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Abstract. Some orthogonal polynomial systems are mapped onto each other by the
Fourier transform. Motivated by the paper [W. Koepf, M. Masjed-Jamei, Two classes of
special functions using Fourier transforms of some finite classes of classical orthogonal
polynomials, Proc. Amer. Math. Soc., 135 (2007) 3599-3606], in this paper we intro-
duce two new classes of orthogonal functions, which are respectively Fourier trans-
forms of the generalized ultraspherical polynomials and generalized Hermite polyno-
mials, and then obtain their orthogonality relations using Parseval identity.
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1. Introduction. Let us begin with the differential equation [9]:

X2 (px* + @)D" (x) + x(rx” + ) D (x) = (n(r + (=D p)x® + (1= (=1)")s/2) D, (x) = 0,
(1)
where p,q,r,s are real parameters and 7 is a nonnegative integer.

According to [9], one of the basis solutions of this equation is a specific class of sym-
metric orthogonal polynomials (with four free parameters) in the explicit form
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and the hypergeometric form [9]
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such that En (p,q,r,s;x) is the monic type of polynomials (2) satisfying the three term

j , (—M/ﬂ, (g—5)/2q-[(n+1)/2]
X|=x 2F1
—-(r+@2n-3)p)/2p

—%} 3)
px

recurrence relation:

QMFﬁNHQFSﬁAw;SMFhimwumN,(@
2



in which

C[r s]:pqn2+((r—2p)q—(—1)"ps)n+(r—Zp)S(l—(—l)")/Z @
"\» q (2pn+r—p)2pn+r-3p) ’
and
§,1(x)=§,1(r SXJZWZH .(2i+(_11)n“+2)qﬂ Sn[r SX]- 42)
P q b Qi+t 2m2)per e g

Since (4) is explicitly known, the norm square value of the polynomials can be obtained
by using Favard theorem [1]. In other words, the generic form of the orthogonality rela-
tion of the polynomials (2) is given by [9]
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in which 6, , = , the weight function is defined by [9]
’ 1 (n=m)
_ 2
W(r s xj _ eXp(dex)’ (6)
P4 x(px” +q)

and finally « takes the standard values 1, . In this sense, note according to [9], the

function (px* +q)W(p,q,r,s;x) must vanish at x =« in order to be valid the
orthogonality property (5).

In general, four classes of symmetric orthogonal polynomials can be extracted from the
differential equation (1). Two of them are infinitely orthogonal (namely the generalized
ultraspherical polynomials and generalized Hermite polynomials) and two other ones,
which are less known [9], are finitely orthogonal. See table 1 in this regard.

Table 1: Four special subclasses of S (p,q,7,s;x)

Definition Weight function Interval and Kind

—2a-2b-2, 2 —-2a-2b-2, 2 )

S, . . X /4 ¢ ¢ x [=x*(1-x")" [-L1], Infinite
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-2, 2a -2, 2a 2 s )
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Note in table 1 that all four weight functions must be even and positive, i.e. the condi-
tion (—1)*“ =1 must be satisfied for any four cases.

In this paper, the general properties of the two first cases of table 1 are required. So, we
restate them here in summary.

1.1. Generalized ultraspherical polynomials

If (p,q,r,s)=(-1,1,-2a-2b—-2,2a) is substituted in (1), then the equation

X (=x* + D)D" (x) = 2x((a+ b+ 1D)x* —a) D’ (x) + (n(2a +2b+n+Dx* +((-1)" - l)a)(I)n (x)=0,

(7)
appears that has the explicit monic polynomial solution [9]
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which is equivalent to the hypergeometric representation
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In this sense, , F,(.) is a special case of the generalized hypergeometric function [2,6]
of order (p,q) as

a a, .. a,
F
’ "( b, b, .. b,
k-1
in which (r), = H (r +1) denotes the Pochhammer symbol.
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The orthogonality relation corresponding to polynomials (8) is given by [9]
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Relation (9) shows that constraints on the parameters a and b are respectively
a+1/2>0, (-1)* =1 and a+b—-1/2>0. Moreover, B(4,,4,) in (9.2) is in general
the Beta integral [2,3] having various definitions as
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0
denotes the well-known Gamma function satisfying the fundamental recurrence relation
I'z+1) =zI(2).

1.2. Generalized Hermite polynomials
Similarly, if (p,q,7,s) =(0,1,—2,2a) is considered in (1), then the equation

X2 (x) - 2x(x’ —a)CI);,(x)+(2nx2 +((=1)" —l)a)CDn(x) =0 . (11)

has the monic polynomial solution [9]
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which is equivalent to the hypergeometric representation
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Also, the corresponding orthogonality relation takes the form [9]
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But it is known that some orthogonal polynomial systems are mapped onto each other
by the Fourier transform or other integral transforms such as the Mellin and Hankel
transforms. Some illustrative examples in this regard are found in e.g. [5,7,8]. In this
paper, we apply this viewpoint to introduce two new classes of orthogonal functions by
using Fourier transforms and Parseval identity.

2. Fourier transforms of generalized ultraspherical polynomials and generalized
Hermite polynomials and their orthogonality relations

The Fourier transform of a function, say g(x), is defined as [4]

F(s)=F(g(x) = e™g(x)dx, (14)
and for the inverse transform one has the formula
g(x)= LJ”O e™F(s)ds. (14.1)
279

For g,h e L’(R), the Parseval identity related to Fourier theory is given by [4]

| g htdx = [ F(g@)F)ds. (15)
T

By noting (9) and (15) we now define the following specific functions

{g(x) = (tanh x)** (1-tanh® x)” U“? (tanh x) s.t. (=1)** =1, (16)

h(x) = (tanh x)* (1—tanh® x)* U™ (tanhx) s.t. (-1)* =1,

in terms of the generalized ultraspherical polynomials to which we will apply the
Fourier transform. Clearly for both above functions the Fourier transform exists. For
instance, for the function g(x) defined in (16) we get
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On the other hand, since
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is the integral representation of the Gauss hypergeometric function [2,6] for

Rec>Reb >0 and |x|<1, the last integral in relation (17) can be shown in terms of
(18) and we finally obtain
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then it is clear in (19) that
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Now, by substituting (21) in Parseval’s identity (15) and noting (16) we get
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On the other hand, if in the left hand side of (22) we take

c=v=a+!l and d=w=pf+u-1, (23)

then according to orthogonality relation (9), equation (22) finally reads as
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where H(.)zl, Pu>0and a+1>-1/2.
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Remark 1. As (20) shows, K, (x;p,,p,,P;,p,) 1s not a polynomial function in the

general case although it can be reduced to a polynomial when p, = 0. For instance, for
n=0,1,2,3 we respectively have
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Here we emphasize that for p, =0, the above functions are reduced to a polynomial of
exactly degree n .

Remark 2. Replacing n=m=0 and a=[/=0 in (24) gives a special case of the
Barnes beta integral [10]:
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Moreover, the weight function of the orthogonality relation (24) can be simplified by
using Cauchy beta integral [1,3]

Lo TCerdeD e, (8)
2z Y (a+it) (b—it) r'er )

and one of its consequences, i.e.

. _ 22X 2T (2p—1
I(p+ig)l'(p—iq) =3 @p-1 : (28.1)

2p-2

2qx

J.e xdx

-r/2

COos

which results in



is is is is 28 T2 - 2u -1
F(ﬂ+5)r(ﬂ—5)r(u+5)l"(u—5)= — ( ﬂﬂ/z ) ( ) . (282)
j e™ cos*”? xdx J. e™ cos®™* xdx
—-/2 —-/2

Therefore, if we define
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the following theorem will be derived.

Theorem 1. The special function K, (x; p,, p,, p;,p,) defined in (20) satisfies an or-
thogonality relation as
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where S,u>1/2, a+1>-1/2 and W' (x;.) is defined as (29).

The mentioned approach can similarly be applied to the generalized Hermite polyno-
mials. For this purpose, we first define the following specific functions

[ [

u(x)=x¢ > H”(x) and v(x)=x*e > HP(x) for (-1)* =(=1)*=1. (31)

If we take the Fourier transform for e.g. u(x), we get
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Now, it remains to evaluate the definite integral:
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There are two ways to compute the above integral. First, by noting that (-1)>* =1 in
(32.1), we can directly compute 7, , (s;a) for n=2m as follows
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To simplify the last summation of (33) in terms of a hypergeometric form we need to
use (27) and relations:
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r+a+m—k+

(=1)"s*2 2l“(aer k+ )(a+m k+ )

I/ s,a)=
2k (850) Z;‘ (1/2), 2% r! (34)

s
|

Similarly this computational method can be applied for 7,,.,,(s;a). Just we should

at+m—k+1/2

=272 (g m—k +1/2) W
1/2

note in this turn that ij”“z’”“‘z"e"‘z/zdx =0 for any j=0,2,4,.... After some com-
putations we obtain
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Thus, by combining both relations (34) and (35) and using (13.1) we finally have
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The second way to compute /,,(s;a) is that we respectively consider n=2m and

n=2m+1 and directly apply the cosine and sine Fourier transforms of the function

e 2x2 2% gee [4, section 1.4, formula 14] and [4, section 2.4, formula 24]. In other

words, by noting that (—1)** =1 we have
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and (38)
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Consequently, the result (36) simplifies (32) as
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Finally it is sufficient to assume in (43) that b = d = a + ¢ and then refer to the orthogo-
nality relation (13) to reach the following theorem.

Theorem 2. The special function J,(x;¢,,q,) defined in (42) satisfies the orthogonality

relation

n+l
. 22 R re s e
[e'J,(xia.b)J, (x:b—a.b)dx = 2 2 2 5 . 44
W ' Fa+t+ " yre—as Lty

2 2 2"

where a,b>—1/2 and (-1)* =1.
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