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1. Introduction. Let
= a:z", (1)
k=0
be a convergent series in which {a,}7_, are known real numbers. If

z=x+iy=re’ (i=+-1),

is a complex variable with

r=+x*+y> and @=arg(x+iy),

then it can be verified from (1) that

Im(z* £ (2)+ 2" (7)) = Im(zlf*(z)fflf*(g)) -0, VAieR. )
1

In other words, z'f (2)+z"f (z) and (z*f (z)-z"f (Z))/i are always two real
functions if (1) holds. Based on the result (2), we have recently introduced two bivariate
series in [7] as

C,(fr,0,mmn)=> a,,,r" cos(a+k), 3)
k=0



and

S, (f5r0,mn)=> a.,. r*sin(a+k)6, @)

k=0

where 7,6 are real variables,  €e R, neN and me{0,1,..,n—1} and showed that

they are convergent if the reduced series Z a r* is convergent.

k=0
Now, let f” be an analytic function at the point e.g. z =b € R . By defining the two real

nk+m

functions
gl(r’e;a’b):%(eaief*(b+l"ei€)+e_ai5f*(b—|—Ve_ig)), (5)
and

gz(r,é’;a,b)zzll( Crbrre’y—e f(brre™)), (6)

we can directly conclude that

d'g,(r,0,a,b)|
dr*

= O (b)cos(a + k)0,
r=0
and

d“g,(r,0;a,b)|

o = O b)sin(a+ k)b .
,

‘ r=0

Hence, the Taylor expansion of the functions (5) and (6) with respect to the variable r
at » =0 are respectively given as

S (b) r* cos(a + k)0, (7)

%(e“igf*(b+rei9)+e_“i0f*(b+re 0 ) Z
k=0
and

10)

%(e“” [ b+re®)=e 1 (b+re”))= i P sin(a +k)0. (8)

l k=0

Clearly equations (7) and (8) are valid only in the convergence region of r for any

*(k)
aeR and Oe[-z,7] provided that hmf k() =0. In this case, we will

k—x

automatically have

(k) (k)
limM r*cos(a+k)@=0 and lim% risin(a+k)0=0.  (9)

k—0 k! k—o0

Relations (9) show that the convergence of the two series (7) and (8) directly depends
on the convergence radius of the Taylor expansion corresponding to f~ at r=b.



In this paper, we assume that the coefficients {a,}7, in series (3) and (4) are

hypergeometric terms and obtain some of their important properties such as integral
representations and several classes of partial differential equations.

2. Bivariate series of hypergeometric-trigonometric type

It is known that there are some differences between power series expansions and
trigonometric expansions. For instance, the infinite differentiability of a function does
not itself assure that its power series will converge to that function, whereas mere
periodicity and a little smoothness are enough to have the Fourier trigonometric series
converge uniformly to the function [3]. Further, the terms of the trigonometric series
expansion describe simple harmonic motion so that the function may be considered as a
linear combination of harmonic motions, whereas the terms of a power series have no
such physical interpretation.

In this section, we introduce a mixed type of hypergeometric and trigonometric series
that covers many ordinary hypergeometric series in addition to usual trigonometric
series. Hypergeometric series as special cases of power series are important tools for
investigations in different branches of engineering and mathematical sciences [1, 2, 13].
For instance, there is a large set of hypergeometic-type polynomials whose variable is
located in one or more of the parameters of the corresponding hypergeometric series [6].
These polynomials are of great importance in mathematics as well as in some areas of
physics. A few samples of their applications are discussed in [10]. See also [8, 9].

The main motivation for introducing and developing hypergeometric series is that many
elementary and familiar functions (such as trigonometric, exponential and logarithm
functions, classical orthogonal polynomials of Jacobi, Laguerre and Hermite, etc. [9,
12]) can be written in terms of them and therefore their initial properties can be found
via the initial properties of hypergeometric functions. They also appear as solutions of
many important ordinary differential equations [2, 11].

The generalized hypergeometric series

. a, a,, ... a, e L (al)k(az)k...(ap)ki
7\ b, by, ... b, = (B) (b)) (b)), k!

(10)

k-1
in which (r), = H(r+j) =I'(r+k)/I'(r) and z may be a complex variable is indeed

J=0

the Taylor series expansion of the function f"(z)=>" a; z* with a, = f*“(0)/k! for
k=0
which the ratio of successive terms can be written as

(k+a)(k+a,)...(k+a,)
@, (k+b)k+b,)..(k+b)(k+1)

*
At _

According to the ratio test [5], series (10) is convergent for any p<g+1. In other
words, it converges in |z|<1 for p=g+1, converges everywhere for p<g+1 and
converges nowhere (z#0) for p>g+1. Moreover, for p=g+1 it absolutely
converges for |z| =1 if the condition



q q+1
A =Re[2bj —Zaj}o,
J=l =
holds and is conditionally convergent for |z| =1 and z#1 if -1< 4 <0 and is finally

divergent for |z[=1 and z#1if 4" <-1.

One of the important cases of the generalized series (10) arising in many physical
problems [9, 13] is the Gauss hypergeometric function, which is convergent in |z| <1

and is defined by

a, b (a), (b), i_ I'(c) e b1 (1_ 4
( U kZ; o, - TOre b)j (1= (1=tz)“dt (Rec>Reb>0),
(11)

satisfying the differential equation
z(z—l)y”+((a+b+l)z—c)y'+aby:0. (12)

We can now extend the hypergeometric series (10) and define a special case of the
series (7) as

a, ay, ... a, o (a),(a,),.. (a ),
”C"(bl,bza--- b, “J_;(b)k(b by, 1O
and a special case of the series (8) as
a,, 4,, (a)),(ay),;--(a, )i 7
) q(b“bp b, l(r,0);0 J kZi BN .sm(a—i-k)H (14)

According to (7) and (8), both series (13) and (14) are convergent if the corresponding
series (10) is convergent. It is clear for (13) and (14) that we have

a, ay, ... a, al,az,...
,C, bbb (r,0);a :cosaﬁpC ' (r 0);0
! (15)
) al, az,
—-sinaf S, (r 0);0 |,
and
a,, a,, a, ) a, az,
b b b (r,0);a |=sinal ,C, b ' (r 0);0
q (16)
al, az,...
+cosal S, (r 0);0 |.




As we pointed out, the main motivation for defining such bivariate series is that many
ordinary hypergeometric series (when € =0) and Fourier trigonometric series (when r
is fixed and pre-assigned) can be represented in terms of them as the following
examples show.

Example 1. The fact that a discontinuous function can be represented as an infinite sum
of sines and cosines was known already to Euler [4], who obtained the following sum

, 0<@<2r. (17)

But (17) can now be represented as

© s 2 sin( j = (1).(1); sin(;j 1,1
Zs1nk19 :ZSID(-]H)G :z( ), (), sm(].+1)19 _ s o)1),
ok ol = (), J! 2
Example 2. Since
11 —x—i
zFl( xﬂ.y]:_ln(l x iv)
2 X+iy
X Y Y Y (18)
——1n((1—x)2+y2)+yarctan— xarctan—+—ln((l—x)2+y2)
__2 l-x ; I-x 2
x2_+_y2 x2_+_y2 >
replacing x =rcos@ and y =rsiné in (18) gives
i 1, 1
l _cosgln(lﬂf2 —2rcos9)+sin9arctan(ﬂ)j= ,C (r,0);0 |,
r l-rcos@ 2
and
i i I, 1
1 cos @ arctan ( rsind )+Sm01n(1+r2—2rcost9) =,8 (7,0);0 |.
r l1-rcosé 2 2
Therefore, by using (15) and (16), we respectively obtain
" Yoo i’”k (@ +k)0
r,0),a |= cos(a +
) ~k+1
:—Marctan( rsing —Cos(a_l)gln(lﬂfz—2rcos&’),
1-rcos® 2r
and
11 =t
.S, ) (r,0):a :Zk 1sm(a+k)¢9
B0 (19)
_cos(e-1)o arctan (— >0 0 __sin(a-1)0 ln(l +7r°=2rcos 6’).
r l-rcosé 2r



It is interesting to note that substituting » = =1 in the right hand side of (19) exactly
gives the left hand side of (17).

Example 3. Since

P 1/2, 1 ~ 2 | arctan(x+iy)
2372 4 xX+iy
2
= 21 5 Zlnxz+(1 0 +xarctan—22x )
2x*+y%) 2 X +(1-y) I-x"—y
2 2
+i 21 5 zlnszr(ler)z—yarctan%),
2x"+y7) 2 x+(-y) I-x"—y
SO
Z 2 cos2k9——(smg 1+7° +2rsm0+cost9arctan(2rcosz9))
paary 2k+1 2r 2 1+7>—2rsin@ -7
1/2, 1
=,C (=%, 26);0 |,
and
o ¢ 1\k 2 .
Z =D r** sin 2k@ :i(cosé’ In 1+r2 i2rs?n9 —sin@arctan(zrioie))
= 2k +1 2r 2 1+7r°—2rsind 1-r
1/2, 1 5
=, 3/2 (-r°, 260);0 |.
Example 4. It is shown in [7] that the equality
) 3k+2
Z cos(3k+2)0:
k=
—Lln (1+7* =2rcos @)’ _ﬁarctan\/g(r2+2rcos0)
12 4r*cos> 0+2r(r* +1)cos@+r* = +1 6 —? +2rcos@+2"’
1 1(2/3),

is valid for any |r|<1 and 6 e[-z,7]. Since the above series can

3k+2 2(5/3),°

now be represented as
0 3k+2

r 1
> i cos(3k +2)0 zarz 2C1[

k=0

2/3, 1
5/3

3 2y 2
(r ,39),3].

In the sequel, an integral representation of series (13) and (14) can be derived for
(p,q)=(2,1), respectively, as follows: Since

trsin@

1 . . —al2
—(A-tre®y  +(—trey*)=(1+*r* =2trcos@)  cos(aarctan ,
2(( ) ( ) ) ( ) ( trcosf—1

so via (11) we obtain



Z (@), (B), 1" 0 —cos(a + k)0

k=0 ( )k
j A=) 1(1+t r —2trcost9) o cos(a@—aarctanm)dt.

trcos@ -1

L'(c)
T (b)) (c—b) 30

Similarly, the integral representation of (14) for (p,q) =(2,1) takes the form

Z (@), (B), 1 0 —sin(a + k)0

k=0 (C)k

O j (1) (1+2°r* = 2trcos 6’)_a/2 sin(a - aarctan— 00 0 )dt .
r'®)yrc-n)’° trcosf—1

2.1. Partial differential equations of the two introduced series

There are several classes of partial differential equations (PDEs) for each bivariate
series (13) and (14). In this section, we first obtain the equations for (p,q)=(2,1) and

then extend the results to the general case (p,q) . Let us begin with the assumption

(a, b
2C1
c

It can be verified that the following equations hold for y defined in (20):

(r,0); a] =y(r,0)=y. (20)

i 0 (@) (b)k+1
(r Pl a)(r— » +b)y kz(; o T —cos(a+k)0, (1)
and
_i _ “ v _ (@)1 (b)k+1
( v a+a)(r +b)y ( ae a+b)(r +a)y ; © k!sm(a+k)¢9
and (22)
o, 0 (@), (b), " (@) (D) 7*
5(r5+c Z 0 (k_l)'cos(a+k)0 ; o, & —cos(a+k+1)0
— ( )k+1 (b)k+1 ( )k+1 (b)k+1
=Cos sz(; ©), x —cos(a+k)0—sind kz(;—( o, Px sin(a +k)6.
(23)

Hence, substituting (21) and (22) into (23) respectively gives

0o, 0 0 0 0 0

—(r—+c-Dy= o(r—+ —+b)-sinf(——-a+ —+b))y, 24

ar(f’ 5 ¢ )y =(cosO(r o a)(r o )—sin 6 ( 20 ¢ a)(r o Ny,  (24)
and

%(r£+c—l)y = (cosH(r§+a)(r§+b)—sin¢9(—%—a+b)(r§+a))y. (25)



Another method is to use the variable & to get

(i—a a)(———a b)y= (——a b)(———a a)y= Z(a)’”l( i I —cos(a + k)0,

00 i (o) k!
and (26)
(r—+a)(———a+b)y (r—+b)(———a+a)y Z%k'sm(aﬂ’c)e
= ), !
and 27
(@) (b), r*
(—— )(—£—05+C Dy= Z ( o) (k_l)!cos(a+k)6’
_ (@) (D) 7 28
kz(; ©)\ Py cos(a+k+l)9 (28)
_rcosﬁkz(;( )kgclikb)"“ k!cos(a+k)¢9 rs1n9kz(;%k!sm(a+k)0

Again, substituting (26) and (27) into (28) respectively gives

0 0 0 0
(—— )(— %—oﬁc Dy= (rcos@(——a+a)( —9—a+b) rs1n9(r—+a)(——9—a+b))y,
and (29)
(—— )(—%—a+c Dy= (rcosH(——a a)(—%—a+b) rsm@(r—+b)(—%—a+a))y,
and (30)
(—— )(—i—a+c D (rcosH(——aer)(—i—aJra) rs1n¢9(rg+a)(—i—a+b))
20 - 20 20 ¥
and 31
0 0 0 0 . 0 0
(ﬁ—a)(—%—a+c—l)y—(rcos@(%—a+b)(—%—a+a)—rsm49(r5+b)(—@—a+a))y.
(32)

The third method may be a simultaneous combination of relations (21) with (26) and
(22) with (27) so that we have

%(r§+c—l)y :(cos&’(%—a+a)(—8—%—a+b)—sin@(—%—a+a)(r§+b))y,
and (33)
%(r§+c—l)y =(cos@(%—a+a)(—%—a+b)—sin9(—%—a+b)(r%+a))y,
and (34)
%(r§+c—l)y :(cos@(%—a+b)(—%—a+a)—sin9(—%—a+a)(r§+b))y,
and (35)
%(r§+c—l)y :(cos@(%—a+b)(—%—a+a)—sin(9(—%—a+b)(r§+a))y.
(36)



Corollary 1. After simplifying and computing each ten equations in (24), (25) and (29)
to (36), the explicit forms of PDEs for series (20) are, respectively, as follows:

2 2

r((cos e)r—l)ZT{wsine a(iaye +(((a+b+1)cosO+(a—a)sin H)F—c)a—y
y

o (24a)
+bsinl9£+b(acosz9+(a—a)sin@)y:O,

and
r((cos@)r—l)ZZTJ;+rsin6' 88}"2;6’ +(((a+b+1)cos@+(a—b)sin@)r—c)% 50
+asin0%+a(bcos@+(a—b)siné’)y =0,
and

2 2

—(rcose—l)a Y 1 2sin0-2Y 4 (a—byrsino L
0 00 or or

92

+(((b—a)cos0+asin0)r—c+l)%+((a—b)(asin6'+(a—a)cosH)r+a(c—1—a))y:0,
and (29a)

2 2
—(rcosH—l)a Y 2 sin0-2Y  (a—ay sing Y
00 00or or

2

+(((b—a)c0s9+bsin9)r—c+l)%+((a—a)(bsin0+(a—b)cos@)r+a(c—1—a))y=O,
and (30a)

2 2

—(rcost9—l)%+r2 sin@aagg +(a—b)r’ sineg—y
r r

+((—(b—a)cost9+asin6’)r—c+1)2—2+((a—b)(asin9+(a—a)cos@)r+a(c—1—a))y=0,

and (31a)

2 2

—(rcos&—l)%Jrr2 sin@aae; +(a—a)r’ sinHZ—y
r r

+((—(b—a)cost9+bsin9)r—c+l)%+((a—a)(bsin9+(a—b)cos@)r+a(c—1—a))y=0.

and (32a)
2 2 2
ré—)z}+cosea—)2}—rsin9 oy +((a—a)rsin¢9+c)a—y
or 00 orod or (338.)
—((b—a)cosz9+bsin0)%—(a—a)((b—a)cos@—bsin@)y:O,
and
2 2 2
ra—);+cosé’a—)z}—rsinHa—y+((b—a)rsin9+c)a—y
or 00 orod or (34a)

—((b—a)cos9+asin9)%—(b—a)((a—a)cos@—asiné?)y=0,



and

2 2
8 Y —rsin@ Oy +((a—a)rsin9+c)a—y
al" 69 orol or (3521)
—(—(b—a)cos@+bsin9)%—(a—a)((b—a)cos@—bsin@)y=0,
and
o'y o'y o'y dy
r—s+cos@—=—rsind +((b—a)rsinf+c)—=
or 0o orol or (363)

—(—(b—a)cos:9+asin0)%—(b—a)((a—a)cosé’—asin@)y:0.

It is interesting to note that replacing 8 =0 in (24a) and (25a) exactly gives the Gauss
differential equation (12).

Corollary 1 shows that there are various classes of PDEs for the general case
(p,q) > (2,1). However, due to pages limitation, we here obtain only one class. Let us

assume that
a,, a,, ..
qu 1 2
b, b,, ...

The following equations hold for y defined in (37):

) (r,e);a}y(r,e):y. G)

q

0 0 0 2 (@) (a )k+1 r
{(r5+al)(rar+a2) (r +a )}y kz(; b)Ab,), T cos(a + k)0,

and

0 0 0 0 0 0
{(_£_a+al)(ra +a,).. (r +a )} {(— ()Hraz)(ra +a)(r +a3) (ra +a )}

= _i_ 0 0 0 (al)k+1"'(ap)k+l r_ .
- {( % a+a)(ra +a)(r +a2) (r—= +ap1)} kz(‘:—(bl)k...(bq)k k!s1n(a+k)l9.

Consequently we have

{(r b —1)(r b, 1). (r—+b —1)} i(}g")l)""'izp))k (krk_ll)'cos(a+k)0

= —(al)k” @)1 Lcos(oz+k+1)¢9

S (b)(b), k!

:cosﬁ{(r§+al)(r 0 +a,).. (r 0 +a )}y smﬁ{(—;;—a+al)(r 0 +a,).. (r 0 +a )}

or

0 0 0 0 0 0 0
—cosH{(rar+al)(r r+a2) (r +a )}y 51n9{(—86?—05+a2)(ra +a1)(rar+a3) (r +a )}

— {(Va+a1)(r 0 tay). (r 0 +a )}y sm@{(—aae—a’-f-a )(r 0 +a1)(r 0 +a2) (r 0 +ap 1)}

10



Similarly, if we take

“ler, 9>;a] = (r.0) =y, (38)

then we obtain

d 0 o (@)gr-(a,)i ¥
{(Vgﬂll)(” +4a,).. (r ~+a )}y k§=0mk! sin(e +k)8,  (39)
and

{(a—ae—ﬂ+al)(r +a,).. (Faa +a )} {(i—aﬂzz)(raa +a1)(’”§;+a3) “l 0 i )}

00
0 0 o 0 (@)@, r
= {(ﬁ—a+a )(ra +a1)(rar+a2) (ra +a,. 1)} ;W’” cos(a +k)8.
(40)
Therefore
2 (a)a,),
; (BB (k=1)!

{(r+b —1)(r b, -1). (r—+b -1)} sin(e + k)0

Z (@) (a it r—sm(a+k+l)0

0 (B)ee(by) k!

+a)(r 0 +a2) (r 0 +a )}y+s1n9{(6 a+a)(r 0 +a2) (r 0 +a )}

cose{(r 0
or

= {(V g +al)(” ¢ +az) (7’ 0 —+a )}y+sm¢9{(9 a+a2)(r 0 +a)(r 0 +a3) (r 0 ~ta )}

=cosa9{(ra+al)(r 0 +a,).. (r 0 +a )}y+smc9{(a—a+a )(r£+a1)(r 0 +a2) (r 0 +a 1)}
or or 00 i

(41)
Corollary 2. Let (p,q) =(2,1) in (38). After applying the relations (39), (40) and (41),

, b
ten different PDEs would appear for , S, (a
c

(r,@);aj =y as follows:

2 2

r((cosH)r—l)ZT);JrrsinH;aye+(((a+b+1)cos0+(a—a)sin@)r—c)a—y

or

+bsin«92—2+b(acos«9+(a—a)sin@)y=O,

and
2

2
r((cos@)r—l)gr);+rsin6’£ayg (((a+b+1)c0s9+(b a)sin@)r— c)gy

a

+asin0%+a(bcos€+(b—a)sin@)y=0,

and

11



2 2

—(rcos@—l)ay+rzsin0 Oy +(b—a)r2sin98—y
0 ol or or

92

+(((b—a)cos9+asin9)r—c+1)§—y9+((b—a)((a—a)cos9+asin0)r—a(a+1—c))y=o,

and
2 2

—(mos@—l)%ﬂf2 sin @

Y\ (a-ay?singY
r or

+(((b—a)cos9+bsin9)r—c+1)%+((a—a)((b—a)cos9+bsin9)r—a(a+1—c))y=0,

and
2 2

—(rcost9—l)%+r2 sinﬁaagg
r

+(b—a)r’sin Ga—y
or

+(((a—b)cos9+asin@)r—c+l)%+((b—a)((a—a)cos@+asint9)r—a(a+1—c))y=0,

and
2 2

—(rcos@-1) 0y +r2sind

02

Y (a—oa)r’sin Ha—y
or or

+(((a—b)cos€+bsin0)r—c+1)%+((a—a)((b—a)c0s9+bsin9)r—(x(a+1—c))y=O,

and
raZ—);Jrcos&aZ); —rsin@az—y—((b—a)rsiné’—c)a—y
or 00 orof or
—((b—a)cost9+asin6?)%—(b—a)((a—a)cosH+asin9)y=0,
and
raZ—);Jrcos&i);—rsin@az—y—((a—a)rsin&—c)a—y
or 00 orod or
—((b—a)cosz9+bsin0)%—(a—a)((b—a)cos@+bsin0)y:O,
and
raz—);+coseaz);—rsin9 oy —((b—a)rsin@—c)a—y
or 00 oroé or
—((a—b)cost9+asin9)%—(b—a)((a—a)cos&+asin9)y=0,
and

2 2 2
ra )2/+c0s6’a ); —rsiné’a—y—((a—a)rsiné’—c)a—y
or 00 orol or

—((a—b)cos@+bsin9)%—(a—a)((b—a)c050+bsin0)y=O.

12
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