Prof. Dr. Wolfram Koepf WS 2001/2002

Mathematik I

06.11.2001

Übungszettel 2

- 6. Man bestimme $\lambda \in \mathbb{R}$ so, dass $\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ 1 \\ \lambda \end{pmatrix}$ senkrecht aufeinander stehen.
- 7. Der Punkt $\begin{pmatrix} 1\\3\\4 \end{pmatrix}$ soll in die Ebene x+2y+3z=4 projiziert werden. Man bestimme den Projektionspunkt.
- 8. Zeigen Sie die Formel

$$\sum_{k=0}^{n} \binom{m+k}{k} = \binom{m+n+1}{n} .$$

9. Zeigen Sie, dass

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}$$

gilt und bestimmen Sie

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} := \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)}$$

10. Zeigen sie, dass

$$\sum_{k=0}^{n} k \left(\begin{array}{c} n \\ k \end{array} \right) = n \cdot 2^{n-1}$$

gilt.

- 11. Berechnen sie für $n=10,\,100,\,1000$ und 10000 den Wert $e_n=(1+\frac{1}{n})^n$ als Dezimalzahl.
- 12. Die Fibonacci-Zahlen F_n sind gegeben durch die Rekursion

$$F_{n+1} = F_n + F_{n-1} \tag{1}$$

und es ist $F_1 = F_2 = 1$. Wegen (1) ist dann $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, ...

Der Grenzwert $\lim_{n\to\infty} \frac{F_{n+1}}{F_n}$, existiert. Bestimmen sie diesen.

<u>**Hinweis:**</u> Setzen Sie $s_n = \frac{F_{n+1}}{F_n}$ und dividieren Sie (1) durch F_n .