exp(x), the differential operator is singular in point 1. Supposing y1, y2 are
approximate solutions, the corresponding adaptive DO is not applicable to boundary value
problems in segments including point 1.

Third, if we demand that the approximate solution should be reasonably good and
construct Γ̃ from ỹ, practice shows that we may expect h < 1.

7.2 Error estimation for initial value problems

This section contains results in analogy of [66, section 6.1], where Thinh modified the proof
in [44].

Let ỹ ∈ Ĉ(ord)(x0, x1] be an approximate solution of (2.10) and an exact solution of
some initial value conditions

y(x1) = γ0, y
′(x1) = γ1, . . . , y

(ord−1)(x1) = γord−1, (7.7)

at the point x1. We are interested in the behaviour of the error function |y(x) − ỹ(x)| in
(x0, x1], where y(x) is the exact solution of (2.10,7.2).

Theorem 7.2 Let L̃ be a homogeneous linear differential operator such that ∆ := L− L̃ is
of an order less than L. Let L and L̃ be regular in (x0, x1] and let Γ̃l(x, ξ) be the left Green
function of L̃. Note that L and L̃ are allowed to be singular in x0. If

∀x ∈ (x0, x1] : h(x) =

√

∫ x1

x

∫ ξ

x
|∆(t) Γ̃l(t, ξ)|2 dt dξ < 1, (7.8)

then

∀x ∈ (x0, x1] : |y(x)− ỹ(x)| ≤ ‖Γ̃l(x, ·)‖
x1

x

1− h(x) ‖L ỹ − f‖x1

x . (7.9)

Proof. Let x0 < x ≤ ξ ≤ x1. On the one hand, L [y(x)− ỹ(x)] = f(x)− L ỹ(x). Because
we demanded L to be regular in (x0, x1], y − ỹ ∈ Ĉ(ord)(x0, x1]. Since both y(x) and ỹ(x)
fulfil (7.2), y(x)− ỹ(x) fulfils (2.22). With theorem 2.12 we get

y(x)− ỹ(x) =

∫ x1

x
Γl(x, ξ)

(

f(ξ)− L(ξ) ỹ(ξ)
)

dξ.

Applying the inequality of Schwarz we get

|y(x)− ỹ(x)| ≤ ‖Γl(x, ·)‖x1

x ‖L ỹ(x)‖x1

x . (7.10)

On the other hand, there exists a c with x0 < c ≤ x ≤ x1 such that with similar
considerations as in theorem 7.1,

Γl(x, ξ)− Γ̃l(x, ξ) = −
∫ x1

c
Γl(x, t)∆(t)Γ̃l(t, ξ) dt

= −
∫ ξ

x
Γl(x, t)∆(t)Γ̃l(t, ξ) dt (7.11)

61

holds, where the second equal sign holds because of Γl(x, t) = 0 for x > t and Γ̃l(t, ξ) = 0
for t > ξ, see (2.19).

Therefore,

(‖Γl(x, ·)‖x1

x)2 = 〈Γl(x, ·),Γl(x, ·)〉x1

x

= 〈Γl(x, ·)− Γ̃l(x, ·),Γl(x, ·)〉x1

x + 〈Γ̃l(x, ·),Γl(x, ·)〉x1

x

≤ |〈Γl(x, ·)− Γ̃l(x, ·),Γl(x, ·)〉x1

x |+ |〈Γ̃(x, ·),Γl(x, ·)〉x1

x |
(7.11)
=

∣

∣

∣

∣

〈∫ ·

x
Γl(x, t) ∆(t)Γ̃l(t, ·) dt,Γ(x, ·)

〉x1

x

∣

∣

∣

∣

+ |〈Γ̃l(x, ·),Γl(x, ·)〉x1

x |

Applying the inequality of Schwarz twice we further obtain

‖Γl(x, ·)‖x1

x
2 ≤

∥

∥

∥

∥

∫ ·

x
Γl(x, t) ∆(t)Γ̃l(t, ·) dt

∥

∥

∥

∥

x1

x

‖Γl(x, ·)‖x1

x + ‖Γ̃l(x, ·)‖x1

x ‖Γl(x, ·)‖x1

x

≤
√

∫ x1

x

∫ ξ

x
|Γl(x, t)|2 dt

∫ ξ

x
|∆(t)Γ̃l(t, ξ)|2 dt dξ ‖Γl(x, ·)‖x1

x

+‖Γ̃l(x, ·)‖x1

x ‖Γl(x, ·)‖x1

x
{

if ξ ≤ x1 then

∫ ξ

x
|Γl(x, t)|2 dt ≤

∫ x1

x
|Γl(x, t)|2 dt

}

≤
√

∫ x1

x

∫ x1

x
|Γl(x, t)|2 dt

∫ ξ

x
|∆(t)Γ̃l(t, ξ)|2 dt dξ ‖Γl(x, ·)‖x1

x

+‖Γ̃l(x, ·)‖x1

x ‖Γl(x, ·)‖x1

x

≤ h(x) (‖Γl(x, ·)‖x1

x)2 + ‖Γ̃l(x, ·)‖x1

x ‖Γl(x, ·)‖x1

x ,

where h(x) is defined as in (7.8). If 1− h(x) > 0, then we may deduce

‖Γl(x, ·)‖ ≤
‖Γ̃l(x, ·)‖
1− h(x) .

Together with (7.10), this completes the proof.

Theorem 7.2 is only a modification of a known estimation from Thinh.

Corollary 7.3 (Thinh’s estimation (6.17) of [66])
Let be given the same conditions as in theorem 7.2. If

hT (x) =

√

∫ x1

x

∫ x1

ξ
|(L Γ̃l(x, t))(ξ, t)|2 dt dξ < 1

then

∀x ∈ (x0, x1] : |y(x)− ỹ(x)| ≤ ‖Γ̃l(x, ·)‖
x1

x

1− hT (x)
‖L ỹ − f‖x1

x .

Proof. We prove that hT (x) = h(x). Compare the area where the integrands are integrated.
A second proof is:
We denote F (x, t) = |(L Γ̃l(x, t))|2. Then,

(h(x)2)x =

[∫ x1

x

∫ ξ

x
F (t, ξ) dt dξ

]

x

= −
∫ x1

x
F (x, ξ) dξ−

∫ x

x
F (t, x) dt = −

∫ x1

x
F (x, ξ) dξ

62

and

(hT (x)2)x =

[∫ x1

x

∫ x1

ξ
F (ξ, t) dt dξ

]

x

= −
∫ x1

x
F (x, t) dt = (h(x)2)x.

Additionally the functions have the point hT (x1) = h(x1) = 0 in common.

Then, what is the difference between hT and h? Only the practical use shows it: Often
h has an inner integral which can be solved symbolically while the inner integral of hT
cannot, because often the integrand contains singularities which make symbolic indefinite
integration worthless. That is why we prefer h(x).

7.3 Example and annotations

Consider the homogeneous DE

3x2D2 y(x) + 2x (x2 + 5)Dy(x) + (2x+ 2) y(x) = 0

with the initial value conditions y(1) = 1, y′(1) = 0. The DE has a regular singularity in
point 0. For comparison we compute the exact solution

y(x) =
x2 + x+ 1

3x2
− 3

x2 + x+ 1

x2e(−1/3)

∫ 1

x

e(−1/3α2) α2/3

(α2 + α+ 1)2
dα.

Using the Frobenius method we construct an approximate solution basis

ỹ1(x) =
x2 + x+ 1

x2

ỹ2(x) =
− 65

23562
x4 +

5

924
x3 +

7

132
x2 − 1

4
x+ 1

x1/3

The approximate solution of the initial value problem is

ỹ(x) = − 57581

168960
ỹ1(x) +

3213

1280
ỹ2(x). (7.12)

We want to estimate its error in (0, 1].
First of all we assume L̃ ỹ = 0 and construct Γ̃l for x < ξ using (2.19). We use another

degree of freedom by choosing the coefficient of the highest derivative of L̃ (and L) as 3x2.
Then,

Γ̃l(x, ξ) =

(

(x2 + x+ 1)(130ξ4 − 255ξ3 − 2499ξ2 + 11781ξ − 47124)x1/3 ξ2

−(ξ2 + ξ + 1)(130x4 − 255x3 − 2499x2 + 11781x− 47124) ξ1/3 x2

)/

(

110 ξ x7/3(13ξ6 − 2ξ5 − 119ξ4 + 714ξ2 − 2142)

)

and

h(x) =
2

3

√

∫ 1

x

∫ ξ

x

t28/3(13t− 15)2(ξ2 + ξ + 1)2

ξ4/3(13ξ6 − 2ξ5 − 119ξ4 + 714ξ2 − 2142)2
dt dξ

=
2

3

√

∫ 1

x

(ξ2 + ξ + 1)2

ξ4/3(13ξ6 − 2ξ5 − 119ξ4 + 714ξ2 − 2142)2

∫ ξ

x
t28/3(13t− 15)2dt dξ

63

After computing the inner integral symbolically,

h(x) =
2

3

√

∫ 1

x

(ξ2 + ξ + 1)2
(

ξ31/3
(

507
37 ξ

2 − 585
17 ξ + 675

31

)

− x31/3
(

507
37 x

2 − 585
17 x+ 675

31

))

ξ4/3(13ξ6 − 2ξ5 − 119ξ4 + 714ξ2 − 2142)2
dξ,

we calculate h(0) = 0.0004713121... numerically by quadratures. Because of 1 > h(0) >
h(x), theorem 7.2 holds for 0 < x ≤ 1. In analogy we could compute

hT (x) =
2

3

√

∫ 1

x
ξ28/3(13ξ − 15)2

∫ 1

ξ

1

t4/3
(t2 + t+ 1)2

(13t6 − 2t5 − 119t4 + 714t2 − 2142)2
dt dξ.

Parts of the inner integral of hT can be evaluated symbolically, but the result is a huge
expression. So we resign. (Computing the double integral numerically is slow.)

Then, we construct the defect function

L ỹ(x) =
1

256
x14/3 (15− 13x).

The norm of the defect function is

||L ỹ||1x =

√

20769

1277886464
− 675

2031616
x31/3 +

585

1114112
x34/3 − 507

2424832
x37/3.

We also compute ‖L ỹ‖10 = 0.004031

There is no hope of representing the norm ‖Γ̃l(x, ·)‖1x =
√

∫ 1
x Γ̃l(x, ξ)2 dξ symbolically

in a satisfactory manner. We are forced to compute it numerically. Usually, numerical
integration of continuous functions by quadratures can be done efficiently. In this example,
we require only 4 verified decimal digits.

We get our error estimate (7.9). The errors made while computing the bound numeri-
cally are not dramatically large, because the numerical part consists only of quadratures.

If the error estimation is time-relevant, then one possibility to reduce computation time
(but also reduce accuracy) is in our example

|y(x)− ỹ(x)| ≤ ‖Γ̃l(x, ·)‖1x
1− h(x) ‖L ỹ‖

1
x ≤

‖Γ̃l(x, ·)‖1x
1− h(0)

‖L ỹ‖10

< 0.004033 ‖Γ̃l(x, ·)‖1x. (7.13)

We want to represent some numerical results in a table:

DE has leading coefficient
x y(x) |y(x)− ỹ(x)| 3x2 x

(7.9) (7.13) (7.9)

0.9 0.9919 0.00001652 0.00001909 0.00003025 0.00001962
0.5 0.4242 0.001022 0.001030 0.001033 0.001094
0.3 −1.781 0.004328 0.004376 0.004376 0.004450
0.1 −32.60 0.04643 0.04856 0.04856 0.04722
0.01 −3435 4.588 4.855 4.855 4.662

0.0001 −3.413 · 107 45520 48180 48180 46250
10−10 −3.413 · 1019 4.551 · 1016 4.818 · 1016 4.818 · 1016 4.624 · 1016

10−100 −3.413 · 10199 4.551 · 10196 4.818 · 10196 4.818 · 10196 4.624 · 10196

Even close to the singular point the error is only about one promille of the exact solution,

64

and even the less sharp error estimate (7.13) reflects the qualitative behaviour of the actual
error.

To become realistic, we want to show, how our approximate solution (7.12) compares
to the ouput values of a commercial numerical ODE solver. We tested the Maple V Release
4 solver dsolve/numeric. The available standard methods in Maple are

1. rkf45, a Fehlberg fourth-fifth order Runge-Kutta method

2. classical, a forward Euler method,

3. dverk78, seventh-eighth order continuous Runge-Kutta method,

4. gear, a Gear single-step extrapolation method,

5. mgear, a Gear multi-step method,

6. lsode, an implicit Adams method,

7. taylorseries.

We used the standard settings, among them Digits:=10 (in floating point numbers 10
decimal digits are carried). We got the following answers:

x 1. 2. 3. 4. 5. 6. 7.

0.9
√ √ √ √ √ √ √

0.5
√ √ √ √ √ √ √

0.3
√ √ √ √ √ √ √

0.1
√ √ √ √ √ √ √

0.01
√

W E
√

E
√

E
0.0001

√
W E

√
E
√

E
10−10 √

W E E E
√

E
10−100 W E E E E E E

Here ‘W’ means a completely wrong answer, the solver gives a result which is less than
the fifth part of the correct result. We wrote ‘E’ when an error occured (division by zero,
tolerance is too small, requested error not achieved, excessive amount of work, try other
methods). An answer labelled

√
is correct.

Thus, we must recognize that none of the numerical standard methods for solving linear
ODEs in Maple is designed to describe the behaviour of the solution near singularities.
Neither a higher accuracy in floating point numbers nor a lower error tolerance changes
principally this situation.

Computing error bounds with the above techniques means to solve some typical tasks
of computer algebra: computing determinants, simplification of expressions and symbolic
differential calculus.

On the other hand, strong numerical capabilities are also needed, especially numerical
integration, even though symbolic integration is tried wherever it is possible.

Because of our good experience with the Green functions technique in the linear case,
we want to remark that the theoretical basis for error estimation in the non-linear case was
also established by Lehmann [44].

65

Chapter 8

Implementation

All algorithms in this thesis were implemented in Maple V Release 4 and are now updated
to Maple V Release 5. The implementation is restricted to the case K = Q[

√
−1]. We have

tested more than 200 examples, among them all linear DEs with polynomial coefficients
from the collection of Kamke [38]. The most recent version of the author’s Maple package
DETools can be downloaded from

http://www.informatik.uni-rostock.de/ls atp/forschung.html.
In the package are included procedures for finding exact and approximate solutions of DEs.

We compared our search for exact solutions with the Maple package diffop, written
by Mark van Hoeij, who has implemented his and Singer’s factorization algorithm and
the Maple differential equation solvers dsolve/diffeq/expsols (an implementation of Beke’s
algorithm following [16, 15]), dsolve/diffeq/kovacic (an implementation of Kovacic’s algo-
rithm). Although our implementation seems to be much more efficient than the standard
implementations of dsolve, it is not practicable (compared with diffop) if in the given DE
are singularities in an algebraic number of degree greater than 2, because computing with
algebraic extensions of higher degree is slow.

Van Hoeij gives another argument against Beke’s method [70, section 3.4]. Suppose the
DE (1.1) of order ord has n singularities. In each singularity there are at most ord different
singular or irregular singular parts. The number of singular or irregular singular parts may
reach ordn and |M| in step 4 of algorithm 6 is only bounded by (1 + ord)n. Although
we tried to reduce the number of singular parts and their combinations as much as it was
feasible, an experienced mathematician may construct examples for which Beke’s method
fails horribly. (In Kamke’s collection [38] there is no such example.)

But let us remember that our interest in Beke’s algorithm came from finding approxi-
mate solutions for boundary and initial value problems. Here we are interested only in the
singularities next to the boundaries. Approximate solutions which mirror the behaviour of
the exact solution in far away singularities are undesired, because they are too complicated.
Additionally, they lose their numerical sense at the next branch cut.

We cannot compare our search for approximate solutions with packages from other
authors because it seems, there is no other package (except, maybe, the FORMAC package from
[66]), which computes approximate solutions of “simple” differential equations in closed
form. We are grateful to get hints from other authors! Thus, we decided to add a section
with examples from our implementation.

Our Maple procedure for the adaptive approximation method is controlled by at least
two global parameters. The first one is the predefined global variable Order which normally
represents the order of series calculations performed by Maple. We use Order in a similar
way. By setting Order to a natural number, we define the numberm of coefficients c1, . . . , cm

66

in the algorithm Adaption. Typically, Order will be less than 5 to avoid too complicated
computations and solutions.

We also defined an upper bound for the number q of candidates Φ = φ1, φ2, . . . , φq in
the algorithm Adaption. In our Maple program, we called this number MAXSOL. Thus, our
Maple procedure Adaption computes at least MAXSOL candidates for approximate solutions.
Typically, MAXSOL will be less than 9, because it defines the maximal number of functions in
the tests for linear independence, which are performed by symbolic Wronskian determinant
calculations. At this moment, Wronskian determinants with symbolic entries and more
than 8 functions are out of our reach. Because the same Wronskian determinants will be
used in the error estimation, we also know an upper bound for the practical use of our
program: The order of the given DO should surely be less than 9.

Finally, we also added routines to DETools for computing automatically the error esti-
mates. We combined symbolic with numerical algorithms and preferred exact computation
whenever it was feasible. Even with (heuristical) simplification of expressions, this method
turned out to be practicable only for DOs of order less than 7. Indeed, the Green functions
and their norms are complicated expressions. Partially, we can blame it on Maple: We
sometimes wished that Maple had faster numerical integration routines, symbolic (Risch)
integration is quite slow and buggy.

The quality of the error estimates depends on the coefficient of the highest derivative in
the given differential operator. By a multiplication of the DO with a function f : C → C

the error estimates become more or less precise. Unfortunately, we could not discover any
rule for this process. Thus, we decided to give the user one degree of freedom and let him
choose f .

8.1 An example with user interaction

In this section, we give an example of the Maple implementation of our adaptive approxima-
tion algorithm applied to D-finite functions. Here we focus on a step-by-step computation
in a Maple session with the help of our predefined procedures, but accompanied by the
heuristical control of an experienced mathematician. We consider the homogeneous DO
L = 60 (x − 2) (x2 + 2x + 4) (x3 − 2) − 60x (x − 2) (x3 − 2) (x2 + 2x + 4)D + 30x2 (x −
2) (x2 + 2x+ 4) (x3− 2)D2− 10 (x2 + 2x+ 4) (x− 2) (x3− 2)2D3 + 2x2 (x− 2) (x2 + 2x+
4) (2x6 − 20x3 + 5) (x3 − 2)2D4 + 9x2 (x6 − 4x3 + 10)D5 + (−x9 + 6x6 − 30x3 − 10)D6,
taken from [17]. Let be given an initial value problem Ly(x) = 0 in point 0 with direction
to the left where for the linear boundary constraints (1.3) holds: All entries of γ are equal
to 1, Ux0

is the zero matrix, Ux1
is the identity matrix.

Additionally, we demand in [−1
2 , 0] the absolute error to be less than 1/250 of the exact

solution. This means, we need an upper bound for the error. We recognize that the order
of the DO is relatively high. Thus, we must find really simple solutions to realize the error
estimation.

First, we verify, whether the DO fits our demands. There is only one real zero of the
leading coefficient,

> fsolve(-x^9+6*x^6-30*x^3-10);

which is near −0.678 Thus, the necessary condition for an error estimation in [−1
2 , 0]

is fulfilled: L in regular in the segment. Thus, we start our adaptive approximation.
Our class of adaptive differential operators is ELF . Preparing the adaption step, we

try to reduce this function space. We have a look at the singularities which hide in q6(x) =
−x9 + 6x6 − 30x3 − 10. q6 cannot be factored over the rationals

67

> factor(-x^9+6*x^6-30*x^3-10);

−x9 + 6x6 − 30x3 − 10

Therefore, we look for the indicial polynomial in q6. For this purpose we wrote the Maple
procedure IndicialPol, which uses the implementation of the p-adic recurrence equation
(2.6):

> factor(primpart(IndicialPol(L,y(x),n,-x^9+6*x^6-30*x^3-10),n));

−n (n− 1) (n− 2) (n− 3) (n− 4) (n− 5) (n− 6)

The indices are the same as in regular points, i.e., there are no interesting singular parts
for the DO (c.f. algorithm Singular Parts, section 4.4.3). Then, we look for polynomial
parts:

> PolyParts(L,y(x));

{e(−8x2+2/5x5), e(8x
2−2/5x5)}

Together with 1, we have three polynomial parts.
We now start our adaption step. If we search for extended series solutions (multiplied

with polynomial parts) using smooth adaption in point 0, we get three multiplied by the
order six equals 18 candidates. In this example, we prefer using smooth adaption instead
of least square methods, because usually the coefficients in smooth adaption are not so
complicated as for least square methods. We define Order, the number m of coefficients
c1, . . . , cm in the algorithm Adaption. The Maple procedure which implements the search
for candidates in Adaption, is ExtendedSeriesSols:

> Order:=4:
> cands:=ExtendedSeriesSols(L,y(x),0,"Smooth"):

We don’t show the candidates, because they would occupy too much space. We now could
try to factor the given DO (and our AdaptiveApproximation Maple procedure would do
that, if MAXSOLS would be greater than 18), but this is not advisable, because

• 18 candidates seems to be enough for the moment,

• we expect more complicated candidates from factorizations of L,

• from the analysis of the indicial polynomials we know, that the exact solution does
not contain logarithmic parts.

Thus, we go to the approximation step.
In the approximation step we find out, that the candidates which have polynomial

parts exp(−8x2 + 2/5x5) or exp(8x2 − 2/5x5) are of lower precision than the polynomial
solutions. This can be tested by applying least square method for sequences at some point
in [−1

2 , 0]. Our Approximation procedure picks the best candidates:
> cands:=Approximation(L,y(x),[cands],-1/3,"Least Square"):

x, x2, 1− 1

2
x3, − 4

105
x8 +

16

105
x7 + x4, − 4

63
x9 +

25

168
x8 + x5,

1285

4032
x7 +

4

15
x6 +

257

480
x5 +

6425

3072
x4 + x3

Now, using the initial conditions, we combine the candidates:
> gamma:=vector(6,seq(1,i=1..6)]):
> appsolution:=ApproxSolution(map(unapply,[cands],x),0,gamma);

x→ 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 +

8

45
x6 +

2

315
x7 − 1

2880
x8 +

2511

11340
x9

68

The error bound (7.9) is a really huge expression. It would fill many pages and its computa-
tion takes about ten minutes. Nevertheless, error estimation for DEs of order 6 is possible
in simple cases.

> error:=ErrorEstimation(L,y(x),[cands],x..0,gamma):

Interestingly, from the above expression the numerical error bound for the absolute error
at −1

2 can be evaluated in 10 seconds:
> evalf(error(-1/2))

0.003141001085

Note, the error bound is a strictly descending function in [−1/2, 0]. Thus, our approximate
solution meets our demands concerning the absolute error. From the approximate solution
(even from the initial conditions) we know that the exact solution y(x) behaves like the
exponential function. Compared with the value of y(x) the absolute error is small in
[−1/2, 0], too.

8.2 List of examples

In this section, we show results of our AdaptiveApproximation Maple procedure, which
does not need any human interaction. This procedure lacks of the heuristical control by an
expert, especially of the size of intermediate expressions.

The timings are given for a Pentium Notebook with 233 MHz, 16 KByte internal cache,
512 KByte external cache and 32 MByte RAM. In all examples, we used the same matrices
and vectors for the linear boundary constraints (1.3): All entries of γ are equal to 1, in
boundary value problems both matrices Ux0

and Ux1
are identity matrices. For initial value

problems, one of the matrices is the zero matrix, the other is the identity matrix.
We don’t show the error estimates - they are simply too complicated for getting infor-

mation from them without numerical evaluation by a computer. The bound for the absolute
error is guaranteed by the automatic error estimation, the real absolute error may be less.

x (x+ 1) (x2 − x+ 1)D2 + (x− 1) (x2 + x+ 1)D − x2, [38, 2.355],[15]
Order: 4, MAXSOL: 6, IVP in 1 with direction to the left
Adaption criterion: collocation in [1/10, 1]
Approximation criterion: integral norm in [1/10, 1]
Approximate fundamental system: (x+ 1)1/3 (x2 − x+ 1)1/3,
(

−11309405005636000000
287875020123041676423 x

5+ 124000126740262504000
370125025872482155401 x

4 − 2893815040132966720000
2590875181107375087807 x

3

+1454079584866081535360
863625060369125029269 x

2 − 112535234568675490240
2590875181107375087807 x− 850529210986863108800

2590875181107375087807

)

(x+ 1)1/3

Coefficients: .5893756286, .4163184184
Error: in 1/5 about 1/100 of the exact solution
Time: 116 seconds
Comments: Most of the time was needed for the integrals in the error estimation.
The coefficients in form of rational numbers are only needed for the error estimation
to avoid numerical instabilities.

x (x+ 1) (x2 − x+ 1)D2 + (x− 1) (x2 + x+ 1)D − x2, [38, 2.355],[15]
Order: 3, MAXSOL: 6, IVP in 1 with direction to the left
Adaption criterion: least square method in [1/10, 1]
Approximation criterion: integral norm in [1/10, 1]
Approximate fundamental system: (x+ 1)1/3 (x2 − x+ 1)1/3,

69

(

− 86705754601728832374464000
182300854938946603628245137 x

3 + 97706900535466256642714000
60766951646315534542748379 x

2

−20093209855187833693825400
60766951646315534542748379 x+ 141211308885933535806095540

182300854938946603628245137

)

(x+ 1)1/3

Coefficients: .1231604738, .4254096398
Error: in 1/5 less than 1/100 of the exact solution
Time: 62 seconds
Comments: Most of the time was needed for the integrals in the error estimation.
The coefficients in form of rational numbers are only needed for the error estimation
to avoid numerical instabilities.

4 (x2 + x+ 1)2D2 − 3, [15]
Order: 2, MAXSOL: 6, BVP in [0, 1]
Adaption criterion: least square method in [0, 1]
Approximation criterion: integral norm in [0, 1]
Approximate fundamental system:

√
x2 + x+ 1,

269998/22199731 + 42750036/22199731x+ 2218860/22199731x2

Coefficients: .2420556141, .1652175154
Error: in all points in [0, 1] less than 6/1000 of the exact solution
Time: 54 seconds
Comments: Most of the time was needed for the integrals in the error estimation.

4 (x2 + x+ 1)2D2 − 3, [15]
Order: 3, MAXSOL: 6, BVP in [0, 1]
Adaption criterion: least square method in [0, 1]
Approximation criterion: integral norm in [0, 1]
Approximate fundamental system:

√
x2 + x+ 1,

58987412241806
139653080499491 + 150310517109396

139653080499491 x+ 24601861974060
139653080499491 x

2 − 5120446324224
139653080499491 x

3

Coefficients: .0896849665, .3663895759
Error: in all points in [0, 1] less than 2/1000 of the exact solution
Time: 584 seconds
Comments: Most of the time was needed for the integrals in the error estimation.

4x (4x+ 1)D3 − 2 (8x2 − 2x− 3)D2 − (12x+ 11)D + 4x+ 5, [62]
Order: 4, MAXSOL: 6, BVP in [1/10, 1]
Adaption criterion: smooth adaption in 0
Approximation criterion: l2-norm in 1
Approximate fundamental system: exp(x), 1/362880x9/2 + 1/5040x7/2 + 1/120x5/2

+1/6x3/2 +
√
x, 1 + 15119/30239x+ 229/5498x2 + 251/181434x3 + 17/725736x4

Coefficients: .2615437058, 0, 0
Error: The absolute error is 0.
Time: 22 seconds

x (x2 + 1)2D2 − (x2 + 1)2D + x3, [62]
Order: 2, MAXSOL: 6, BVP in [0, 1]
Adaption criterion: least square method in [0, 1]
Approximation criterion: integral norm in [0, 1]
Approximate fundamental system: 1/2

√
x2 + 1 ln(x2 + 1),

√
x2 + 1

Coefficients: .8744656611, .2366811976
Error: The absolute error is 0.
Time: 2 seconds

70

x (x− 1)2D2 − 2, [74]
Order: 2, MAXSOL: 6, IVP in 1/2
Adaption criterion: smooth adaption in 0
Approximation criterion: l2-norm in 1/2
Approximate fundamental system: (x2 − 1− 2 ln(x)x)/(x− 1), x/(x− 1)
Coefficients: 3., −.658883083
Error: The absolute error is 0.
Time: 1 second

x (x− 1)2D2 + (4x− 1)D + 2, [74]
Order: 2, MAXSOL: 6, IVP in 2
Adaption criterion: smooth adaption in 2
Approximation criterion: l2-norm in 2
Approximate fundamental system: ((6x2 − 18x + 12) ln(x − 1) + 18 − 15x + x3 −
3x2) (x− 1)−2, (2− x)/(x− 1)
Coefficients: −.06250000000, −2.062500000
Error: The absolute error is 0.
Time: 1 second

xD2 + 4D − 4x, [74]
Order: 2, MAXSOL: 6, BVP in [1, 2]
Adaption criterion: least square method in [1, 2]
Approximation criterion: integral norm in [1, 2]
Approximate fundamental system: 1/4 (1+2x) exp(−2x)x−3, (−1/2+x) exp(2x)x−3

Coefficients: .2164305919, .07015754817
Error: The absolute error is 0.
Time: 7 seconds

3x2D2 + 2x (x2 + 5)D + 2x+ 2, [66]
Order: 4, MAXSOL: 6, IVP in 1 with direction to the left
Adaption criterion: smooth adaption in 0
Approximation criterion: l2-norm in 1
Approximate fundamental system: (x2 +x+1)x−2, (1−1/4x+7/132x2 +5/924x3−
65/23562x4)x−1/3

Coefficients: −1.014926610, 5.020312500
Error: near 0 less than 1/1000 of the exact solution
Time: 8 seconds

x3D3 + 296x2D2 + x (x2 + 28908)D + 98x2 + 931392, [66]
Order: 1, MAXSOL: 8, BVP in [1, 2]
Adaption criterion: smooth adaption in 0
Approximation criterion: l2-norm in 1
Approximate fundamental system: exp(i x)x−99, exp(−i x)x−99, x−98

Coefficients: 1449.282731 + 6813.723711 i,
1449.282731− 6813.723713 i,
9901.999999− .1725606932 10−6 i
Error: The absolute error is 0.
Time: 42 seconds
Comments: The tests for linear independence in the adaption step with up to 8
functions cause the high time expense.

71

x2D2 + x (5− 2x)D + x2 − 5x+ 4, [66]
Order: 2, MAXSOL: 6 , IVP in 1 with direction to the left
Adaption criterion: smooth adaption in 0
Approximation criterion: l2-norm in 1
Approximate fundamental system: exp(x) ln(x)x−2, exp(x)x−2

Coefficients: .7357588824, .3678794412
Error: The absolute error is 0.
Time: 1 second

72

Thesen

Der Gegenstand dieser Arbeit sind homogene lineare gewöhnliche Differentialgleichun-
gen (Dgl.-n) beliebiger Ordnung mit polynomialen Koeffizienten, d.h. Dgl.-n der Form

L y(x) =
ord
∑

i=0
qi D

i y(x) = 0, (1)

Dy(x) = ∂
∂x y(x), K sei ein Konstantenkörper der Charakteristik 0, ∀i = 0(1)ord : qi ∈ K[x]

und ord ≥ 1. Eine Funktion y : C→ C heißt D-finit, wenn sie Lösung einer Dgl. der Form
(1) ist. Die Klasse der D-finiten Funktionen ist von großer Bedeutung für die Ingenieur- und
Naturwissenschaften: Die Mehrzahl der namentlich bekannten analytischen Funktionen ist
D-finit.

Jede D-finite Funktion kann eindeutig durch eine Dgl. (1) mit Nebenbedingungen defi-
niert werden. Die Computeralgebra liefert praktikable Algorithmen, die analytische Aus-
drücke D-finiter Funktionen (wie z.B. sin(x) + 3x) in diese Standarddarstellung trans-
formieren.

Diese Dissertation beschäftigt sich mit der weitaus komplizierteren inversen Aufgabe:
Gegeben ist eine D-finite Funktion in Form einer Dgl. (1) mit Rand- oder Anfangswertbedin-
gungen, gesucht ist der analytische Ausdruck einer Funktion, die exakte oder angenäherte
Lösung des Problems ist.

Bei der Lösung dieser Aufgabe folgt der Autor den Grundsätzen der von N.J. Lehmann †

begründeten Computeranalytik. Dies macht die Besonderheit und den Vorteil der vorge-
stellten Algorithmen gegenüber rein numerischen oder rein algebraischen Algorithmen aus:

Die ermittelten analytischen Näherungslösungen spiegeln die wesentlichen Eigenschaften
der D-finiten Funktionen gut wider. Die Lösungen bleiben einfach und überschaubar, wobei
sie angemessenen Genauigkeitsansprüchen genügen. Die Genauigkeit wird durch Fehlerab-
schätzungen kontrolliert, die, wie die Lösungen selbst, ohne Hilfestellung des Nutzers erstellt
werden.

Das Konzept dieser Dissertation folgt der Methode der adaptiven Approximation, die
ein bewährter Bestandteil der Computeranalytik ist.

Im ersten Schritt wird der Raum der Funktionen festgelegt, in dem sich die Näherungs-
lösung befinden soll. Hierfür wird die Klasse derjenigen Differentialoperatoren L aus (1)
vorgeschlagen, welche ausschließlich elementare Lösungen im Sinne der Differentialalgebra
besitzen und sich dabei in Faktoren der Ordnung 1 mit Koeffizienten aus K̄(x) zerlegen
lassen. Diese Klasse besitzt vorteilhafte Eigenschaften: Ihre elementaren Lösungsfunktio-
nen sind geeignet, um das Verhalten der D-finiten Funktionen in allen Arten von Singu-
laritäten zu approximieren; das Hauptsystem jedes Differentialoperators dieser Klasse läßt
sich effizient berechnen.

Im zweiten, dem Adaptionsschritt, werden Näherungslösungen für das Hauptsystem
des gegebenen Differentialoperators bestimmt. Mit Hilfe von Struktursätzen aus der Com-
puteralgebra konnten wir Algorithmen angeben, die exakte Lösungen aus der Menge der
exponentiellen Funktionen (sowie aus einigen ihrer Untermengen, wie den rationalen Funk-
tionen oder endlichen Laurentreihen) ermitteln, falls solche existieren. Eine Funktion y(x)
heißt exponentiell über K, wenn y(x)/D y(x) ∈ K(x). Die Algorithmen zur Suche von
exakten Lösungen lassen sich so modifizieren, daß auch Kandidaten für Näherungslösungen
angegeben werden können. Jeder dieser Kandidaten ist Lösung einer Dgl. erster Ordnung

der Form (1). Die zugehörigen Differentialoperatoren werden in einer rekursiven Prozedur
vom gegebenen Differentialoperator als rechte Linearfaktoren abgespalten. Adaptionskrite-
rien werden durch

• die Anwendung der kleinsten Quadratmethode mit Normen komplexwertiger euklidi-
scher Vektorräume, welche für Restterme minimal zu halten sind,

• vollständige Schmiegung oder

• durch Kollokation

realisiert.
Im dritten, dem Approximationsschritt, werden nur diejenigen Funktionen aus den bei

der Adaption ermittelten Näherungslösungen übernommen, die den Approximationskrite-
rien am besten genügen. Als Approximationskriterien werden ebenfalls Normen komplex-
wertiger euklidischer Vektorräume verwendet. Der Algorithmus in der Dissertation entkop-
pelt vollständig den Adaptionsschritt vom Approximationsschritt. Damit wird die Wieder-
verwertung der Lösungen aus dem Adaptionsschritt mit neuen Approximationskriterien
erleichtert. Es ist mit heuristischen Methoden möglich, die beste Kombination von vorhan-
denen Adaptions- und Approximationskriterien für ein gegebenes Problem zu bestimmen.

Um Stabilität gegenüber Veränderungen der Nebenbedingungen zu garantieren, wird
bei der Approximation auf schlecht konditionierte Hauptsysteme von Näherungslösungen
geachtet. Die Funktionen des Hauptsystems von Näherungslösungen der Dgl. (1) wer-
den erst jetzt anhand der Nebenbedingungen zur Näherungslösung für die D-finite Funk-
tion kombiniert. So kann ein einmal gewonnenes Hauptsystem bei mehreren sich einander
ähnelnden Nebenbedingungen Verwendung finden.

Im abschließenden Schritt wird der Fehler der Näherungslösung abgeschätzt. Die Eigen-
schaften Greenscher Funktionen ausnutzend, konnte ein Verfahren für die automatische
Fehlerabschätzung von analytischen Näherungslösungen angegeben werden. Dieses Verfah-
ren läßt sich auf den allgemeineren Fall von Rand- und Anfangswertproblemen linearer
gewöhnlicher Differentialgleichungen anwenden; damit wird es möglich, die Genauigkeit
der Lösungen für den speziellen Fall von Dgl.-n (1) zu kontrollieren.

Alle Algorithmen aus der Dissertation wurden in der Sprache des Computeralgebrasys-
tems MAPLE implementiert. Das Programm nutzt Algorithmen der numerischen Mathe-
matik und der Computeralgebra. Die Modularität der adaptiven Approximation vereinfacht
Software Reengineering.

Die Art des Vorgehens in dieser Dissertation wurde durch Ideen aus der Computeralge-
bra und der Computeranalytik inspiriert. Es wurde gezeigt, daß beide Forschungsgebiete
voneinander profitieren können und ihre Synthese zu neuen Resultaten führt.

Curriculum vitae

6. Mai 1966 Geburt in Greifswald
1984 Abitur am Institut zur Vorbereitung auf das Auslands-

studium der Martin-Luther-Universität Halle/Wittenberg
1986 bis 1991 Studium der Angewandten Mathematik an der Fakultät für

Numerik und Kybernetik der Lomonossow-Universität
Moskau

1991 Diplom mit dem akademischen Grad eines Magisters der
technischen Wissenschaften

1991 bis 1998 Wissenschaftlicher Mitarbeiter am Institut für theoretische
Informatik des Fachbereiches Informatik der Universität
Rostock

seit September 1998 Berater bei der SerCon GmbH

Bibliography

[1] S. A. Abramov, M. Bronstein, and M. Petkovček. On polynomial solutions of linear
operator equations. In A. Levelt, editor, ISSAC ’95, International Symposium on
Symbolic and Algebraic Computation, Montreal, Canada, pages 290–296, New York,
1995. ACM.

[2] S. A. Abramov and K. Y. Kvashenko. Fast algorithms to search for the rational
solutions of linear differential equations with polynomial coefficients. In Watt [75],
pages 267–270.

[3] M. A. Barkatou. Rational newton algorithm for computing formal solutions of lin-
ear differential equations. In P. Gianni, editor, Symbolic and Algebraic Computation,
International Symposium ISSAC ’88, Rome, Italy, July 4–8, 1988, Proceedings, vol-
ume 358 of Lecture Notes in Computer Science, pages 183–195, Berlin-Heidelberg-New
York, 1989. Springer-Verlag.

[4] M. A. Barkatou. An algorithm to compute the exponential part of a formal fundamental
matrix solution of a linear differential system. Journal of Appl. Alg. in Eng. Comm.
and Comp., 8:1–23, 1997.

[5] M. A. Barkatou. On rational solutions of systems of linear differential equations.
Journal of Symbolic Computation, to appear.

[6] O. Becken. Simple exact solutions of simple differential equations. In Proceedings of
the 4th Rhine Workshop on Computer Algebra, pages 81–83, 1994.

[7] O. Becken. Algorithmen zum Lösen einfacher Differentialgleichungen. Rostocker In-
formatik-Berichte 17, Universität Rostock, 1995.
http://www.informatik.uni-rostock.de/˜obecken/.

[8] O. Becken. Ein Algorithmus zum Bestimmen aller exponentiellen Lösungen einer lin-
earen gewöhnlichen Differentialgleichung und dessen Implementation in Reduce. In
Jahrestagung DMV 1995, page 200, 1995.

[9] O. Becken. Exact and approximate solutions of simple DEs. In Proceedings of the
Workshop on Symbolic and Numerical Algorithms for Differential Equations (SNADE),
Prague, 1997.

[10] O. Becken and A. Jung. Error estimation in the case of linear ordinary differential
equations. Rostocker Informatik-Berichte 22, Universität Rostock, 1998.

[11] E. Beke. Die Irreducibilität der homogenen linearen Differentialgleichungen. Mathe-
matische Annalen, 45:278–294, 1894.

76

[12] C. M. Bender and S. A. Orszag. Advanced Mathematical Methods for Scientists and
Engineers. McGraw-Hill, New York, Toronto, London, 1978.

[13] M. Bronstein. The Risch differential equation on an algebraic curve. In Watt [75],
pages 241–246.

[14] M. Bronstein. Integration and differential equations in computer algebra. Program-

mirovanie, 5:26–44, 1992.

[15] M. Bronstein. Linear ordinary differential equations: breaking trough the order 2
barrier. In Wang [73], pages 42–48.

[16] M. Bronstein. On solutions of linear ordinary differential equations in their coefficient
field. Journal of Symbolic Computation, 13:413–439, 1992.

[17] M. Bronstein. An improved algorithm for factoring linear ordinary differential opera-
tors. In M. Giesbrecht, editor, ISSAC ’94, International Symposium on Symbolic and
Algebraic Computation, Oxford, England, pages 336–340, New York, 1994. ACM.

[18] M. Bronstein and M. Petkovček. On Ore rings, linear operators and factorization.
Programmirovanie, 7:27–44, 1994.

[19] M. Bronstein and M. Petkovček. An introduction to pseudo-linear algebra. Theoretical
Computer Science, 157:3–33, 1996.

[20] D. V. Chudnovsky and G. V. Chudnovsky. On expansion of algebraic functions in
power and Puiseux series, part 1. Journal of Complexity, 2:271–294, 1986.

[21] D. V. Chudnovsky and G. V. Chudnovsky. On expansion of algebraic functions in
power and Puiseux series, part 2. Journal of Complexity, 3:1–25, 1987.

[22] E. Coddington and N. Levinson. Theorie of Linear Ordinary Differential Equations.
McGraw-Hill, New York, Toronto, London, 1955.

[23] J. Della Dora and E. Tournier. Formal solutions of differential equations in the neigh-
borhood of singular points. In P. Wang, editor, 1981 ACM Symposium on Symbolic
and Algebraic Computation, pages 25–29, New York, 1981. Academic Press.

[24] J. Della Dora and E. Tournier. Homogeneous linear difference equation (Frobenius-
Boole method). In J. Fitch, editor, EUROSAM 84, International Symposium on Sym-
bolic and Algebraic Computation, Cambridge, England, July 9–1, 1984, volume 174 of
Lecture Notes in Computer Science, pages 2–12, Berlin-Heidelberg-New York, 1984.
Springer-Verlag.

[25] J. Della Dora and E. Tournier. Formal solutions of linear difference equations method
of Pincherle-Ramis. In B. Char, editor, 1986 ACM Symposium on Symbolic and Alge-
braic Computation, University of Waterloo, Ontario, pages 192–196, New York, 1986.
Academic Press.

[26] G. Frobenius. Ueber die Integration der linearen Differentialgleichungen durch Reihen.
Journal für die reine und angewandte Mathematik, 76:214–235, 1873.

[27] L. Fuchs. Zur Theorie der linearen Differentialgleichungen mit veränderlichen Coeffi-
cienten. Journal für die reine und angewandte Mathematik, 66:121–160, 1866.

77

[28] L. Fuchs. Zur Theorie der linearen Differentialgleichungen mit veränderlichen Coeffi-
cienten. Journal für die reine und angewandte Mathematik, 68:354–385, 1868.

[29] K. Geddes, S. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer
Academic Publishers, Boston, 1992.

[30] H. Goering. Asymptotische Methoden zur Lösung von Differentialgleichungen. Akade-
mie-Verlag, Berlin, 1977.

[31] K. Hantzschmann. Zur Lösung von Randwertaufgaben bei Systemen gewöhlicher Dif-
ferentialgleichungen mit dem Ritz-Galerkin-Verfahren. Habilitationsschrift Technische
Universität Dresden, 1983.

[32] K. Hantzschmann. Implementierbare Fehlerabschätzungen für Näherungslösungen von
Randwertaufgaben bei Systemen gewöhnlicher Differentialgleichungen. Studientexte
Weiterbildungszentrum für Mathematische Kybernetik und Rechentechnik / Informa-
tionsverarbeitung 73, Technische Universität Dresden, 1984.

[33] K. Hantzschmann. Probleme und Algorithmen der Computeranalytik. In Mitteilun-
gen der Mathematischen Gesellschaft der DDR/Mathematikerkongress der DDR 1990,
Dresden 10.-14. September 1990, volume 2, pages 61–67. Mathematische Gesellschaft
der DDR, Technische Universität Dresden, 1990.

[34] K. Hantzschmann and A. Jung. Adaptive Approximation zur näherungsweisen Lösung
von Differentialgleichungen. Rostocker Informatik-Berichte 18, Universität Rostock,
1995. http://www.informatik.uni-rostock.de/˜ajung/.

[35] K. Hantzschmann and N. X. Thinh. Analytical approximate solution of singular ordi-
nary differential equations. In D. Shirkov, V. Rostovtsev, and V. Gerdt, editors, IV.
International Conference on Computer Algebra in Physical Research, Dubna, USSR,
22–26 May 1990, pages 169–174, Singapore, 1991. World Scientific Publishing.

[36] H. Kadner. Genähert-analytische Berechnung Greenscher Funktionen. Studientex-
te Weiterbildungszentrum für Mathematische Kybernetik und Rechentechnik / Infor-
mationsverarbeitung 89, Technische Universität Dresden, Sektionen Mathematik und
Informationsverarbeitung, 1986.

[37] E. Kamke. Differentialgleichungen. 1. Gewöhnliche Differentialgleichungen. Akade-
mische Verlagsgesellschaft Geest&Portig, Leipzig, sixth edition, 1969.

[38] E. Kamke. Differentialgleichungen. Lösungsmethoden und Lösungen: 1. Gewöhnliche
Differentialgleichungen. B.G. Teubner, Stuttgart, tenth edition, 1983.

[39] W. Koepf. Power series in computer algebra. Journal of Symbolic Computation, 13:581–
603, 1992.

[40] W. Koepf. Examples for the algorithmic calculation of formal Puisieux, Laurent and
power series. ACM SIGSAM Bulletin, 27(1):20–32, 1993.

[41] W. Koepf and D. Schmersau. Spaces of functions satisfying simple differential equa-
tions. Technical report 2, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1994.
http://www.zib.de/bib/pw/.

[42] A. N. Kolmogorov and S. V. Fomin. �lementy teorii funkci� i funkcio-

nal~nogo analiza. Nauka, Moskva, sixth edition, 1989.

78

[43] J. J. Kovacic. An algorithm for solving second order linear homogeneous differential
equations. Journal of Symbolic Computation, 2:3–43, 1986.

[44] N. J. Lehmann. Fehlerschranken für Näherungslösungen bei Differentialgleichungen.
Numerische Mathematik, 10:261–288, 1967.

[45] N. J. Lehmann. Computer algebra and practical analysis. In B. Buchberger, editor,
EUROCAL ’85, European Conference on Computer Algebra, Linz, Austria, April 1–3,
1985, Proceedings Vol. 1: Invited Lectures, volume 203 of Lecture Notes in Computer
Science, pages 102–113, Berlin-Heidelberg-New York, 1985. Springer-Verlag.

[46] N. J. Lehmann. Die Analytische Maschine - Grundlagen einer Computer-Analy-
tik. In Sitzungsberichte der Sächsischen Akademie der Wissenschaften zu Leipzig,
Mathematisch- naturwissenschaftliche Klasse, volume 118,4. Akademie Verlag, Berlin,
1985.

[47] N. J. Lehmann. Adaptive Approximation und Anwendungen. Studientexte Weiter-
bildungszentrum Computermathematik 105, Technische Universität Dresden, Sektion
Mathematik, 1989.

[48] W. Luther et al. Gewöhnliche Differentialgleichungen, Analytische und numerische
Behandlung. Friedrich Vieweg & Son, Braunschweig, 1987.

[49] Ø. Ore. Formale Theorie der linearen Differentialgleichungen (Erster Teil). Journal
für die reine und angewandte Mathematik, 167:221–234, 1932.

[50] Ø. Ore. Formale Theorie der linearen Differentialgleichungen (Zweiter Teil). Journal
für die reine und angewandte Mathematik, 168:233–252, 1932.

[51] Ø. Ore. Theory of non-commutative polynomial ring. Annals of Mathematics, 34:480–
508, 1933.

[52] E. Pflügel. An algorithm for computing exponential solutions of first order linear
differential systems. In W. W. Küchlin, editor, ISSAC ’97, International Symposium
on Symbolic and Algebraic Computation, Maui, Hawaii, pages 164–171, New York,
1997. ACM.

[53] P. Richter. Einsatz eines analytischen Iterationsverfahrens zur Lösung von Randwer-
taufgaben. PhD thesis, Technische Universität Dresden, 1982.

[54] R. Risch. The problem of integration in finite terms. Transactions of the American
Mathematical Society, 139:167–189, 1969.

[55] B. Salvy and P. Zimmermann. Gfun: A Maple package for the manipulation of gen-
erating and holonomic functions in one variable. ACM Transactions on Mathematical
Software, 20:163–177, 1994. http://pauillac.inria.fr/algo/papers/bibgen/salvy.html.

[56] F. Schwarz. A factorization algorithm for linear ordinary differential equations. In
G. Gonnet, editor, Proceedings of the ACM-SIGSAM 1989 International Symposium
on Symbolic and Algebraic Computation, ISSAC ’89, Portland, Oregon, pages 17–25,
New York, 1989. ACM.

[57] W. M. Seiler. Computer algebra and differential equations - an overview. Internal
Report 97-25, Fakultät für Informatik, Universität Karlsruhe, 1997.

79

[58] M. F. Singer. Liouvillian solutions of nth order homogeneous linear differential equa-
tions. American Journal of Mathematics, 103(4):661–682, 1981.

[59] M. F. Singer. Formal solutions of differential equations. Journal of Symbolic Compu-
tation, 10:59–94, 1990.

[60] M. F. Singer. Liouvillian solutions of linear differential equations with Liouvillian
coefficients. Journal of Symbolic Computation, 11:251–273, 1991.

[61] M. F. Singer. Testing reducibility of linear differential operators: A group theoretic
perspective. Journal of Appl. Alg. in Eng. Comm. and Comp., 7:77–104, 1996.

[62] M. F. Singer and F. Ulmer. Liouvillian solutions of third order linear differential
equations: New bounds and necessary conditions. In Wang [73], pages 17–25.

[63] M. F. Singer and F. Ulmer. Galois groups of second and third order linear differential
equations. Journal of Symbolic Computation, 16:9–36, 1993.

[64] M. F. Singer and F. Ulmer. Linear differential equations and products of linear forms.
Journal for Pure and Applied Algebra, 117-118:549–563, 1997.

[65] R. P. Stanley. Differentiably finite power series. European Journal of Combinatorics,
1:175–188, 1980.

[66] N. X. Thinh. Analytische Approximation für singuläre Anfangswertaufgaben gewöhn-
licher Differentialgleichungen. PhD thesis, Technische Universität Dresden, 1989.

[67] L. W. Thomé. Zur Theorie der linearen Differentialgleichungen. Journal für die reine
und angewandte Mathematik, 74:193–217, 1872.

[68] E. Tournier. Solutions Formelles d’Equations Différentielles. PhD thesis, LMC /
IMAG, Grenoble, 1987.

[69] F. Ulmer and J.-A. Weil. Note on Kovacic’s algorithm. Journal of Symbolic Compu-
tation, 22:179–200, 1996.

[70] M. van Hoeij. Factorization of Linear Differential Operators. PhD thesis, Katholieke
Universiteit, Nijmegen, 1996.

[71] M. van Hoeij. Rational solutions of the mixed differential equation and its application
to factorization of differential operators. In Y. Lakshman, editor, ISSAC ’96, Interna-
tional Symposium on Symbolic and Algebraic Computation, Zurich, Switzerland, pages
219–225, New York, 1996. ACM.

[72] M. van Hoeij. Formal solutions and factorization of differential operators with power
series coefficients. Journal of Symbolic Computation, 24:1–30, 1997.

[73] P. Wang, editor. ISSAC ’92, International Symposium on Symbolic and Algebraic
Computation, Berkeley, California, New York, 1992. ACM.

[74] S. Watanabe. Formula manipulations solving linear ordinary differential equations.
Publications of the Research Institute for Mathematical Sciences 11, Kyoto University,
1976.

[75] S. Watt, editor. ISSAC ’91, International Symposium on Symbolic and Algebraic Com-
putation, Bonn, Germany, New York, 1991. ACM.

80

[76] K. Wolf. Effiziente Algorithmen zur Lösung linearer Differentialgleichungssysteme
und zur Faktorisierung linearer Differentialoperatoren über liouvilleschen Körpern.
PhD thesis, Mathematisch-naturwissenschaftliche Fakultät der Rheinischen Friedrich-
Wilhelms Universität, Bonn, 1992.

81

Index

algorithm
associated equations method, 10, 34
Barkatou, 32, 33
Beke, 27, 33, 35, 44, 45, 66
d’Alembert reduction, 24, 46, 47
Frobenius, 10, 27, 35, 44
Kovacic, 9, 34, 66
Singer, 9, 34

associated equations method, 10, 34

C2, 19, 47
Ĉ(ν), 9, 20, 21, 23, 48, 59, 61
condition number, 53, 55, 61
condn, 53, 55, 61

defect, 47
difference equation, 17
differential equation

irregular, 16–18, 27, 34, 37, 39, 42, 44
regular, 10, 16–18, 21, 22, 24, 59, 61
regular singular, 10, 16–18, 37, 39, 44
singular, 16

differential operator
first order decomposable, 27
Fuchsian, 16, 26, 27
irregular, 16–18, 27, 34, 37, 39, 42, 44
reducible, 15, 27, 34
regular, 10, 16–18, 21, 22, 24, 59, 61
regular singular, 10, 16–18, 37, 39, 44
singular, 16

extension
elementary, 8
Liouvillian, 9

factorization
balanced, 32, 34–36, 39, 42

function
D-finite, 7, 8, 17, 18, 26
defect, 47
differentiably finite, 7, 8, 17, 18, 26
elementary, 8, 26, 27, 46, 47

error, 59, 61
exponential, 33–37, 40, 42, 44, 46, 47
generating, 7
Liouvillian, 9, 26, 33
with logarithmic derivative, 33, 37

GCRD, 15, 45
generating function, 7
greatest common right divisor, 15, 45
Green function, 22, 23, 53, 59, 60, 67

left, 23, 24, 61
right, 23, 24

index, 18, 32, 37, 39
indicial polynomial, 18, 32, 37, 39

l2, 20, 49
LCLM, 15
least common left multiple, 15

Newton polygon, 10, 11, 35, 36
p-adic, 36

norm, 19, 20, 54

point
irregular, 16–18, 27, 34, 37, 39, 42, 44
regular, 10, 16–18, 21, 22, 24, 59, 61
regular singular, 10, 16–18, 37, 39, 44
singular, 16

pp, 30
primitive part, 30
principal solution, 20–24

ramification index, 16, 27
rank of recursion, 7, 15, 17, 18, 29, 30, 32,

41
recurrence equation, 7, 17

p-adic, 18, 68
resultant, 30, 38
right remainder, 15, 45, 46
RRem, 15, 45, 46

scalar product, 19, 20, 48, 49

82

singularity, 16
slope, 10, 11, 35, 36
solution

exponential, 33–37, 40, 42, 44, 46, 47
finite Laurent series, 29, 32, 40, 41
hypergeometric, 17
polynomial, 32
principal, 20–24
rational, 32

symmetric power, 33
symmetry number, 17, 18, 30, 32

V, 7, 15, 26

Wronskian
determinant, 5, 21, 53, 60, 67
matrix, 5, 21, 53, 60, 61

83

