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Abstract

This article deals with the problem of finding closed analytical formulae for generalized
linearization coefficients for Jacobi polynomials. By considering some special cases we obtain
a reduction formula using for this purpose symbolic computation, in particular Zeilberger’s and
Petkovsek’s algorithms.
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The general linearization problem consists in finding the coefficients Lij(k) in the expansion of
two polynomials Qi(x), Rj(x) in terms of an arbitrary sequence {Pn}n≥0 (degPn = n):

Qi(x)Rj(x) =

i+j∑
k=0

Lij(k)Pk(x). (1)

Particular case of this problem is the standard linearization or Clebsh-Gordan type problem (Pn =
Qn = Rn),

Pi(x)Pj(x) =

i+j∑
k=0

Lij(k)Pk(x). (2)

On the other hand, taking Rj = 1 in (1), we are faced with the so-called connection problem, which
for Qi = xi is known as the inversion problem for the family {Pn}n.

The literature on linearization and connection problems is extremely vast, and a variety of meth-
ods and approaches for computing the coefficientsLij(k) in (1) have been developed. In the standard
case (2), when {Pn}n is an orthogonal family (with respect to some positive measure), many results
concerning the positivity of the coefficients Lij(k) and the recurrence relation satisfied by these
coefficients are known, in some cases (classical orthogonal polynomials) the coefficients Lij(k) are
given explicitly, very often in terms of hypergeometric functions.

We recall that pFq denotes the generalized hypergeometric function with p numerator and q de-
nominator parameters, given by

pFq

(
(ap)

(bq)

∣∣∣∣∣ x
)

∞∑
k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

xk

k!
, (3)
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where the contracted notation (ap) is used to abbreviate the array of p parameters a1, . . . , ap and

(x)n :=
Γ(x+ n)

Γ(x)
denotes the well-known Pochhammer symbol.

In this work, we consider the Jacobi polynomials defined by [14]

P (α,β)
n (x) =

(α+ 1)n

n!
2F1

(
−n, α+ β + n+ 1

α+ 1

∣∣∣∣∣ 1− x

2

)
.

The standard linearization problem associated to Jacobi polynomials and to establish the conditions
of nonnegativity of the linearization coefficients has been under considerable research for many
years. Hyllareas (1962) investigated particular cases [7], Gasper (1970) found the necessary and
sufficient conditions for the non-negativity of these coefficients [1, 5] and Koornwinder (1978)
approached the same problem from a different point of view [11]. Rahman (1981) gave an explicit
representation of the standard linearization coefficients, Lij(k), for the Jacobi polynomials and their
continuous q-analogue in terms of 9F8 and 10Φ9 hypergeometric series respectively, but with distinct
explicit representations for even and odd values of k [12, 13].

The main aim of this paper is to give a closed form of the general linearization coefficients for
Jacobi polynomials in terms of the Kampé de Fériet function and to prove that in a suitable partic-
ular case these coefficients can be expressed as a product of two terminating functions. By using
symbolic computation, we show that one of these two hypergeometric functions can be reduced to
a simple hypergeometric term. As far as we know, the obtained reduction formula for 3F2 is not
included in any known reduction formula and appears to be new. At the end of this work, we use
known connection and linearization formulae for ultraspherical polynomials to derive a reduction
formula associated to a terminating double sum.

The Kampé de Fériet function is the double hypergeometric function defined by: [15, p. 63]

F p: k
l: n

 (ap) : (bk); (ck);
x, y

(αl) : (βn); (γn);

 =
∞∑

r,s=0

[ap]r+s[bk]r[ck]s
[αl]r+s[βn]r[γn]s

xr

r!

ys

s!
, (4)

where [ap]r =

p∏
j=1

(aj)r, . . . .

To solve the linearization problem for the Jacobi PS, we need the following result which is proved
in [4].

Theorem 1. Let {Pn}n≥0, {Qn}n≥0 and {Rn}n≥0 be three polynomial sets generated, respectively,
by

A1(t)B1 (xC1(t)) =
∞∑

n=0

λ(1)
n Pn(x)tn,

A2(t)B2 (xC2(t)) =
∞∑

n=0

λ(2)
n Qn(x)tn,

A3(t)B3 (xC3(t)) =
∞∑

n=0

λ(3)
n Rn(x)tn,

(5)

where Ap, Bp and Cp, are three formal power series satisfying Ap(0) 6= 0, Cp(0) = 0, C ′p(0) 6=
0, B(k)

p (0) 6= 0 ∀ k 6= 0 and λ(p)
n 6= 0; p = 1, 2, 3.

Then the associated linearization coefficients in (1) are given by

Lij(k) =
λ

(1)
k

λ
(2)
i λ

(3)
j

i∑
r=0

j∑
s=0

γ
(2)
r γ

(3)
s

γ
(1)
r+s

a(2)
r (i)a(3)

s (j)ψr+s(k), k = 0, 1, .., i+ j, (6)
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where

Ap(t)C
m
p (t) =

∞∑
i=m

a(p)
m (i)ti, Bp(t) =

∞∑
k=0

γ
(p)
k tk; p = 1, 2, 3; and

C−k
1 (t)

A1(C
−1
1 (t))

=
∞∑

n=k

ψn(k)tn.

(7)

Recall here that a polynomial set defined by a generating function like in (5) is said to be of
Boas-Buck type [3].

The Jacobi polynomial set is generated by [8]

(1− t)−τ
2F1

( τ

2
,
τ + 1

2
α+ 1

∣∣∣∣∣ −2(x− 1)t

(1− t)2

)
=

∞∑
n=0

(τ)nP
(α,β)
n (x)

(1 + α)n

tn,

where τ = α+ β + 1.
It follows that the shifted Jacobi polynomial set is of Boas-Buck type with

A(t) = (1− t)−τ , C(t) =
−t

(1− t)2
and B(t) = 2F1

( τ

2
,
τ + 1

2
α+ 1

∣∣∣∣∣ t
)
. (8)

For this case, and to get the development of the formal power series in (7), we need the following
lemma.

Lemma 2 (Lagrange’s inversion formula [15]). Let ξ be a function of t implicitly defined by

ξ = t(1 + ξ)s+1, ξ(0) = 0. (9)

Then we have

(1 + ξ(t))r =
∞∑

n=0

r

r + (s+ 1)n

(
r + (s+ 1)n

n

)
tn, (10)

where r and s are complex numbers independent of n.

In our case we have
A(t) = (1− t)−τ and C(t) =

−t
(1− t)2

.

C−1 is defined, implicitly, by
(1− C−1(t))2t = −C−1(t) .

Using (10), with ξ = −C−1, s = 1 and r = τ + 2k, we obtain

(C−1)k(t)

A(C−1(t))
= (−1)k(1− C−1(t))2k+τ tk

= (−1)k

∞∑
n=0

τ + 2k

τ + 2n+ 2k

(
2n+ 2k + τ

n

)
tn+k

= (−1)k

∞∑
n=k

τ + 2k

τ + 2n

(τ + 1 + n+ k)n−k

(n− k)!
tn .
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On the other hand, it is easy to check that

A(t)Cm(t) = (−1)m tm

(1− t)2m+τ
= (−1)m

∞∑
n=m

(2m+ τ)n−m

(n−m)!
tn. (11)

By using Theorem 1, we deduce that the linearization coefficients in

P
(λ,δ)
i (x)P

(µ,γ)
j (x) =

i+j∑
k=0

Lij(k)P
(α,β)
k (x),

are given by

Lij(i+ j − k) =
(α+ β + 1)i+j−k(α+ 1)i+j(2(i+ j − k) + α+ β + 1)

(α+ 1)i+j−k(α+ β + 1)2(i+j)−k+1

×(−1)k(i+ j)!

i!j!k!

(λ+ δ + 1)2i(µ+ γ + 1)2j

(λ+ δ + 1)i(µ+ γ + 1)j

× F 2: 2
2: 1

 −k, −α− β − 1− 2(i+ j) + k : −i, −λ− i; −j, −µ− j;
1, 1

−(i+ j), −α− (i+ j) : −2i− λ− δ; −2j − µ− γ;

 .

(12)

In the special case α = µ+ λ, β = δ + γ, we get

Lij(i+ j − k) =
(µ+ λ+ δ + γ + 1)i+j−k(µ+ λ+ 1)i+j(2(i+ j − k) + µ+ λ+ δ + γ + 1)

(µ+ λ+ 1)i+j−k(µ+ λ+ δ + γ + 1)2(i+j)−k+1

×(−1)k(i+ j)!

i!j!k!

(λ+ δ + 1)2i(µ+ γ + 1)2j

(λ+ δ + 1)i(µ+ γ + 1)j

× F 2: 2
2: 1

 −k, −λ− µ− δ − γ − 1− 2(i+ j) + k : −i, −λ− i; −j, −µ− j;
1, 1

−(i+ j), −λ− µ− (i+ j) : −2i− λ− δ; −2j − µ− γ;

 .

(13)
In view of the Gasper’s reduction formula [6] for the product of two terminating hypergeometric

functions in terms of a Kampé de Fériet function

3F2

(
−n, n+ a, b

c, d

∣∣∣∣∣ 1
)

3F2

(
−n, n+ a, e

c, f

∣∣∣∣∣ 1
)

=
(−1)n(a− c+ 1)n

(c)n

× F 2: 2
2: 1

 −n, n+ a : b, e; d− b, f − e;
1, 1

d, f : c; a− c+ 1;

 ,

(14)

the linearization coefficient in (13) can be written as

Lij(i+ j − k) =
(α+ β + 1)i+j−k(α+ 1)i+j(2(i+ j − k) + α+ β + 1)

(α+ 1)i+j−k(α+ β + 1)2(i+j)−k+1

× (i+ j)!

i!j!k!

(λ+ δ + 1)2i(µ+ γ + 1)2j

(λ+ δ + 1)i(µ+ γ + 1)j

(−2i− λ− δ)k

(−2j − µ− γ)k

× 3F2

(
−k,−λ− µ− δ − γ − 1− 2(i+ j) + k,−i

−2i− λ− δ,−i− j

∣∣∣∣∣ 1
)

× 3F2

(
−k,−λ− µ− δ − γ − 1− 2(i+ j) + k,−λ− i

−2i− λ− δ,−λ− µ− i− j

∣∣∣∣∣ 1
)

(15)
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Next, we consider the particular case λ = δ = µ = γ and we will prove that one of the above
terminating 3F2 can be summed using, for this purpose, computer algebra.

Put

S(k) = 3F2

(
−k,−4λ− 1− 2(i+ j) + k,−i

−2i− 2λ,−i− j

∣∣∣∣∣ 1
)
,

with Zeilberger’s algorithm (see e. g. [9], Chapter 7) via the Maple sumrecursion command, we
obtain:

0 = (1 + k)(2j − k + 2λ)(j + i+ 4λ− k)(−1 + j − k + 2λ+ i)S(k)

−(1− 2i− 2λ+ k)(−k + i+ j − 1)(−k + j + i+ 2λ)(4λ+ 2i+ 2j − k)S(2 + k)

−2λ(−i+ j)(j + 2λ+ 1 + i)(2j − 1− 2k + 4λ+ 2i)S(1 + k) (16)

With the rechyper Maple command, which is an implementation of Petkovsek’s algorithm de-
tecting all hypergeometric term solutions of a holonomic recurrence equation ([9], Chapter 9)1 we
obtain that 0 is the only hypergeometric solution of the recurrence relation (16), hence the first 3F2

in the r.h.s. of relation (15) cannot be reduced to any hypergeometric term.
For the second 3F2 of (15), consider

T (k) = 3F2

(
−k,−4λ− 1− 2(i+ j) + k,−λ− i

−2i− 2λ,−2λ− i− j

∣∣∣∣∣ 1
)
. (17)

Again by Zeilberger’s algorithm we obtain

(2j − k + 2λ)(1 + k)T (k)− (1− 2i− 2λ+ k)(4λ+ 2i+ 2j − k)T (2 + k) = 0, (18)

with initial conditions T (0) = 1 and T (1) = 0.
¿From this recurrence it follows with Petkovsek’s algorithm that T (k) is 0 for odd k which is

also the only hypergeometric solution of relation (18).
For even values k = 2m, we get

(j + λ−m)(2m+ 1)T (m) + (2i− 1− 2m+ 2λ)(2λ+ i+ j −m)T (m+ 1) = 0, (19)

which admits the hypergeometric solution

T (k) = T (2m) =
(−λ− j)m(2m)!

4m(1/2− λ− i)m(−i− j − 2λ)mm!
. (20)

Therefore, for integer m we obtain the following reduction formula

3F2

(
−2m,−4λ− 1− 2(i+ j) + 2m,−λ− i

−2i− 2λ,−2λ− i− j

∣∣∣∣∣ 1
)

=
(−λ− j)m(2m)!

4m(1/2− λ− i)m(−i− j − 2λ)mm!
.

(21)
It follows that the linearization coefficients in

P
(λ,λ)
i (x)P

(λ,λ)
j (x) =

i+j∑
k=0

Lij(i+ j − k)P
(2λ,2λ)
i+j−k (x), (22)

1This computation can in principle also be handled by Mark van Hoeij’s faster algorithm [16] implemented in
Maple’s LREtools[hypergeomsols] command.
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are given by 0 if k = 2m + 1, which can be also proven directly by the symmetry property of the
ultraspherical polynomials {P (λ,λ)

n }n, and

Lij(i+ j − 2m) =

(
i+ j

i

)
(4λ+ 1)i+j−2m(2λ+ 1)i+j(2(i+ j − 2m) + 4λ+ 1)

(2λ+ 1)i+j−2m(4λ+ 1)2(i+j)−2m+1

× (2λ+ 1)2i(2λ+ 1)2j

(2λ+ 1)i(2λ+ 1)j

(−2i− 2λ)2m

(−2j − 2λ)2m

× 3F2

(
−2m,−4λ− 1− 2(i+ j) + 2m,−i

−2i− 2λ,−i− j

∣∣∣∣∣ 1
)

× (−λ− j)m

4m(1/2− λ− i)m(−i− j − 2λ)mm!
.

(23)

Next, we use the above results to obtain a reduction formula for a finite sum of a terminating hy-
pergeometric function, using for this purpose the well-known connection and linearization formulae
for Gegenbauer polynomials.

The Gegenbauer polynomials are Jacobi polynomials with α = β = µ− 1

2
and another standard-

ization:

Cµ
n(x) =

(2µ)n

(µ+ 1
2
)n

P
(µ− 1

2
,µ− 1

2
)

n (x). (24)

The connection and linearization formulae are respectively given by the formulae ([2, p. 39],
compare [10])

Cω
n (x) =

[n
2
]∑

k=0

(µ+ n− 2k)(ω − µ)k(ω)n−k

k!(µ)n+1−k

Cµ
n−2k(x), (25)

and,

Cµ
i (x)Cµ

j (x) =

min(i,j)∑
k=0

(i+ j + µ− 2k)

(i+ j + µ− k)

(µ)k(µ)i−k(µ)j−k(2µ)i+j−k

k!(i− k)!(j − k)!(µ)i+j−k

(i+ j − 2k)!

(2µ)i+j−2k

Cµ
i+j−2k(x).

(26)
That leads, by virtue of (24), to the following connection and linearization formulae for the ultras-
pherical polynomials

P
(2λ,2λ)
i+j−2k(x) =

(2λ+ 1)i+j−2k

(4λ+ 1)i+j−2k

[ i+j
2

]−k∑
p=0

(λ+ i+ j − 2k − 2p+ 1
2
)(λ)p(2λ+ 1

2
)i+j−2k−p

p!(λ+ 1
2
)i+j−2k−p+1

×(2λ+ 1)i+j−2k−2p

(λ+ 1)i+j−2k−2p

P
(λ,λ)
i+j−2k−2p,

(27)

and

P
(λ,λ)
i (x)P

(λ,λ)
j (x) =

(λ+ 1)i(λ+ 1)j

(2λ+ 1)i(2λ+ 1)j

min(i,j)∑
k=0

(λ+ i+ j − 2k + 1
2
)(i+ j − 2k)!

(λ+ i+ j − k + 1
2
)k!(i− k)!(j − k)!

×
(2λ+ 1)i+j−k(λ+ 1

2
)k(λ+ 1

2
)i−k(λ+ 1

2
)j−k

(λ+ 1
2
)i+j−k(λ+ 1)i+j−2k

P
(λ,λ)
i+j−2k(x).

(28)

Substituting (27) in (22 ), using (23) and comparing with (28), we get the following reduction
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formula, for 0 ≤ k ≤ min(i, j),

k∑
p=0

(λ)k−p(2λ+ 1
2
)i+j−k−p

(4λ+ 1)2i+2j−2p+1(
1
2
− λ− j)p

[2(i+ j − 2p) + 4λ+ 1)]

p!(k − p)!22p(λ+ 1
2
)i+j−p−k+1

(
λ+i
p

)(
2λ+i+j

p

)
×3F2

(
−2p,−4λ− 1− 2(i+ j) + 2p,−i

−2i− 2λ,−i− j

∣∣∣∣∣ 1
)

=(
i
k

)(
j
k

)(
i+j
2k

) k!

(2k)!

(2λ+ 1 + i+ j − 2k)k(λ+ 1)i(λ+ 1)j

(2λ+ 1)i+j(2λ+ 1)2i(2λ+ 1)2j

(λ+ 1
2
)k(λ+ 1

2
)i−k(λ+ 1

2
)j−k

(λ+ 1
2
)i+j+1−k

.

(29)

References

[1] R. ASKEY, Linearization of the product of Jacobi polynomials II, Canad. J. Math. 22 (1970),
582–593.

[2] , Orthogonal polynomials and special functions, CBMS Regional Conference Series,
vol. 21, Society for Industrial and Applied Mathematics, Philadelphia, 1975.

[3] R.P. BOAS JR. AND R.C. BUCK, Polynomial expansions of analytic functions, Springer Ver-
lag. Berlin, Göttingen, Heidelberg, 1964.

[4] H. CHAGGARA AND I. LAMIRI, Linearization coefficients for Boas-Buck polynomial sets,
Appl. Math. Comput. 189 (2007), 1533–1549.

[5] G. GASPER, Linearization of the product of Jacobi polynomials I, Canad. J. Math. 22 (1970),
171–175.

[6] , Nonnegativity of a discrete Poisson kernel for the Hahn polynomials, J. Math. Anal.
Appl. 42 (1973), 438–451.

[7] E. HYLLERAAS, Linearization of products of Jacobi polynomials, Math. Scand. 10 (1962),
189–200.

[8] R. KOEKOEK AND R.F. SWARRTOW, The Askey-Scheme of hypergeometric orthogonal poly-
nomials and its q-analogue, Tech. Report 98-17, Faculty of the Technical Mathematics and
Informatics, Delft University of Technology. Delft, 1998.

[9] W. KOEPF, Hypergeometric Summation, Vieweg, Braunschweig–Wiesbaden, 1998.

[10] W. KOEPF, D. SCHMERSAU, Representations of orthogonal polynomials, J. Comput. Appl.
Math. 90 (1998), 57–94.

[11] T. KOORNWINDER, Positivity proofs for linearization and connection coefficients for orthog-
onal polynomials satisfying an addition formula, J. Lond. Math. Soc. 18 (1978), 101–114.

[12] M. RAHMAN, The linearization of the product of continuous q-Jacobi-polynomials, Canad. J.
Math. 33 (1981), 961–987.

[13] , A non-negative representation of the linearization coefficients of the product of Jacobi
polynomials, Canad. J. Math. 33 (1981), 915–928.

7



[14] E.D. RAINVILLE, Special Functions, The Macmillan Company, New York, 1960.

[15] H.M. SRIVASTAVA AND H.L. MANOCHA, A Treatise on Generating Functions, John Willey
and Sons, New York, Chichester, Brisbane, Toronto, 1984.

[16] M. VAN HOEIJ, Finite singularities and hypergeometric solutions of linear recurrence equa-
tions, J. Pure Appl. Algebra 139 (1999), 109–131.

8


